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Abstract
Four open source formant trackers, three LPC-based and one based on Deep Learning, were evaluated on the same American English
data set VTR-TIMIT. Test data were time-synchronized to avoid differences due to different unvoiced/voiced detection strategies.
Default output values of trackers  (e.g. producing 500Hz for the first formant, 1500Hz for the second etc.)  were filtered from the
evaluation data to avoid biased results. Evaluations were performed on the total recording and on three American English vowels [i:],
[u] and [ ] ʌ separately. The obtained quality measures showed that all three LPC-based trackers had comparable RSME error results
that are about 2 times the inter-labeller error of human labellers. Tracker results were biased considerably (in average too high or low),
when the parameter settings of the tracker were not adjusted to the speaker's sex. Deep Learning appeared to outperform LPC-based
trackers in general, but not in vowels. Deep Learning has the disadvantage that it requires annotated training material from the same
speech domain as the target speech, and a trained Deep Learning tracker is therefore not applicable to other languages. 
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1. Introduction
This  paper  presents  the  methodology  and  results  of  a
technical  evaluation  of  four  open  source  algorithms for
automatic formant tracking (in the following referred to as
'formant  trackers').  Currently,  a  small  number  of  open
source  formant  trackers  is  widely  used  by  speech
scientists  and  speech  engineers.  A  number  of  earlier
studies evaluated selections of these formant trackers on
selected vowels, on words spoken in isolation and/or on
speech of a small number of speakers:  Derdemezis et al.
2016  evaluated  4  LPC-based  formant  trackers  on  4
different  vowels  in  isolated words uttered  by 8 speaker
groups;  Deng  et  al,  2006  evaluated  their  own  formant
tracker  compared  to WaveSurfer  based on VTR-TIMIT;
Harrison, 2004 compared three LPC-based algorithms on
data of two speakers. But to our knowledge there exists no
objective  evaluation  of  the  quality  of  more  than  two
algorithms  based  on  the  same  data  set  comprising  a
reasonable number of speakers of both genders and fluent
speech.  Partly  this  is  due  to  the  fact  that  a  manually
controlled reference corpus of fluent speech for formant
tracks  is  difficult  to  obtain.  Fortunately,  with  the
publication of the VTR-TIMIT (Vocal Tract  Resonances
TIMIT) corpus by Deng et al (2006) we are now able to
perform  such  an  evaluation,  at  least  for  US  American
English.
Aside  from  the  direct  comparison  of  different  formant
trackers as presented in this study there exist  numerous
studies  that  compare  the  out-come  of  a  single  formant
tracker to one or more expert annotations, or evaluate the
influence of methodological parameters such as the time
point  of  measurement  (Kendall  &  Vaughn  2015),  the
number  of  formants  or  LPC order  (Vallabha  & Tuller,
2002;  Harrison 2004),  the signal  quality (Rathcke et  al.
2016),  or  even  the  outcome  of  different  expert  groups
using  the  same  formant  tracker  but  different
methodologies (Duckworth et al. 2011).  Derdemezis et al
(2016) investigated the influence of several measurement
parameters;  they also give a very detailed discussion of
existing  studies  regarding  parameter  manipulation  (see
also Burris et al, 2014). Most of these earlier studies are in
agreement that the quality of formant trackers' results can
be improved by adjusting the parameters of the algorithm

to the given task, i.e.  dependent on the algorithm itself,
the  age,  gender  and  health  of  speakers,  the  point  of
measurement,  and  the  quality  of  the  recording.  On  the
other hand, many authors in the literature agree that, even
when  given  methodological  rules  that  may  improve
format tracker output, in practical terms most researcher
tend to use formant trackers with their respective default
settings and do not adjust tracking parameters as advised.
In this study we therefore do not give any methodological
recommendations for the four tested formant trackers but
rather compared the out-come when using default tracker
parameters, and the impact caused by the voiced/unvoiced
detection, the speaker genders and three vowel classes of
American English.
 

2. Formants
A formant is a resonance in the speech signal caused by
the geometry of the physiological  tubular system of the
speaker's  vocal  tract.  Formants are considered to be the
primary phonetic feature for distinguishing vowel classes
as  well  as  place  of  articulation  in  consonant-vowel
transitions.  Furthermore,  since  formants  are  determined
by  the  ideosyncratic  physiological  form  of  a  speaker's
vocal  tract,  they  play  a crucial  role  in  forensic  speaker
recognition,  automatic  speaker  identification  and
verification, sex and age recognition (e.g. Rose, 2003, pp.
221). 
A formant  is  typically  defined  by three  parameters:  the
center  frequency  (often  called  formant  frequency),  the
bandwidth  and  the  amplitude  of  the  resonance.
Technically,  formants  in  a  digitized  speech  signal  are
often decribed as complementary poles in the z-transform
of the vocal tract  filter, where the radial  position of the
pole defines the center frequency and the distance to the
unit circle (and distance to neigboring poles/zeros) defines
bandwidth and amplitude.
The  lower  formants  1-5  are  widely  used  as  phonetic
features  in  linguistic-phonetic  and  forensic  analysis  but
also as basic features  in speech technology applications
(such  as  speech  morphing,  speech  and  speaker
recognition).  It  is  therefore  not  surprising  that  the
development  of  algorithms  to  detect  and  track  lower
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formants automatically in a speech recording has a long
tradition going back to Rabiner & Schafer (1970).

3. Formant Trackers
Since formants are basically caused by an acoustical filter
operation where the glottal source signal is filtered by a
infinite-impulse-response  filter,  i.e.  a  filter  having  5  or
more complementary poles in its z-transform, they cannot
be  determined  analytically  from  the  recorded  speech
signal  without  prior  knowledge  of  the  source  signal
(which  is  usually  not  available).  Most  algorithms  to
estimate  formant  parameters  from  the  recorded  speech
signal therefore either apply homo-morphic analysis of the
spectral  envelope  (e.g.  cepstral  analysis  followed  by  a
peak-picking strategy), or LPC analysis (Markel & Grey,
1982)  to  estimate  the  z-transform  followed  by  a  pole-
picking strategy, or trained pattern recognition techniques
(e.g.  support  vector  machine,  random  forest  or  deep
learning).  The  latter  requires  a  training  set  of  labelled
formant tracks and is in most cases language dependent,
while the former two approaches are inherently language
independent and do not require any training material.
The task of formant tracking is further complicated by the
fact  that  some  algorithms  assume  a  voiced  signal  for
analysis,  i.e.  the  spectral  envelope  encloses  a  harmonic
spectrum consisting of a fundamental frequency line and
the respective harmonic spectral lines at multiples of the
fundamental frequency. Such algorithms typically produce
more  or  less  random results  when  applied  to  unvoiced
parts  of  the  speech  signal.  Therefore  the  formant
estimation  algorithm is  often  combined  with  a  voiced-
unvoiced  detector  to  suppress  formant  analysis  in
unvoiced  parts  of  the  speech  signal.  Since  the
voiced/unvoiced detection in itself is error prone (e.g. in
creaky voice), the output of the combined algorithm (= the
formant tracker) is influenced by the performance of both
algorithms. 
In this study four formant trackers have been investigated:

• PRAAT, the built-in formant tracker of the praat
tool  by  Boersma  &  Weenink  (2017),  'Burg'
method (cf. Childers 1978, pp. 252)

• SNACK, the formant tracker (version 2.2) of the
Snack Sound Toolkit of KTH Stockholm by Kåre
Sjölander (2017)

• ASSP,  the  formant  tracker  forest (version  2.8)
contained  in  the  Advanced  Speech  Signal
Processor  library  by  M.  Scheffer  (Scheffer,
2017), also contained in the R language package
wrassp,  and  part  of  the  Emu  database
management system (EMU-SMDS, Winkelmann
2017)

• DEEP, DeepFormant, a formant tracker (Keshet,
2017)  based  on  deep  learning  techniques  and
trained  on  the  training  set  of  VTR-TIMIT
(Dissen & Keshet,  2016). Contrary to the three
other  formant  trackers  this  algorithm  produces
formant  frequency  estimates  at  all  time points,
i.e. there is no voiced/unvoiced detection.

PRAAT, SNACK and ASSP are based on LPC analysis;
no homo-morphic formant tracker was evaluated in this
study (cf. Kammoun et al, 2006 for a discussion of LPC
vs. homo-morphic formant analysis). 

4. Test Data VTR-TIMIT
Vocal Tract Resonance TIMIT (VTR-TIMIT) is an open
source subcorpus annotation of TIMIT1 (Garofolo et  al,
1992) with 516 manually annotated recordings spoken by
186 (113m and 73f) speakers of American English (Deng
et  al,  2004).  The  subcorpus  contains  282  phonetically
compact (SX in TIMIT terminology) and 234 phonetically
rich  sentences  (SI),  but  no  dialectal  speech  (SA).  The
speech was first analysed by the formant tracker algorithm
described  in  Deng  et  al,  2004,  and  subsequently  hand-
corrected.  The  manual  correction  was  performed  by  a
group of labelers based on visual inspection of the first
three  formants  in  the  spectrogram  (higher  formants,
bandwidths  and  amplitudes  were  not  corrected).  Inter-
labeller  agreement  tests  on  a  small  sub-sample  (16
sentences per 5 different labeller-pairings) yielded average
frequency deviations of about 78Hz for the first formant
(F1), 100Hz for F2 and 111Hz for F3 (Deng et al, 2006).
For technical reasons the VTR-TIMIT formant reference
tracks are continuous over the total recording, i.e. there is
no  indication  of  where  the  speech  is  voiced  or  where
formants  are  or  are  not  visible  in  the  spectrogram.
Formants in unvoiced or silent  parts of the signal  were
either interpolated linearly from the two adjacent voiced
parts or horizontally extended at the initial or final voiced
portion of the recording. This interpolation facilitates an
evaluation of formant tracker output independently of the
voiced-unvoiced  detection  of  the  tracker  algorithm
(because for every time frame of the recording there exists
a reference value); on the other hand the resulting quality
measure  might  be  compromised:  if  a  tracker  is
'conservative' in the sense that it produces output only for
the parts of the input signal  where it  is  quite  confident
(clearly  voiced  parts),  then  this  tracker  will  outperform
other trackers who produce results in parts of the signal
where the tracking is compromised for instance by creaky
voice or noise associated with consonantal  constrictions
etc.
Since the formant tracker DEEP was trained on parts of
VTR-TIMIT,  the  following  evaluations  of  DEEP were
only performed on the test part of VTR-TIMIT (a subset
with 8f and 16m speakers). We did not restrict the tests of
the LPC-based trackers  on this subset  (this would have
compromised  the  statistical  power  of  the  analysis
considerably),  since results are not comparable between
DEEP and the remaining algorithms anyway: DEEP has
been trained on the training part  of  VTR-TIMIT and is
therefore language- and corpus-dependent, while the three
other  formant  tracker  algorithms  are  language-  and
corpus-independent.

5. Evaluation Methodology
Quality Measures
Two  quality  measures  were  calculated  to  quantify  the
distance  of  formant  tracker  output  to  the  annotation
reference:

• RSME: root mean squared error calculated over
the  complete  recording  to  quantify  overall
performance (zero being perfect  match between
formant tracker output and reference).

1 TIMIT itself and thus the signals of VTR-TIMIT are not
open source; refer to the Linguistic Data Consortium.
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• AVG: average difference between reference and
formant  tracker  output  calculated  over  the
complete recording to indicate systematic errors:
a positive value indicates that the tracker tends to
calculate formant estimates in average too low; a
negative  value  indicates  formant  estimates  are
too high;  zero  indicates  a  perfect  symmetry  of
errors  around  the  annotation  reference.  Please
note  that  the  AVG  value  does  not  give  any
information about the quality.

Histograms  of  the  AVG  errors  were  plotted  to  identify
multi-modal  distributions,  for  instance  caused  by
systematic formant confusion errors.

Formant Tracker Parameters
The  four  formant  trackers  were  evaluated  with  their
default parameter settings, except for the frame step size
which was set to 10msec and the window length which
was  set  to  25msec  for  all  trackers  to  yield  comparable
number of evaluation frames. Other parameters were not
changed under the assumption that the developpers have
choosen these default parameter sets to optimize for best
performance.  As  we  will  see  in  the  results,  using  the
default settings causes differences in measurement quality
depending on the speaker's sex, since two of the trackers,
SNACK and ASSP, use default parameters optimized for
male  speakers,  while  PRAAT  uses  a  parameter  set
optimized for female speakers.  However,  using speaker-
individual  parameter  settings  in  the  evaluation  pose  a
problem, since not all trackers offer a standard parameter
set for female and male speakers. Instead we propose to
inspect  the  results  of  trackers  sorted  according  to  their
default sex parameter setting, i.e. to look at the results of
female  speakers  for  PRAAT  and  the  results  of  male
speakers for SNACK and ASSP.
The formant tracker DEEP has no parameters to influence
speaker sex, but is trained to a dominantly male training
data set (67f vs. 95m speakers) and is therefore expected
to perform slightly better on male speech. Table 1 lists the
available  and  chosen  parameter  settings  (defaults  are
marked with an asterix *)

Parameter ASSP SNACK PRAAT DEEP
formants 4* 4* 5* 4*
LPC 18* 12* 10* n/a
preemph 0.96* 0.7* 50Hz/oct* unknown
window blackman* cos4* gauss* unknown
w. length 25ms 25ms 25ms* unknown
stepsize 10ms 10ms 10ms 10ms*

Table 1: formant tracker parameter sets

Tests conditions
As  mentioned  earlier  formant  trackers  have  different
strategies to distinguish between parts of the signal where
formants can be detected versus parts of the signal that are
unvoiced  (or  otherwise  compromised  in  a  way  that  no
formants  can  be  detected).  To prevent  quality  measures
from being skewed by this behavior  we decided  to  run
three different tests:

1. NORM:  all  trackers  use  the  same  voiced-
unvoiced detection. We used the pitch detector in
praat  (which  is  an  independent  tool  from  the
praat formant tracker) to determine in all  VTR-
TIMIT recordings when tracker  output is  to be
evaluated.  If  a  tracker  did  not  deliver  `real'
results within these defined areas, these `fake' or
zero  results  were  excluded.  For  instance,
SNACK outputs default formant values in parts
of  the  signal.  Fortunately,  these  can  easily  be
detected  and  filtered  from  the  evaluation  data
(less than 6% loss of evaluation data).

2. DEFAULT:  trackers  decided  individually  for
which portions of the recording formant values
were  produced.  Again,  detectable  `fake'  values
were  filtered  from  the  evaluation.  This  is
basically  the  `normal'  way  to  use  a  formant
tracker, since it is very unlikely that a user will
not accept the built-in voiced-unvoiced decision
of a  formant  tracker.  Since the formant  tracker
DEEP  does  not  perform  a  voiced/unvoiced
detection  and  PRAAT  uses  the  same
voiced/unvoiced detection as in the NORM test
condition, only SNACK and ASSP results were
evaluated in this test condition.

3. VOWELS: tracker outputs were restricted to the
same  voiced-unvoiced  segmentation  as  in  test
NORM,  but  additionally  restricted  to  the
segments  of  the  three  vowels  [i:],  [u]  and  [ ]ʌ
which  are  roughly  the  corner  positions  in  the
American  English  vowel  space.  This  test  was
motivated by the fact that the first three formants
are  the predominant  features  for  vowel  quality.
The three selected American vowels can be seen
as representative sounds for high front, high back
and low vowels.

6. Results
In  the  following  RMSE  and  AVG  results  for  all  test
conditions (see section 5) are presented.

6.1 Test Condition NORM
Table 2 lists the RMSE measures in Hz in test condition
NORM for formants F1...F3 and for female (f) and male
(m) speakers. As expected, absolute errors increased with
formant order; the relative errors were in about the same
range for all three formants. Errors of the DEEP tracker
were  exceptionally  low,  but  the  comparison  with  the
remaining three trackers is not fair, since the test set was
much smaller for DEEP (see section 4) and DEEP was
trained  to  VTR-TIMIT and therefore  has  an  advantage.
The  formant  tracker  PRAAT  showed  systematic  errors
with male speakers, while SNACK and ASSP performed
better on male than on female speakers. However, when
comparing  the  average  RMSE  error  value  for  female
speakers  in  PRAAT  (194Hz)  with  male speakers  in
SNACK/ASSP  (234/177Hz)  we  can  see  that  the
performance was in the same range (underlined values in
Table  2).  It  is  unlikely  that  these  differences  between
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formant trackers are significant, considering that averaged
human inter-labeller errors  on the reference were in the
range of 96Hz (see section 4). But it is clear that the LPC-
based  trackers  in  average  (210Hz  error)  performed
significantly worse than human labellers  (about  2 times
worse).

F1 F2 F3
f m f m f m

SNACK 126 100 291 227 313 375
ASSP 113 96 479 211 512 225
PRAAT 116 234 217 338 249 404
DEEP 120 97 195 167 252 169

Table 2: RMSE errors in the test condition NORM
(underlined values: formant tracker parameters match

speaker sex).

Looking at averaged AVG measures in Table 3, the main
result  of  the  evaluation  was  that  ASSP  tended  to
underestimate  formant  frequencies  F2/F3  for  female
speakers (200Hz too low), while PRAAT did the opposite,
i.e. it overestimated all three formant frequencies for male
speakers (120Hz too high). The averaged AVG errors for
SNACK and  DEEP were  quite  balanced  especially  for
lower formants F1/F2. 

F1 F2 F3
f m f m f m

SNACK 23 -9 1 -8 -45 -102
ASSP -12 -14 187 11 216 24
PRAAT -38 -116 11 -114 -13 -188
DEEP 86 56 5 -68 116 -26

Table 3: AVG errors in the test condition NORM 
rounded to two decimal places (underlined values:

formant tracker parameters match speaker sex).

Figure 1: AVG error histogram of F3 (in kHz) estimated
by SNACK; positive AVG error values denote estimates
lower than reference, and vice versa; female speakers are

light blue, male speakers are pink, overlap dark blue.

Selected AVG Histograms
Fig. 1 shows the AVG error histogram of F3 estimated by
SNACK. Male values (pink) displayed a second peak at
about -1000Hz AVG error (= estimated 1000Hz too high),
indicating that SNACK in some cases confused F4 with
F3 (tracks F3 in the location of F4);  this error was not
visible for female speakers (blue), probably because F4 of
female speakers is much higher than of male speakers and
therefore not easily confused with F3.

Fig.  2  shows  the  histogram  of  AVG  errors  for  F2
estimated  by  ASSP.  Here  female  speakers  (light  blue)
showed  more  positive  AVG  errors,  indicating  that  the
ASSP estimates for F2 for female speakers were often too
low. In contrast to Figure 1 there was no visible second
peak  which  means  that  these  lower  estimates  were
probably not caused by classical formant confusion.

Figure 2: AVG error histogram of F2 (in kHz) estimated
by ASSP (see Figure 1)

Fig. 3 displays the histogram of AVG errors for the first
formant by the tracker PRAAT. One can clearly see that
measurements for male Speakers (pink) were consistently
overestimated  (AVG error  negatively  skewed),  and  that
formant  tracker  parameters  were  optimized  for  female
speakers  (light  blue)  which  yielded  AVG errors  around
zero.

6.2 Test Condition DEFAULT
The RMSE and AVG measures obtained in test condition
DEFAULT for  the  formant  trackers  SNACK and ASSP
were almost congruent with the results in the test condi-
tion NORM. Bonferroni corrected t-tests on alpha = 0.01
applied on speaker aggregated errors RMSE and AVG (to
avoid repeated measures) showed no significant changes
in both quality measures and for the three first formants
between test condition NORM and DEFAULT, except for
the  RMSE measure  of  the  first  formant  F1  in  formant
tracker  ASSP (but contrary  to our expectation the error
increased for  the  DEFAULT condition in  this  case).  In
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total,  when  evaluating  SNACK  and  ASSP the  norma-
lisation of pitch detection seemed not to be a significant
factor  (for  brevity  we  do  not  show  the  error  measure
tables  here).  The  hypothesis  that  the  different
voiced/unvoiced  segmentations  of  the  formant  trackers
would have a significant impact on evaluation results has
therefore been falsified.

Figure 3: AVG error histogram of F1 (in kHz) estimated
by PRAAT (see Figure 1 for details)

6.3 Test Conditions VOWELS
Table 4 shows RMSE errors for three vowels  [i:] (5694
frames), [u] (1373 frames) and [ ] (2671 frames).ʌ

F1 F2 F3

f m f m f m

S
N
A
C
K

[i:] 91 82 372 234 239 373

[u] 73 54 224 163 300 421

[ ]ʌ 143 105 190 155 276 364

A
S
S
P

[i:] 76 66 744 245 342 200

[u] 65 48 280 154 317 151

[ ]ʌ 117 94 347 139 634 215

P
R
A
A
T

[i:] 62 254 216 192 190 276

[u] 57 469 127 300 225 425

[ ]ʌ 91 145 99 207 205 281

D
E
E
P

[i:] 97 80 268 185 226 167

[u] 92 66 169 124 348 124

[ ]ʌ 132 109 144 130 264 194

Table 4: RMSE errors in vowel segments [i:], [u] and [ ]ʌ
(underlined values: formant tracker parameters match

speaker sex).

RMSE  results  were  significantly  better  for  vowel
segments  than  across  the  total  recording  which  is  not
surprising. Again, formant tracker parameters that do not
match  speaker's  sex  caused  larger  errors  (e.g.  744Hz
RMSE error  on F2 for  female  speakers  in  ASSP).  The
advantage of DEEP against the LPC-based trackers noted
in the NORM test condition was not as prominent here.
The low centralized vowel [ ] seemed to be more difficultʌ
to track than the high vowels [i:]  and [u];  one possible
explanation  is  that  reduced/centralized  vowels  in
American  English  are  often  labelled  with  [ ]  and  areʌ
therefore  more  often  hypo-articulated  than  [i:]  and  [u].
Hypo-articulation  correlates  with  lower  formant
amplitudes and higher bandwidths  which in  turn makes
the  tracking  of  the  formant  frequency  more  difficult.
Another  explanation is that  F1 and F2 tend to be close
together for [ ] and might therefore be harder to separateʌ
by the formant tracker.

7. Conclusion
Four open source formant trackers, three LPC-based and
one  based  on  Deep  Learning,  were  evaluated  on  an
American  English  data  set.  The  three  traditional  LPC-
based  formant  trackers  performed  similarly  well,  when
their  respective  parameter  sets  matched  the  sex  of  the
tracked speaker; otherwise results were sometimes heavily
skewed in one direction  which could easily  lead to  the
misinterpretation  of  tracker  results.  The  average
performance in terms of RMSE (210Hz) was about two
times  higher  than  reported  comparable  inter-labeller
agreement error for human labellers on the same data set
(96Hz,  Deng et  al  2006).  The SNACK formant  tracker
turned out to be robust against wrong speaker sex settings,
but  sometimes  produced  default  values  as  output
(F1=500Hz,  F2=1500Hz,  ...)  without  warning;  if  not
filtered  these  could  be  misinterpreted  as  formant
measurements.  The  Deep  Learning  formant  tracker
appeared to out-perform traditional LPC-based methods in
general  but  not  when tested  on  vowels  only.  However,
since the Deep Learning formant tracker was trained on
the training set of the same speech corpus used for testing,
this finding will probably not hold for other data sets (and
especially not for other languages).
Some take  home  messages  when  dealing  with  formant
trackers:

• LPC-based formant trackers show about 2 times
less precision than human labellers.

• whenever possible, adjust your tracker to the sex
of the target speaker.

• check  for  and  remove  default  output  values
(repetitions of exactly the same value).

• if a histogram of tracker results shows more than
one peak, this could be an indication of formant
confusion  (e.g.  F4  is  sometimes  recognized  as
F3); a possible solution is to increase the number
of  formants  or  reduce  the  spectral  range
(depending on the tracker algorithm)

• expect less reliable results in centralized vowels
(and in hypo-articulated speech in general) and in
lower vowels.
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