
The LODeXporter: Flexible Generation of Linked Open Data Triples from
NLP Frameworks for Automatic Knowledge Base Construction

René Witte and Bahar Sateli
Semantic Software Lab

Concordia University, Montréal, QC, Canada
http://www.semanticsoftware.info

Abstract
We present LODeXporter, a novel approach for exporting Natural Language Processing (NLP) results to a graph-based knowledge base,
following Linked Open Data (LOD) principles. The rules for transforming NLP entities into Resource Description Framework (RDF)
triples are described in a custom mapping language, which is defined in RDF Schema (RDFS) itself, providing a separation of concerns
between NLP pipeline engineering and knowledge base engineering. LODeXporter is available as an open source component for the
GATE (General Architecture for Text Engineering) framework.

Keywords: Linked Open Data, Automatic Knowledge Base Construction, Semantic Web

1. Introduction
Knowledge bases in standardized graph-based formats have
become increasingly important in modern applications, such
as personal intelligent assistants. Due to the large amount
of formalized knowledge required, automatic knowledge
base (KB) construction is a crucial step that typically spans
multiple information sources (such as structured databases,
sensors, and documents). A significant amount of knowl-
edge resides in natural language text and can be automat-
ically extracted through existing or custom-made Natural
Language Processing (NLP) components and pipelines. Yet,
so far no generic solution existed for exporting the results
of an NLP pipeline into a knowledge base.
Our contribution is a novel technique for converting the re-
sults of an NLP pipeline into an LOD-compliant KB, based
on the Resource Description Format (RDF) (Cyganiak et
al., 2014) and RDF Schema (RDFS) (Brickley and Guha,
2014) W3C standards. The concrete mapping of NLP re-
sults to entities in the knowledge base is defined through a
mapping language, which is itself written in RDFS. This pro-
vides high flexibility, as the same NLP pipeline can drive the
generation of triples in different KBs with different vocabu-
laries. It also relieves the NLP engineer from dealing with
the technical details of generating correct Uniform Resource
Identifiers (URIs), thereby providing an agile solution for
bringing NLP results onto the Linked Open Data (LOD)
cloud (Heath and Bizer, 2011).
LODeXporter has been implemented based on the Gen-
eral Architecture for Text Engineering (GATE) framework
(Cunningham et al., 2013) and is available as open source
(LGPLv3) on GitHub.1

2. Foundations
In this section, we provide brief background information on
the foundations of our approach.

Linked Data. Linked Open Data (LOD) (Heath and Bizer,
2011; Wood et al., 2014) is the practice of using semantic

1LODeXporter on GitHub, https://github.com/
SemanticSoftwareLab/TextMining-LODeXporter

web technologies, like RDF, to publish structured, open
datasets that can be interlinked and shared automatically
between machines. All data within the LOD cloud have
unique URIs. When dereferenced, the URIs provide useful,
machine-readable information about that entity, as well as
links to other related entities on the web of data.

Automatic Knowledge Base Construction. As semantic
knowledge bases, triplestores are especially well suited for
connecting previously isolated knowledge sources (so-called
“information silos”). Towards this end, various solutions
have been developed for converting existing sources to a
knowledge base, e.g., RDB2RDF for creating RDF data from
a relational database.2 Natural language documents are an
abundant source of rich semantic knowledge. One of the
best known LOD datasets, DBpedia,3 is a large knowledge
base that is automatically generated from the Wikipedia
(Bizer et al., 2009), with several billions of in-bound links
from other open datasets. Similarly, custom solutions exist
that convert the results of a specific NLP pipeline into a
pre-defined knowledge base.
However, so far there existed no generic solution for popu-
lating a knowledge base with the results from a text mining
pipeline. While it is always possible to develop custom ex-
port strategies, this is not a practicable solution in a modern
agile data science workflow, where it often becomes nec-
essary to experiment with different knowledge bases and
representation vocabularies; typical examples are shared
tasks, where the expected format of the knowledge base is
prescribed and existing NLP pipelines need to be adapted to
a challenge-specific format.

3. Design of LODeXporter

We now describe our design decisions behind LODeXporter
in detail.

2Relational Databases to RDF (RDB2RDF), https://www.w3.
org/2001/sw/wiki/RDB2RDF

3DBpedia, http://wiki.dbpedia.org/

2423

http://www.semanticsoftware.info
https://github.com/SemanticSoftwareLab/TextMining-LODeXporter
https://github.com/SemanticSoftwareLab/TextMining-LODeXporter
https://www.w3.org/2001/sw/wiki/RDB2RDF
https://www.w3.org/2001/sw/wiki/RDB2RDF
http://wiki.dbpedia.org/

<

protocol︷ ︸︸ ︷
http://

configurable Base URI︷ ︸︸ ︷
semanticsoftware.info/lodexporter /

unique run id︷ ︸︸ ︷
74a79e9f-0bce-411f-a174-18cc84790bf8 /

type︷ ︸︸ ︷
Person /

annot id︷ ︸︸ ︷
33383 #

export rule︷ ︸︸ ︷
GATEPersonMapping>︸ ︷︷ ︸

Subject URI

Figure 1: Anatomy of a LODeXporter-generated Subject URI

3.1. Requirements
Our high-level vision is the design of a new NLP component
that can be added to any existing NLP pipeline, thereby
providing functionality to export the text analysis results
in linked data format. We derived a number of detailed
requirements from this vision:

Scalability (R1). For the population of large knowledge
bases, it must be possible to scale out the generation of
triples, i.e., running pipelines on multiple (cloud) instances
and storing the resulting triples in a networked triplestore.
The time required to export the annotations as triples must
scale linearly with the size of the documents and the number
of triples to be exported.

Separation of Concerns (R2). Apart from adding a new
component to an analysis pipeline, no further changes must
be required on the NLP side. Thus, we separate the work of
a language engineer, developing the NLP pipeline (e.g., to
find domain-specific entities) from the work of a knowledge
base engineer, who defines the structure of a concrete KB.

Configurability (R3). The export must be dynamically
configurable, so that the same NLP pipeline can drive the
generation of different triples in the same, or multiple differ-
ent, knowledge bases. In particular, the vocabularies used in
the mapping process must be easily changeable, to support
experiments with different knowledge bases and different
application scenarios.

LOD Best Practices (R4). The solution must conform to
the relevant W3C standards on Linked (Open) Data. This
includes the recommended format for the generated triples as
well as the support of standard protocols for communicating
with triplestores in a product-independent fashion.

3.2. Mapping NLP Annotations to Triples
A core idea of our approach is that the concrete mapping,
from NLP results to knowledge base, is not part of the NLP
pipeline itself: Rather, it is externalized in form of a set of
mapping rules that are encoded in the knowledge base itself.
In other words, only by dynamically connecting an NLP
pipeline to a knowledge base is the concrete mapping ef-
fected: The same pipeline can so be used to export different
results, using different mapping rules, to multiple knowl-
edge bases. This is a key feature to enable agile data science
workflows, where experiments with different formats can
now be easily and transparently set up.
The mapping rules themselves are defined in form of RDF
triples as well, based on our mapping vocabulary. We pro-
vide mappings for common NLP result types, in particu-
lar annotations, annotation features, and annotation rela-
tions. Additionally, a number of meta-features about the
NLP pipeline itself can be defined for storage in a KB.

URI Generation. One of the core features of LODeX-
porter is the generation of URIs for LOD triples from text
(R4). In designing the URI generation scheme, we had to
strike a balance between (a) conforming to LOD best prac-
tices; (b) taking into account the NLP source of the URIs;
and their (c) usability, in particular for querying knowledge
bases that mix NLP-generated knowledge with other sources.
Figure 1 shows an example for a subject URI that was gener-
ated for a single Person instance in a document. Conforming
to LOD best practices, URIs are HTTP-resolvable. A user-
definable run-time parameter specifies the base URI (e.g.,
for a public SPARQL endpoint), which should always be a
domain ‘owned’ by the user. This is followed by a unique
run id, which ensures that each new run of LODeXporter
on the same text generates new URIs. Generally, exposing
implementation details in URIs is discouraged (Wood et al.,
2014). However, re-running NLP pipelines (and therefore
re-generating triples) is an extremely common occurrence
in language engineering – for example, after improving a
component, a machine learning model, or experimenting
with different parameters. Hence, we decided that the triples
from different runs of an NLP pipeline must be able to peace-
fully co-exist in a KB and be easily distinguishable, which
is achieved with the generation of this run id. Next, the
semantic (annotation) type, as detected by the NLP pipeline,
is encoded (here “Person”), followed by its unique annota-
tion id within a document. Finally, the mapping export rule
name is added, as it is possible to export the same annotation
(with the same type) multiple times, using different export
rules (e.g., with different vocabularies).

3.3. Mapping Language
The central idea of our approach to automatic KB construc-
tion from NLP results is to externalize the knowledge about
the export process, so that the NLP pipeline can remain un-
changed (except for adding the LODeXporter component).
This provides the required separation of concerns (R2) and
makes it possible to easily reuse existing NLP pipelines for
different knowledge bases. The export rules – how NLP
results are mapped to triples – are themselves described in
form of RDF triples using our new mapping language. Thus,
the configuration how a specific knowledge base has to be
populated with triples can be read from the same knowledge
base, which provides for an introspective NLP export (R3).
In detail, our mapping language provides constructs for map-
ping entities (subjects), features (properties and objects), as
well as meta-information about the export (e.g., text offsets
of entities or the name of the pipeline that generated an
entity). A concrete mapping configuration is a set of rules
(see Figure 2c for an example). These rules are read by
LODeXporter, typically at the end of a pipeline, and triples

2424

http://
semanticsoftware.info/lodexporter
/
74a79e9f-0bce-411f-a174-18cc84790bf8
/
Person
/
33383
#
GATEPersonMapping

are then generated according to these rules. Hence, the exact
same pipeline can be used to generate different LOD triples,
e.g., when facts need to be expressed with different LOD
vocabularies for different applications.

Mapping Entities. For each entity that needs to be ex-
ported, a corresponding mapping rule specifies the NLP
type and its output RDF type. For example, a Person entity
detected in a text can be mapped to a KB using the FOAF
vocabulary.4 To export all instances of a GATE annotation
of type Person, detected in a document, to foaf:Person in a
KB, this rule (in RDF/XML):5

<rdf:Description rdf:about=”GATEPersonMapping”>
<rdf:type rdf:resource=”map:Mapping”/>
<map:baseURI rdf:resource=

” http: // semanticsoftware.info/lodexporter/ ” />
<map:type rdf:resource=”foaf:Person”/>
<map:GATEtype>Person</map:GATEtype>

</rdf:Description>

results in the generation of a triple with (1) a subject URI,
as shown in Figure 1; (2) a property defining the rdf:type of
that triple, and (3) the object URI with the defined type:
<SubjectURI>

<http://www.w3.org/1999/02/22−rdf−syntax−ns#type>
<http://xmlns.com/foaf/0.1/Person>

This mapping approach makes our solution extremely flex-
ible: For example, to change the generation of triples to
use the Person Core Vocabulary,6 instead of FOAF, only
a change of the mapping rule is required, which is read
at export-time. Thus, the designer of a KB is free to ex-
periment with multiple different knowledge representation
approaches, without requiring any reconfiguration on the
NLP side.

Mapping Features. Most entities are further described in
an NLP process with additional features, e.g., the detected
gender for a name. We can map any existing feature of an
entity (one subject URI) to different properties and objects,
with the same configuration approach. For example, to map
a feature gender for a Person, we would define an additional
mapping rule to transform it into foaf:gender:
<rdf:Description rdf:about=”GATEFeatureMapping”>
<rdf:type rdf:resource=”map:Mapping”/>
<map:type rdf:resource=”foaf:gender”/>
<map:GATEfeature>gender</map:GATEfeature>

</rdf:Description>

This rule is then included in the first rule above with an
additional triple:
<rdf:Description rdf:about=”GATEPersonMapping”>

...
<map:hasMapping rdf:resource=”GATEFeatureMapping”/>

</rdf:Description>

resulting in another output triple with the same subject URI:
<SubjectURI><http://xmlns.com/foaf/0.1/gender> ”male”

Additionally, we provide for the export of several meta-
information of an annotation, such as the start- and end-
offsets of the entity in a document, as well as the underlying
string representation (surface form).

4Friend-of-a-Friend (FOAF), http://xmlns.com/foaf/spec/
5The prefix map: refers to our mapping language.
6Person Core Vocabulary, https://www.w3.org/ns/person

Mapping Relations. Additionally, we can export some
pre-defined relations between entities into triples. In par-
ticular, we can map a contains relationship (based on text
offsets) to any LOD vocabulary. An example is shown in
Figure 2c, where we define that any RhetoricalEntity con-
taining a DBpediaNE results in an additional triple with
the two subject triples, linked by pubo:containsNE (see Fig-
ure 2b).
Finally, we provide for exporting a number of meta-
information of an export process as relations, including:
the name of the NLP pipeline that generated the annotations,
creation timestamp, document name, corpus name, among
others. These are important when the traceability of triples
in a KB to their provenance is a concern.

4. Implementation
LODeXporter has been implemented in Java as an NLP
component for the GATE (General Architecture for Text En-
gineering) framework (Cunningham et al., 2013). GATE is
a mature, open source, component-based framework, which
integrates with a number of well-known NLP libraries, such
as Stanford CoreNLP, LingPipe, OpenNLP, and UIMA. This
ensures LODeXporter can be used with a large variety of
existing NLP applications.
The RDF(S) triples generated by LODeXporter follow the
W3C standards and are not tied to any specific implemen-
tation. Internally, LODeXporter relies on the Apache Jena7

libraries for generating the RDF graph. Results can be ex-
ported in two different modes (R1).

Direct KB Export Mode: The first option is to directly
connect the NLP framework with a triplestore. Running
the NLP pipeline with LODeXporter will then directly
populate the KB with the triples generated from a text.
Here, we currently support the Apache TDB storage
layer.8

File-Based Export Mode: The second option is to export
the triples of a document into a file, based on the W3C
standard N-Quads format.9 These triples can then be
imported into any triplestore. A typical application sce-
nario in a distributed (e.g., cluster or cloud-based) en-
vironment is to upload the generated triples to a triple-
store via the W3C SPARQL 1.1 Graph Store HTTP
Protocol.10 The files generated by LODeXporter can
be used directly with an HTTP POST operation; we
tested this extensively with the Apache Jena Fuseki
SPARQL server11 and its included s-post script.

The choice between the two export formats depends on the
intended application scenario: In cases where a knowledge
base is created in batch-mode, based on an existing corpus,
the first solution avoids web protocol overhead, but currently

7Apache Jena, https://jena.apache.org/
8Apache TDB, https://jena.apache.org/documentation/tdb/

index.html
9W3C N-Quads, http://www.w3.org/TR/n-quads/

10SPARQL 1.1 Graph Store HTTP Protocol, http://www.w3.org/
TR/sparql11-http-rdf-update/

11Apache Jena Fuseki, https://jena.apache.org/documentation/
fuseki2/

2425

http://xmlns.com/foaf/spec/
https://www.w3.org/ns/person
https://jena.apache.org/
https://jena.apache.org/documentation/tdb/index.html
https://jena.apache.org/documentation/tdb/index.html
http://www.w3.org/TR/n-quads/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/sparql11-http-rdf-update/
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/fuseki2/

(a) NLP annotations in GATE Developer

"In this paper we present the Zeeva system as a first prototype..."

"prototype"

pubo:Doc#789

pubo:RE#123

pubo:hasAnnotation

pubo:NE#456

pubo:hasAnnotation

cnt:charspubo:containsNE

sro:Contribution

rdf:type

cnt:chars

dbpedia:Software_prototyping

rdfs:isDefinedBy

(b) LODeXporter output

@prefix map: <http://lod.semanticsoftware.info/mapping/mapping#> .
@prefix pubo: <http://lod.semanticsoftware.info/pubo/pubo#> .
@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
@prefix cnt: <http://www.w3.org/2011/content#> .
@prefix sro: <http:// salt .semanticauthoring.org/ontologies/sro#> .
@prefix ex: <http://example.com/> .

Annotation Mapping
ex:GATERhetoricalEntity a map:Mapping ;

map:type sro:RhetoricalElement ;
map:GATEtype ” RhetoricalEntity ” ;
map:hasMapping ex:GATEContentMapping .

ex:GATEDBpediaNE a map:Mapping ;
map:type pubo:LinkedNamedEntity ;
map:GATEtype ”DBpediaNE” ;
map:hasMapping ex:GATEContentMapping ;
map:hasMapping ex:GATELODRefFeatureMapping .

Feature Mapping
ex:GATEContentMapping a map:Mapping ;

map:type cnt:chars ;
map:GATEattribute ”content” .

ex:LODRefFeatureMapping a map:Mapping ;
map:type rdfs:isDefinedBy ;
map:GATEfeature ”URI” .

Relation Mapping
ex:RE NE RelationMapping a map:Mapping ;

map:type pubo:containsNE ;
map:domain ex:GATERhetoricalEntity ;
map:range ex:GATEDBpediaNE ;
map:GATEattribute ”contains”

(c) LODeXporter mapping rules example

Figure 2: Example RDF graph (b) generated by LODeXporter from NLP annotations (a) based on the mapping rules shown
on the right (c) for a paper in a Semantic Publishing application

only works with TDB-based triple stores and is limited to
parallelization within a single JVM (using the “GATE Cloud
Parallelizer”12 tool). The second approach is suitable for
continuously updating a knowledge base, e.g., based on a
stream of incoming documents, and can be easily distributed
in a cloud infrastructure. It is also not limited to a specific
knowledge base implementation, but requires an accessible
SPARQL over HTTP interface.

5. Application
Figure 2 shows an example from a real-world application
scenario in Semantic Publishing (Berners-Lee and Hendler,
2001), which aims at enriching scientific publications with
machine-readable information in order to explicitly mark
up experiments, data, and rhetorical elements in their raw
text. While a number of RDFS and OWL ontologies are now
available, like SALT (Groza et al., 2007) and the Semantic
Publishing And Referencing (SPAR) ontology family (Per-
oni et al., 2012), a serious bottleneck to their adoption is the
vast amount of existing publications, which would be too
time-consuming to manually annotate.
Hence, NLP techniques play a crucial role in enabling Se-
mantic Publishing workflows and applications. In (Sateli
and Witte, 2015), we show how scientific literature can be
transformed into a queryable knowledge base, through an
NLP pipeline that detects rhetorical entities and domain con-
cepts in their full-text (Figure 2). The input to our pipeline
was a set of 136 open access computer science articles.

12The GATE Cloud Paralleliser (GCP), https://gate.ac.uk/gcp/

We processed the full-text of each article to extract vari-
ous rhetorical entities (e.g., claim or contribution sentences)
and further linked each domain concept in the document
to its corresponding resource on the LOD cloud. We used
the LODeXporter component in our text mining pipeline
to transform the detected entities (added to the document
in form of GATE annotations) to RDF triples, based on the
mapping rules shown in Figure 2c. The complete knowledge
base contains 1,086,051 triples.13

A few example triples from the populated knowledge base
are presented in Figure 3a, describing a contribution sen-
tence found in a document, as well as a concept (named
entity) mentioned in its text. Here, we can see the triple gen-
erated for the document and the PUBO vocabularies used to
attach the triples describing the rhetorical and named enti-
ties to the document. Based on this schema, the knowledge
base can then be queried, e.g., to find all documents with
their contribution sentences and mentioned topics by using a
SPARQL query, like the one shown in Figure 3b. The query
shown here retrieves all documents that have an annotation
of type sro:Contribution (sentence), as well as the
named entities that are contained within the sentence bound-
ary, returning (a) their surface form (as they appeared in the
document), and (b) their corresponding resource from the
DBpedia ontology. An example entry from the result set is
illustrated in Figure 3c. Here, the sentence contains the term
“ASR”, which was grounded to the entry for ‘Automatic
Speech Recognition’ in the DBpedia ontology, demonstrat-

13Available in N-Quads format at http://www.semanticsoftware.
info/semantic-scientific-literature-peerj-2015-supplements

2426

https://gate.ac.uk/gcp/
http://www.semanticsoftware.info/semantic-scientific-literature-peerj-2015-supplements
http://www.semanticsoftware.info/semantic-scientific-literature-peerj-2015-supplements

<http://example.com/Corpora/PeerJ−CompSci/cs−8.xml>
<http://lod.semanticsoftware.info/pubo/pubo#hasAnnotation>
<http://semanticsoftware.info/lodexporter/9182bfec−a88f−4b61−8bde−0bd6a670449b/RhetoricalEntity/97528#map:GATERhetoricalEntity>,
<http://semanticsoftware.info/lodexporter/9182bfec−a88f−4b61−8bde−0bd6a670449b/DBpediaNE/114836#map:GATEDBpediaNE> .

<http://semanticsoftware.info/lodexporter/9182bfec−a88f−4b61−8bde−0bd6a670449b/RhetoricalEntity/97528#map:GATERhetoricalEntity>
a <http:// salt .semanticauthoring.org/ontologies/sro#RhetoricalElement> ,
<http:// salt .semanticauthoring.org/ontologies/sro#Contribution> ;

<http://lod.semanticsoftware.info/pubo/pubo#containsNE>
<http://semanticsoftware.info/lodexporter/9182bfec−a88f−4b61−8bde−0bd6a670449b/DBpediaNE/114836#map:GATEDBpediaNE> ;

<http://www.w3.org/2011/content#chars>
”We evaluated the system performance using this ASR implementation.”ˆˆ<http://www.w3.org/2001/XMLSchema#string> .

<http://semanticsoftware.info/lodexporter/9182bfec−a88f−4b61−8bde−0bd6a670449b/DBpediaNE/114836#map:GATEDBpediaNE>
a <http://lod.semanticsoftware.info/pubo/pubo#LinkedNamedEntity> ;
<http://www.w3.org/2000/01/rdf−schema#isDefinedBy><http://dbpedia.org/resource/Speech recognition> ;
<http://www.w3.org/2011/content#chars>”ASR”ˆˆ<http://www.w3.org/2001/XMLSchema#string> .

(a) Examples triples in N-Quads format from the knowledge base

PREFIX pubo: <http://lod.semanticsoftware.info/pubo/pubo#>
PREFIX sro: <http://salt.semanticauthoring.org/ontologies/sro#>
PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX cnt: <http://www.w3.org/2011/content#>

SELECT DISTINCT ?document ?sentence ?topic ?uri WHERE {
?document pubo:hasAnnotation ?rhetoricalEntity .
? rhetoricalEntity cnt:chars ?sentence .
? rhetoricalEntity rdf:type sro:Contribution .
? rhetoricalEntity pubo:containsNE ?namedEntity.
?namedEntity rdfs:isDefinedBy ?uri .
?namedEntity cnt:chars ?topic .

} ORDER BY ?paper

(b) A SPARQL query to find contribution sentences and their domain concepts

Document Sentence Topic URI

cs-8.xml “We evaluated the system performance using this ASR implementation.” “ASR” dbpedia:Speech recognition

(c) One example result from the knowledge base

Figure 3: Example triples (a) generated by LODeXporter in a semantic publishing pipeline, the corresponding SPARQL
query (b) on the knowledge base, and the resulting table (c) on the bottom.

ing the power of connecting the NLP results in a knowledge
base with external open datasets.

6. Related Work
We previously presented OwlExporter (Witte et al., 2010)
at LREC 2010, an NLP component for ontology population
from text. In contrast with LODeXporter, OwlExporter is fo-
cused on the population of Web Ontology Language (OWL)
ontologies,14 with Description Logic (DL) reasoning as their
primary application. In some respect, LODeXporter is our
completely re-designed approach for knowledge export from
NLP pipelines, based on the experience we gained from
building numerous knowledge-intensive applications. In par-
ticular, with LODeXporter we focus on scenarios that were
less common when we first designed OwlExporter, more
than 15 years ago: Large-scale knowledge bases, generated
in distributed cloud-based environments, linked data datasets
and applications (based on the LOD initiative started in
2007), shared open vocabularies, as well as the proliferation
of AI applications, such as intelligent assistants, where NLP
techniques form just one of numerous knowledge sources
and algorithms. While OwlExporter relied on special NLP
annotations driving the ontology population, with LODeX-

14Web Ontology Language (OWL), https://www.w3.org/OWL/

porter we completely externalized the mapping rules, so that
the same NLP pipeline can now generate different triples,
based on different vocabularies, when connected to various
knowledge bases.
NLP2RDF15 is another approach for converting NLP tool
output to RDF (Hellmann et al., 2013). However, the goals
of NLP2RDF are largely orthogonal to the ones from LOD-
eXporter: NLP2RDF focuses on the representation of NLP
data (such as, words, sentences, strings), with the primary
goal of providing an exchange format between different
NLP tools. All knowledge is represented through its own
NIF (NLP Interchange Format) vocabulary.16 In contrast,
LODeXporter focuses on the representation of domain data
(e.g., biological entities, company intelligence, financial
data), which is represented in domain-specific vocabularies.
The resulting knowledge bases are primarily meant for creat-
ing LOD datasets for publication and/or building intelligent
applications on top of them. Hence, although LODeXporter
and NLP2RDF both generate RDF from NLP frameworks,
they are two quite distinct solutions for different application
use cases.

15NLP2RDF, see https://site.nlp2rdf.org/
16NIF 2.0 Core Ontology, see http://persistence.uni-leipzig.org/

nlp2rdf/ontologies/nif-core

2427

https://www.w3.org/OWL/
https://site.nlp2rdf.org/
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core

7. Conclusion
We presented LODeXporter, a novel approach for the gener-
ation of linked open data (LOD) compliant triples from text
analysis pipelines. LODeXporter provides for a separation
of concerns, as the NLP pipeline (developed by a language
engineer) is strictly separated from the export of the NLP
results into RDF(S) triples (designed by a knowledge engi-
neer). We achieve this separation through a new mapping
language, which is defined itself in RDFS, and defines the
rules for converting NLP annotations and features into (sub-
ject, property, object) triples. This approach supports agile
data science workflows (Sateli and Witte, 2016), where ex-
isting NLP pipelines can be easily connected with different
web vocabularies, for example, to facilitate submissions to
shared tasks within competitions.
LODeXporter enables NLP framework users to easily gen-
erate knowledge bases in an LOD-compliant format, which
can then be shared on the linked open data (LOD) cloud. It
also facilitates the development of complex AI applications,
such as intelligent assistants, which typically rely on numer-
ous knowledge sources, including text analysis results.

8. Acknowledgements
This work was partially funded by a Natural Sciences and
Engineering Research Council of Canada (NSERC) Discov-
ery Grant (DG).

9. Bibliographical References
Berners-Lee, T. and Hendler, J. (2001). Publishing on the

semantic web. Nature, 410(6832):1023–1024.
Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C.,

Cyganiak, R., and Hellmann, S. (2009). DBpedia—A
crystallization point for the Web of Data. Web Semantics:
Science, Services and Agents on the World Wide Web,
7(3):154–165.

Brickley, D. and Guha, R. (2014). RDF Schema 1.1. W3C
Recommendation, https://www.w3.org/TR/rdf-schema/.

Cunningham, H., Tablan, V., Roberts, A., and Bontcheva, K.
(2013). Getting more out of biomedical documents with
GATE’s full lifecycle open source text analytics. PLoS
computational biology, 9(2):e1002854.

Cyganiak, R., Wood, D., and Lanthaler, M. (2014). RDF
1.1 Concepts and Abstract Syntax. W3C Recommenda-
tion, https://www.w3.org/TR/rdf11-concepts/.

Groza, T., Handschuh, S., Möller, K., and Decker, S. (2007).
SALT – Semantically Annotated LATEX for Scientific Pub-
lications. In The Semantic Web: Research and Applica-
tions, LNCS, pages 518–532. Springer.

Heath, T. and Bizer, C. (2011). Linked Data: Evolving
the Web into a Global Data Space. Synthesis lectures
on the semantic web: theory and technology. Morgan &
Claypool Publishers.

Hellmann, S., Lehmann, J., Auer, S., and Brümmer, M.
(2013). Integrating NLP Using Linked Data. In Proceed-
ings of the 12th International Semantic Web Conference -
Part II, ISWC ’13, pages 98–113. Springer-Verlag New
York, Inc.

Peroni, S., Shotton, D., and Vitali, F. (2012). Scholarly
publishing and linked data: describing roles, statuses,
temporal and contextual extents. In Proceedings of the
8th International Conference on Semantic Systems, pages
9–16. ACM.

Sateli, B. and Witte, R. (2015). Semantic representation of
scientific literature: bringing claims, contributions and
named entities onto the Linked Open Data cloud. PeerJ
Computer Science, 1(e37), 12/2015.

Sateli, B. and Witte, R. (2016). From Papers to Triples: An
Open Source Workflow for Semantic Publishing Experi-
ments. In Semantics, Analytics, Visualisation: Enhancing
Scholarly Data (SAVE-SD 2016), Montréal, QC, Canada,
04/2016. Springer.

Witte, R., Khamis, N., and Rilling, J. (2010). Flexible
Ontology Population from Text: The OwlExporter. In
International Conference on Language Resources and
Evaluation (LREC), pages 3845–3850, Valletta, Malta,
May 19–21. ELRA.

Wood, D., Zaidman, M., Ruth, L., and Hausenblas, M.
(2014). Linked Data: Structured data on the Web. Man-
ning Publications Co.

2428

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf11-concepts/

	Introduction
	Foundations
	Design of LODeXporter
	Requirements
	Mapping NLP Annotations to Triples
	Mapping Language

	Implementation
	Application
	Related Work
	Conclusion
	Acknowledgements
	Bibliographical References

