Voice Builder: A Tool for Building Text-To-Speech Voices

Pasindu De Silva?, Theeraphol Wattanavekin', Tang Hao!, Knot Pipatsrisawat'
1Google,2Google (on contract from Teledirect Pte Ltd)
{pasindu,twattanavekin,tanghao,thammaknot } @ google.com

Abstract
We describe an opensource text-to-speech (TTS) voice building tool that focuses on simplicity, flexibility, and collaboration. Our
tool allows anyone with basic computer skills to run voice training experiments and listen to the resulting synthesized voice. We
hope that this tool will reduce the barrier for creating new voices and accelerate TTS research, by making experimentation faster and
interdisciplinary collaboration easier. We believe that our tool can help improve TTS research, especially for low-resourced languages,
where more experimentations are often needed to get the most out of the limited language resources.

Keywords: text-to-speech, voice building, opensource

1. Introduction

There is growing demand for text-to-speech (TTS) voices
in various industries as the world moves towards technolo-
gies that can interact with users more naturally. Many in-
dustries including gaming, film, appliances, and accessibil-
ity (Szarkowska, 201 1)) now have vested interest in creating
TTS voices. As a result, there is a lot of needs to produce
a variety of good quality voices in different languages. The
TTS problem is challenging especially for low-resourced
languages, because of the lack of data. Smaller text and au-
dio corpora imply that more experiments might need to be
done in order to get the most out of the available resources.
Tackling this problem for low-resourced languages usually
requires close collaboration between computer scientists,
who understand the algorithms and know how to utilize the
tools, and linguists, who understand linguistic phenomena
and can help provide linguistic resources required to im-
prove the voices.

From our experience building voices for low-resourced lan-
guages, we have observed many pain points that prevent
these researchers from conducting quick experiments and
iterating on their existing baseline voices. These pain points
include (i) the complexity of setting up initial voice build-
ing infrastructure, which often requires fairly strong tech-
nical background to setup and maintain (ii) the heteroge-
neous nature of different tools, which requires a non-trivial
amount of effort to stitch the required pieces together to
form a working pipeline for TTS research.

In this paper, we propose Voice Builder, a text-to-speech
voice building tool, which comes with a simple web-based
user-friendly interface that enables researchers to quickly
build and listen to prototype voices and to iteratively im-
prove them with ease.

2. Related Work

There are many opensource TTS systems available with
underlying algorithms ranging from classification regres-
sion trees in Festival (Taylor et al., 1998; Black and Taylor,
1997), hidden Markov models in HTS (Zen et al., 2007),
to neural networks in Merlin (Wu et al., 2016). Some of
these tools depend on components of their predecessors.
For example, Merlin requires HTS or Festival to handle

the linguistic frontend processing. Some systems, such as
MaryTTS (Schroder et al., 2011)), try to provide more end-
to-end solutions for building various components, such as
recording and transcription, required for a complete TTS
system. Other tools focus only on certain parts of the TTS
pipeline. For example, FreeTTS (W. Walker, 2009) allows
users to synthesize audio from TTS models produced by
other tools, while Sparrowhawk (Google, 2018a; Ebden
and Sproat, 2015)) is an opensource text-normalization sys-
tem.

3. Voice Builder and the Problems It
Addresses

Each of the tools mentioned above has its own strengths
based on the approach it uses. When experimenting with
new data for a language, we often wish for a quick way
to build initial voices from different approaches in order
to establish a good baseline. In such cases, the quality of
the voice can be quickly assessed even without all the bells
and whistles that would be needed in a production system.
However, connecting the aforementioned tools together to
form a working pipeline and/or setting up multiple algo-
rithms for TTS research on the same platform is a daunting
task. Users often end up spending too much time setting up
and maintaining end-to-end system, rather than focusing on
the real research.

Voice Builder is a TTS voice building tool that was de-
signed to allow users to quickly build and listen to initial
voices. It consists of a web frontend that allows users to
easily build and listen to synthesized voices, regardless of
their technical ability. Voice Builder by itself is not a TTS
engine, but, rather, allows arbitrary engines (such as Festi-
val, Merlin, MaryTTS, etc) to be plugged in and used for
training voice models. Voice Builder will serve as the user
interface and workflow manager that connects all the nec-
essary steps together. Once setup, users need to fill out
a simple web form and click a button to initiate a voice
model training process. Voice Builder focuses on only the
following 3 necessary pieces of language resources to start
training a voice model: audio-transcription pairs, lexicon,
and phonology. Once the job finishes, users can visit Voice
Builder UI to listen to audio synthesized from arbitrary

2241

text that the users can input. Figure [T] gives a high-level
overview of Voice Builder.

3.1. Making Voice Building More Accessible

Building a new TTS voice has always been a fairly techni-
cal task. There is a lot of data processing to be done and
the TTS tools available often require no-nonsense technical
knowledge to harness. This technical barrier makes it dif-
ficult for the general public or language enthusiasts to con-
tribute. After all, we cannot expect computer scientists to
speak all languages, especially the long-tailed ones. There-
fore, collaboration with native speakers or linguists is re-
quired in order to build voices for these languages. Voice
Builder addresses this problem by providing a dead simple
user interface (UI) to allow anyone with just basic computer
knowledge to initiate a voice model training experiment.
Figure 2] shows a portion of Voice Builder’s graphical user
interface for starting model training. As long as the nec-
essary data is provided in a web form, the users can start
voice building by just clicking a button; no further skill is
needed. Then the user just needs to wait for the job to finish.
Once model training is finished, the user can come back to
the same UI to enter some text and listen to the synthesized
voice. This simple process makes it easier for anyone to
get involved in building voices. Moreover, Voice Builder’s
web UI allows collaborators across the world to work on
the same project. By listening to the resulting voice, a non-
technical native speaker might already be able to provide
valuable feedbacks to more technical team members to fur-
ther improve the voice.

3.2. Easier Experimentation

When working on TTS for low-resourced languages, one
often needs to run many experiments on different data sets
and to try on different training parameters. When dealing
with many (often parallel) experiments, it is important to
keep track of the settings and environment of each exper-
iment for later diagnosis. Handling this manually is a po-
tentially error-prone process; there could be many different
files to keep track of. Voice Builder solves this problem by
managing and isolating each experiment into its own sand-
box. The configuration and data used to initiate each run
is stored in a location dedicated to that experiment. These
data are immutable for later analysis. Moreover, different
TTS engines (or even different versions of the same engine)
can be modularly added to the system, making it easy to
trace back to earlier environments, if needed.

3.3. Support for Multiple Algorithms

The ability to experiment with many voice building algo-
rithms is an important part of achieving high quality TTS
voices for low-resourced languages. As a result, Voice
Builder was designed with this in mind. Users will be able
to easily plug in additional voice training engines into our
system. We utilize Docker (Merkel, 2014) containers to
encapsulate these engines. Therefore, integrating an addi-
tional engine only amounts to creating a Docker image and
a configuration file.

3.4. Zero-ops Cloud Services

Creating a web-based service typically requires a substan-
tial effort to manage and maintain. This is not the case for
Voice Builder, because we chose to utilize Google Cloud
Platform services for our various components. The web
frontend is hosted by Google Compute Engine (Google,
2018f). All training data and configuration for each ex-
periment are stored in the designated location on Google
Cloud Storage (Google, 2018e)). TTS engines and synthe-
sizers are hosted in containers via Docker images. Lastly,
we use Google Cloud Functions (Google, 2018c) to con-
nect different stages of the pipeline together. This means
that the users will get the security and reliability benefits
without having to maintain any server themselves.

3.5. Custom Pre-processing

Different research groups may have different formats for
various data files, depending on the tools used to obtain
the data. Voice Builder was designed with this use case in
mind and allows a custom data pre-processor to be used.
When the user initiates a voice training experiment in the
Ul, a create voice request is sent to a (customizable) API
endpoint to initiate pre-processing. The system expects the
output processed data to be put in the designated job folder
on Google Cloud Storage. Once all the required files are
present in the folder, the system will automatically trigger
the rest of the pipeline.

4. System Architecture

In this section, we explain the underlying architecture in
more details. Figure [3]shows the system diagram of Voice
Builder. We will now explain the components in this system
from the perspectives of model training and voice synthesis.

4.1. Voice Model Training

When a user starts a voice model training process, they go
through the following flow:

1. User enters information about locations of training
data on the web frontend. The necessarily language
resources are (i) audio-transcription pairs (ii) lexicon
(iii) phonology definition. In the frontend, the user can
also select the TTS engine to use and adjust the train-
ing parameters. A training specification containing all
the parameters is created. The frontend also displays
the status of each training job.

2. The training configuration is sent over to an optional
pre-processing unit. This unit is responsible for pro-
cessing and outputting all the necessary files to the
cloud storage location specified in the configuration.
If this unit is not present, all training data is gathered
directly into the cloud storage location by the frontend.

3. Once all the required files are present, a cloud func-
tion will automatically trigger the training process by
spawning a TTS engine in a container. The engine
spawned is determined by the parameters in the con-
figuration.

2242

Voice building\ :
request :

o]

Synthesized audio

Web frontend

User

Voice Builder

TTS engine 1
Data processing and
data management
backend
TTS engine 2
Voice serving
backend
N TTS engine N

Figure 1: An overview diagram of Voice Builder.

CREATE VOICE

VoiceBuilder soss

Create a voice

Voice nam sckend
my_voice merlin -

gs://voice-builder-default-data/lexicon.tsv TSV >

ventory file type

Phoneme inventory file pa Phoneme inve
gs://voice-builder-default-data/phonology.json JSON_EXTERNAL_PHONOL... ~

Sample rate

22050

Wavs file patt Wavs fle typ
gs://voice-builder-default-data/wavs.tar.gz TAR v

info file pat Wavs Info file
gs://voice-builder-default-data/wavs_info.txt FESTIVAL_WAVS_INFO >

hidden_layer_size=10|
CREATE VOICE

Figure 2: A screenshot of Voice Builder’s graphical user
interface for training a new voice.

4. The specified training engine is created in a container
and initiates training based on the given specifications.
Once the process finishes, the output model is saved at
the designated cloud storage location.

5. Once the model is present, a cloud function will trig-
ger a process to deploy a voice synthesis server using
a container. This server is now ready to serve voice
synthesis requests.

4.2. Voice Synthesis
When a user wants to listen to the voice synthesized by a
trained model, they go through the following flow:

1. The user visits the frontend page that corresponds to
the finished training job. On that page, the user can
enter arbitrary text to be synthesized.

2. The request is sent to the voice synthesis server asso-
ciated with that job.

3. Audio is synthesized and returned to be played on the
frontend.

Notice that we utilize many Google Cloud Services that
are publicly available in our system. The reasons for us-
ing cloud services, as opposed to building own servers, are
as follow:

e Encapsulation of different training engines. Con-
tainer technology allows us to be flexible and exten-
sible in our support of various model training en-
gines. It enables us to easily wrap the engines and
integrate them with other parts of our system. Google
Cloud Platform (GCP) (Google, 2018d) has various
container solutions, two of which are used by our sys-
tem:

1. Genomics Pipeline (Google, 2018g)) is used for
voice model training. It provides an easy way to
run and monitor any command. Input and output
files are copied from and to Google Cloud Stor-
age and are fully managed by the pipeline. It also
has a simple template to help users plug in any
model training engine easily.

2. Containers on Compute Engine (Google, 2018b)
is used to serve our frontend as well as the syn-
thesis servers. Containers make our components
platform-agnostic, which means that they can be
run anywhere. Users can download a model to
run locally on their machines or send to others
to run using the same container image. In most
cases, the same container images used for model
training can also be used here. These character-
istics make our system more portable, easier to
deploy and maintain at scale.

2243

Container on
Compute Engin

Container on

Compute Engine

Cloud Storage Cloud Functions Genomics Pipeline
Voice building/ J i —— . B
request . . Custom : - - : -
: Vmggrftge:élon > preprocessing > Tragg;ggiata Moci::‘ilgtgrzlrnlng > Mod:rllé)il;idmg
(Optional) :
Voice synthesié """""""""""""""""""""""""""""""""""""
request . N I . : Model .
<o Voice synthesis i Synthesizer < deployment |« Voice model |
: frontend P backend : - storage
Voice output : trigger
Container on Cloud Functions

Figure 3: System diagram of Voice Builder. Each block corresponds to a system component. Each dotted bubble indicates
a cloud service used for the enclosed component. Voice model training flow is indicated by solid arrows, while voice

synthesis flow is indicated by dashed arrows.

e Simpler connective layer. Creating a business logic
pipeline that stitches all components together is not
a trivial task. Google Cloud Platform provides
smooth integration between different products via
Cloud Functions. Instead of managing our own event
messages, Cloud Functions give us a powerful native
triggering mechanism. For example, Cloud Functions
can respond to change notification from Google Cloud
Storage by automatically deploying a voice model af-
ter all the required files have been placed in the desig-
nated location on Google Cloud Storage.

e Public availability and ease of use. All GCP prod-
ucts in our system are available for the public. Setting
up our system requires virtually no other additional
software, making the installation process easy.

These cloud services help make our system flexible, reli-
able, and easy to set up.

5. Available Resources

We have opensourced the Voice Builder source code un-
der the Apache 2.0 license. The code is available at
https://github.com/google/voice-builder with setup instruc-
tions and some examples. In this release, we provide in-
tegrations with Festival and Merlin as a starting point for
users.

6. Future Work

In the future, we would like to make Voice Builder even
more useful for researchers to evaluate voices and perform
diagnosis. Our hope is to make evaluation and diagnosis
tools available right in the web frontend. For example, the
frontend could allow users to synthesize a batch of sen-
tences from a pair of models and present them for side-
by-side listening test. For diagnosis, we hope to be able to
provide basic alignment information used during training
so that linguists could identify problematic data easily.

7. Conclusions

In this paper, we present a tool for creating TTS voices.
The goals of this work is to make creating new TTS voices
simpler, more flexible, and accessible by everyone. We de-
signed the system to be user-friendly by providing an easy-
to-use web frontend. Voice Builder allows for easy inte-
gration with publicly available TTS engines. Moreover,
we utilize cloud services to run our system, thus, making
our tool globally accessible to collaborators without requir-
ing them to maintain their own servers. We believe that
this tool could help move TTS research forward, especially
for low-resourced languages, by facilitating experimenta-
tion and encouraging collaboration among researchers, no
matter where they are in the world.

8. Bibliographical References

Black, A. W. and Taylor, P. A. (1997). The Festival Speech
Synthesis System: System Documentation. Technical
Report HCRC/TR-83, Human Communciation Research
Centre, University of Edinburgh, Scotland, UK. Avali-
able at http://www.cstr.ed.ac.uk/projects/festival.html.

Ebden, P. and Sproat, R. (2015). The kestrel tts text
normalization system. Natural Language Engineering,
21(3):333-353.

Google. (2018a). https://github.com/google/sparrowhawk.
Accessed: 2018-02-19.

Google. (2018b). Containers on compute engine.
https://cloud.google.com/compute/docs/containers/. Ac-
cessed: 2018-02-12.

Google. (2018c). Google cloud functions.
https://cloud.google.com/functions/. Accessed: 2018-
02-12.

Google. (20184d). Google cloud platform.
https://cloud.google.com/. Accessed: 2018-02-12.

Google. (2018e). Google cloud storage.
https://cloud.google.com/storage/. Accessed: 2018-
02-12.

2244

Google. (2018f). Google compute engine.
https://cloud.google.com/compute/. Accessed: 2018-02-
12.

Google. (2018g). Google genomics pipeline.
https://cloud.google.com/genomics/reference/rest/
vlalpha2/pipelines. Accessed: 2018-02-12.

Merkel, D. (2014). Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux J.,
2014(239), March.

Schroder, M., Oliva, M. C., Pammi, S., and Steiner,
I. (2011). Open source voice creation toolkit for the
MARY TTS Platform. In Proceedings of Interspeech
2011.1SCA, August.

Szarkowska, A. (2011). Text-to-speech Audio Descrip-
tion: Towards Wider Availability of AD. 15:142-163,
January.

Taylor, P. A., Black, A., and Caley, R. (1998). The Archi-
tecture of the Festival Speech Synthesis System. In The
Third ESCA Workshop in Speech Synthesis, pages 147—
151, Jenolan Caves, Australia.

W. Walker, P. Lamere, P. K. (2009). A speech synthesizer
written entirely in the Java(TM) programming language.
https://freetts.sourceforge.io/, March. Accessed: 2018-
02-12.

Wu, Z., Watts, O., and King, S., (2016). Merlin: An Open
Source Neural Network Speech Synthesis System, pages
218-223. ISCA, September.

Zen, H., Nose, T., Yamagishi, J., Sako, S., Masuko, T.,
Black, A. W., and Tokuda, K. (2007). The HMM-based
speech synthesis system (HTS) version 2.0. In SSW.

2245

	Introduction
	Related Work
	Voice Builder and the Problems It Addresses
	Making Voice Building More Accessible
	Easier Experimentation
	Support for Multiple Algorithms
	Zero-ops Cloud Services
	Custom Pre-processing

	System Architecture
	Voice Model Training
	Voice Synthesis

	Available Resources
	Future Work
	Conclusions
	Bibliographical References

