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Abstract
The run time of classical text-to-speech alignment algorithms tends to grow quadratically with the length of the input. This makes it
difficult to apply them to very long speech recordings. In this paper, we describe and evaluate two algorithms that pre-segment long
recordings into manageable “chunks”. The first algorithm is fast but cannot guarantee short chunks on noisy recordings or erroneous
transcriptions. The second algorithm reliably delivers short chunks but is less effective in terms of run time and chunk boundary
accuracy. We show that both algorithms reduce the run time of the MAUS speech segmentation system to under real-time, even on
recordings that could not previously be processed. Evaluation on real-world recordings in three different languages shows that the
majority of chunk boundaries obtained with the proposed methods deviate less than 100 ms from a ground truth segmentation. On a
separate German studio quality recording, MAUS word segmentation accuracy was slightly improved by both algorithms. The chunking
service is freely accessible via a web API in the CLARIN infrastructure, and currently supports 33 languages and dialects.
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1. Introduction

Text-to-speech alignment plays an important role in Pho-
netic research, speech technology, and in the production of
video subtitles. The Bavarian Archive for Speech Signals
offers a free web service, Munich AUtomatic Segmenta-
tion (MAUS) (Schiel, 1999), to the scientific community.
MAUS segments transcribed speech recordings into words
and phones. Its main advantage is that, for many of its 33
languages and dialects, it cannot only perform forced align-
ment, but also model variable pronunciation. MAUS has
recently been evaluated as the best aligner, out of ten can-
didates, on a recording by J.F. Kennedy (Oesch and Sidler,
2017).

One major disadvantage of MAUS is its run time on long
recordings. This is because MAUS performs optimal
Viterbi alignment, which, while more accurate than beam
search, has quadratic run time with signal duration and tran-
scription length (see Figure 1). Long run times mainly af-
fect users who wish to use MAUS on certain types of real-
world recordings, such as public speeches, interviews or
audio books, as these tend to be longer than audio material
produced for scientific research.

One way to combat MAUS’s run time problem is to
pre-segment long recording-transcription pairs into short
“chunks”, i.e., slices of matching audio and text material
of a few seconds or minutes. Recently, we introduced the
“chunker”, an algorithm that does this job automatically
(Poerner and Schiel, 2016). The chunker has since been
made available as a web service by the Bavarian Archive
for Speech Signals (Kisler et al., 2017).

In the following, we give an overview of the algorithm, in-
cluding a number of new developments (Section 2.). Sec-
tions 3. and 4. describe an evaluation on three real-world
educational and political recordings and a studio quality
recording.

Figure 1: Run time of MAUS text-to-speech alignment with
pronunciation modeling (“MAUS mode”) and with simple
forced alignment. Inputs are subsequences of the material
used in Section 3.1.4.

2. Algorithms
The chunker offers two different technical solutions to the
chunking problem: the so-called “standard” algorithm (de-
fault) and the “forced” algorithm.

2.1. Standard chunking algorithm
The standard chunking algorithm is a combination of the T
(token-based) and P (phoneme-based) chunking algorithms
presented in Poerner and Schiel (2016). The T algorithm
builds on work by Moreno et al. (1998). It can be divided
into the following steps:

Language model – A smoothed HTK (Young et al., 2006)
bi-gram language model is trained on the transcrip-
tion.

Recognition – The HTK-HVite speech recognition engine
recognizes the signal, using the bi-gram model as well
as language-specific acoustic models from MAUS.

Alignment – The recognized text is symbolically aligned
with the transcription using the Hirschberg algorithm
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Figure 2: Schematic representation of standard algorithm
with boost phase. (1) Switch from P to T chunker because
chunk is short enough. (2) Switch from P to T chunker
because P failed to find more boundaries.

(Hirschberg, 1975). Alternatively, users can opt for
a faster, approximate algorithm with linear run time,
similar to one proposed by Anguera et al. (2011).

Boundary selection – After symbolic alignment, the
chunker searches for “anchor” regions where the
transcription and the recognition result are perfectly
aligned for a minimum number of words (e.g., 3). The
signal and transcription are then split at a word bound-
ary inside this region. The chunker prioritizes inter-
word pauses.

Recursion – Unless all chunks are short enough, or no new
boundaries were found, the entire process is repeated
recursively on the discovered chunks.

Speech recognition run time grows with the duration of the
recording and with the number of unique word types in
the transcription. Hence, the run time of the T chunker –
while faster than MAUS – was found to be unacceptable on
recordings that exceed one hour.
The P chunker algorithm, which is based on work by Bor-
del et al. (2012), alleviates this problem. Its recognition
engine and symbolic alignment run on the phoneme level
instead of the word level. Since phoneme inventories are
limited, recognition can thus be done in linear time. On
the downside, the P chunker finds fewer boundaries and is
less successful at locating inter-word pauses (Poerner and
Schiel, 2016).
The “standard” algorithm combines the speed of the P
chunker with the accuracy of the T chunker. More specifi-
cally, the P chunker is used in a so-called “boost phase” to
break the signal into relatively long chunks (duration > 1
minute, red bars in Figure 2). After the boost phase, the T
chunker does the fine-grained chunking (blue bars in Fig-
ure 2). In cases where the P chunker fails to find a sufficient
number of boundaries, the T chunker is called as a back-up.

2.2. Forced chunking algorithm
There are cases where the standard algorithm fails to find
a sufficient number of anchor regions, resulting in chunks
that are too long for further processing. While we have
found that this often indicates bad signal and/or transcrip-
tion quality (which the user may want to deal with anyway),
we decided to develop a second algorithm that guarantees a
chunking result even in problematic cases.
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Figure 3: Schematic representation of the forced algorithm.

The forced chunking algorithm builds on a method of
Moreno and Alberti (2009). They describe a factor automa-
ton language model that is able to find any substring of a
given text in the signal. We use this strategy in a divide-
and-conquer way (see Figure 3):

Language model – A factor automaton language model is
built on the transcription.

Recognition – A slice (e.g., 2 minutes) is cut from the mid-
dle of the signal. It is recognized by HTK-HVite using
the factor automaton model. Since recognition with
a factor automaton produces an alignment as a side-
effect, no symbolic alignment is necessary.

Boundary selection – A word boundary from the recog-
nized slice is used as a chunk boundary. As with the
standard algorithm, inter-word pauses are prioritized.

Recursion – The process is recursively repeated on the re-
sulting halves of the signal.

The size of the factor automaton grows linearly with the
length of the transcription, and the necessary recursion
depth grows logarithmically with audio duration. Hence,
the forced algorithm tends to be slower than the (boosted)
standard algorithm.

3. Evaluation
3.1. Data
We tested the chunker system on three real-world record-
ings of German, Italian and American English, whose du-
rations range between 58 and 89 minutes, as well as on a 55
minute “pseudo recording” made up of concatenated stu-
dio quality audio clips (see Table 1 for details). MAUS on
its own failed to produce a segmentation for any of these
recordings within 48 hours (at which point the processes
had to be interrupted).

3.1.1. Lecture recording (German)
The German real-world recording is a university lecture on
Aristotelian philosophy from the euroWiss project (Heller
et al., 2013)1. The lecture is held by a male native German
speaker, and there are short contributions by students. Au-
dio quality is high for the main speaker, but other speakers
are difficult to understand as they speak far away from the
microphone. There are frequent instances of background
noises and reverberations. The signal was downloaded as a

1hdl.handle.net/11022/0000-0001-7DBA-2
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Recording Signal Transcription Standard algorithm Forced algorithm
duration # words Chunker run time MAUS run time Chunker run time MAUS run time

Lecture 88:27 11969 41:44 23:60 165:59 24:10
Seminar 73:47 9046 23:55 15:18 100:00 18:30
Address 58:29 7562 23:10 12:11 60:01 13:33
Concat 55:08 8231 25:38 16:21 76:00 16:29

Table 1: Signal duration, number of words, chunker run time and subsequent MAUS run time in minutes

Figure 4: Manually annotated chunk boundary. Annota-
tion levels from top to bottom: chunker prediction (invisi-
ble during annotation), randomly shifted prediction (visible
during annotation), manually annotated boundary.

stereo MP3 file and converted into a mono 16 kHz WAVE
file. The orthographic transcription was extracted from the
accompanying EXMARaLDA annotation. The transcrip-
tion is narrow and includes hesitations and false starts. We
deliberately did not use the chunk segmentation provided.

3.1.2. Seminar recording (Italian)
The Italian real-world recording also stems from the eu-
roWiss project. It contains a seminar on the author Walter
Benjamin, held by a female native Italian speaker, again
with short contributions by students. Remarks made on the
audio and transcription quality of the German recording ap-
ply to the Italian recording too. Note that while the audio
contains a transcribed and an untranscribed part, we only
used the transcribed part (the first 73:47 minutes).

3.1.3. Address (American English)
The American English real-world recording is an address
given by former US president Barack Obama (Obama,
2015)2. Most of the material is spoken by the main speaker,
but there are short contributions by other speakers, includ-
ing many non-native speakers. Audio quality is high for
all speakers, but there are background noises and reverber-
ations. The recording was downloaded as a mono MP3 file
and converted into a mono 16 kHz WAVE file. The tran-
scription was crawled from the corresponding web site. It
is relatively broad, meaning that it does not contain hesita-
tions and false starts. Furthermore, a number of sentences
in the audio differ or are missing from the transcription.

2www.americanrhetoric.com/speeches/barackobama/
barackobamaYSEALIWashingtonDC.htm

3.1.4. Concatenated recording (German)
The concatenated recording is made up of 401 clips from
the German Verbmobil corpus (Burger et al., 2000)3. The
clips are studio quality, 16 kHz mono WAVE. They con-
tain speaker turns from timetabling role-plays (6 male, 16
female speakers), and they come with a manual broad pho-
netic segmentation. To mimic a long recording, the clips
were concatenated into a single 55 minute file.

3.2. Processing
All recording-transcription pairs were converted into EMU
databases (Winkelmann et al., 2017)4. We used the G2P5

grapheme-to-phoneme converter (Reichel, 2012) to pro-
duce a phonemic (SAMPA) representation of every word
in the transcription. In the next step, we ran the chunker in
two different settings:

standard – Boost phase with anchor length 4 phonemes,
followed by word-based phase with anchor length 3
words. Minimum chunk duration 5 seconds, align-
ment by Hirschberg algorithm.

forced – Forced algorithm with slice duration 2 minutes.
Minimum chunk duration 5 seconds.

Finally, we used MAUS to produce a phonetic segmen-
tation based on the outcomes of the two chunker vari-
ants. To compare the accuracy of MAUS with and without
pre-chunking, we also ran it directly on the concatenated
recording. Since MAUS on its own could not process the
full 55 minutes in a reasonable amount of time, the record-
ing was manually pre-segmented into ten minute chunks,
effectively giving MAUS a head start over the chunker.

3.3. Ground truth
3.3.1. Word boundaries
In the German concatenated recording, the existing man-
ual phonetic annotation was used to locate the ground truth
start and end times of words. In the three real-world record-
ings, no such annotation exists; hence, word segmentation
accuracy could not be evaluated on them.

3.3.2. Chunk boundaries
A predicted chunk boundary has the form (w1, t, w2),
where w1 and w2 are the word tokens to the left and right
of the boundary, and t is the predicted time. Its true time is

3hdl.handle.net/11022/1009-0000-0000-EB31-0,
sessions m112d-m117d, m119d, m222d, m224d, m230d, m231d

4ips-lmu.github.io/EMU.html
5All tools were called using EMU’s interface to the BAS web

services (Poerner and Winkelmann, 2017). Hence, run times re-
ported in Table 1 contain a slight overhead for signal uploads.
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Figure 5: MAUS word segmentation errors relative to manual annotation, with and without pre-chunking, on concatenated
German recording. Box plots with error distributions. Red dashes: Single data points. Full range (left) and zoomed view
(right).

the mid-point between the true end time of w1 and the true
start time of w2. If there is no pause between w1 and w2,
end time, start time and mid-point coincide.
In the concatenated recording, true chunk boundaries were
derived from the existing manual annotation. In the real-
world recordings, true boundaries were annotated by the
first author using the EMU-webApp (Winkelmann and
Raess, 2014). To avoid confirmation bias, predicted bound-
aries were randomly shifted to the left or right by up to
two seconds before annotation, while the actual predictions
were hidden and later restored (see Figure 4).

3.4. Results
Chunk boundary errors are defined as the difference be-
tween predicted chunk boundary times and true chunk
boundary times (see Section 3.3.2.). Figure 6 shows distri-
butions of chunk boundary errors on all recordings. Word
segmentation errors are defined as the difference between
word start times according to MAUS and word start times
according to the manual phonetic segmentation. Figure
5 shows distributions of word segmentation errors for the
concatenated recording. Table 2 lists the percentages of
chunk boundaries that were correctly placed inside inter-
word pauses of duration 100 ms or more. Figure 8 shows
distributions of chunk durations on all recordings.

4. Discussion
4.1. Run time
On all recordings, both chunking algorithms enabled
MAUS to run in less than real-time (see Table 1). The
standard chunking algorithm ran in under real-time too,
while the forced algorithm took up to four times as long.
Still, both methods reduced overall run time compared to
MAUS-only segmentation, which took more than 48 hours.

4.2. Effects on word segmentation accuracy
Figure 5 suggests that MAUS word segmentation accuracy
was not harmed by pre-chunking. Quite the contrary, seg-
mentation accuracy slightly improved relative to the base-
line. It is worth keeping in mind that word segmentation ac-
curacy could only be evaluated on the studio quality record-
ing, which might not be representative of real-world record-
ings.

Lecture Seminar Address Concat
Standard 58.4% 52.6% 51.5% 69.5%
Forced 75.6% 75.1% 65.1% 79.0%

Table 2: Percentage of chunk boundaries that were placed
inside a pause of 100 ms or more between their previous
and next word.

4.3. Finding pauses
As mentioned in Section 2.1., the chunker aims to place
boundaries inside inter-word pauses to reduce the risk of
cutting into the previous or following word. Table 2 shows
that the forced algorithm was more successful at finding
inter-word pauses than the standard algorithm, which is
probably due to its greater choice of potential boundary lo-
cations.

4.4. Chunk durations
The standard algorithm produced chunks with a duration of
up to 1:47 minutes (see Figure 8). While this is sufficiently
short for fast MAUS processing, it suggests that there were
regions where the standard method failed to find any bound-
aries. Manual inspection suggests that these regions often
coincided with low-quality stretches in the recording (e.g.,
prolonged background noise, turns by speakers far away
from the microphone, regions with audio-transcription mis-
matches).
The forced algorithm, on the other hand, returned shorter
chunks, because it is forced to cut inside low-confidence
regions.

4.5. Chunk boundary errors
The majority of absolute chunk boundary errors made by
the standard algorithm were below 100 ms (see Figure 6).
We revisited all absolute errors beyond 500 ms and found
that the standard algorithm has a tendency to get confused
whenever a speaker utters the same (or approximately the
same) phrase several times in a row (e.g., Ja, wir wollen
die Nahrung, wir wollen die äh wir wollen die Ernährung,
German lecture). A possible explanation is that the recog-
nition engine correctly recognizes one repetition but not the
others, resulting in a situation where the recognized phrase
gets aligned to the wrong instance in the transcription.
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Figure 6: Chunk boundary errors relative to manual annotation. Box plots with error distributions. Red dashes: Single data
points. Full range (left) and zoomed view (right).

While the forced algorithm guarantees short chunks, it
turned out to be more prone to errors than the standard algo-
rithm, with a greater range of error outliers and broader er-
ror distributions. Manual analysis of these outliers revealed
that most of them come down to one of two patterns:

• The chunker misinterprets the above-mentioned low-
quality regions, e.g., by “imagining” a subsequence
of the transcription inside a long noisy pause. This
kind of mistake can lead to major mis-alignments, es-
pecially if it happens early in the recursion.

• In a scenario where a pause is preceded or followed by
a short or clipped word (e.g., I or of ), the forced chun-
ker sometimes locates that word on the wrong side of
the pause (see Figure 7). The difference between pre-
dicted and true chunk boundary is half the duration of
the pause, which may be several seconds. However,
the error is less severe than its magnitude suggests,
since all words except one end up in the correct chunk.

5. Summary
We have presented two algorithms that automatically break
long transcribed speech recordings into “chunks”, i.e.,
shorter text-audio pairs. They are intended as a pre-
processing tool to the Viterbi-based phonetic segmentation
system MAUS, which cannot cope with very long record-
ings on its own. The combination of chunker and MAUS
allows researchers to align and segment very long speech
recordings (e.g., interviews, speeches or audio books)
quickly and without the need for time-consuming manual
pre-segmentation.

The standard chunking algorithm applies a combination of
fast phoneme-based and accurate word-based recognition.
The forced chunking algorithm is slower and less accurate,
but it guarantees a result even in the face of poor signal or
transcription quality. Hence, it can be used as a fall-back in
extreme cases where the standard algorithm fails to deliver
chunks that are short enough.
We evaluated both algorithms on long recordings in three
different languages. The comparison with a manual anno-
tation showed that most chunk boundaries deviate from the
ground truth by less than 100 ms. MAUS word segmen-
tation accuracy does not seem to be negatively affected by
pre-chunking; instead, there is a slightly positive impact.
Both algorithms are offered as free-to-use web services
within the CLARIN infrastructure.6

6http://hdl.handle.net/11022/1009-0000-0001-232C-7

Figure 7: Forced algorithm locates short word on wrong
side of a pause. Annotation levels from top to bottom:
chunker prediction, manual boundary, manual locations of
the words of and But, and their inter-word pause.
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Figure 8: Chunk durations. Box plots with distributions.
Red dashes: Single data points.

6. Bibliographical References
Anguera, X., Perez, N., Urruela, A., and Oliver, N.

(2011). Automatic synchronization of electronic and au-
dio books via TTS alignment and silence filtering. In
Proc. ICME, Barcelona, Spain, July.
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