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Abstract
The paper presents a method for parsing low-resource languages with very small training corpora using multilingual word embeddings
and annotated corpora of larger languages. The study demonstrates that specific language combinations enable improved dependency
parsing when compared to previous work, allowing for wider reuse of pre-existing resources when parsing low-resource languages. The
study also explores the question of whether contemporary contact languages or genetically related languages would be the most fruitful
starting point for multilingual parsing scenarios.
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1. Introduction
Developing systems for low-resource languages is a cru-
cial issue for Natural Language Processing (NLP). Most
NLP systems are built using supervised learning techniques
(Weiss et al., 2015; Straka et al., 2016; Ballesteros et al.,
2016). These systems require a large amount of annotated
data and are thus targeted toward specific languages for
which this kind of data exists. Unfortunately, producing
enough annotated data is known to be time- and resource-
consuming, which means that annotated data, especially
of the type required for parsing, is lacking for most lan-
guages. To take a recent example, the 2017 CoNLL Shared
Task concerned around 50 languages, roughly all of the lan-
guages for which enough syntactically annotated data is
available in the Universal Dependency format. This was
probably (by far) the most ambitious parsing challenge ever
undertaken with regard to language diversity, but the fig-
ure of 50 languages should be viewed relative to the 6,000
languages in the world: even if one includes only those lan-
guages for which written data is available, the 50 languages
targeted at CoNLL 2017 cover only a fraction of all the
world’s languages.
When it comes to parsing, the supervised, monolingual ap-
proach based on syntactically annotated corpora has long
been the most common one. However, thanks to re-
cent developments involving feature-representation meth-
ods (a.k.a. word embeddings) and neural network models,
it is now possible to develop accurate multilingual models,
too. The multilingual approach has yielded encouraging
results for both low- (Guo et al., 2015) and high-resource
languages (Ammar et al., 2016a). Generally speaking, the
multilingual approach can be implemented in two ways.
The first involves projecting annotations available for a
high-resource language onto a low-resource language us-
ing a parallel corpus, while the second aims at producing a
cross-lingual transfer model that can work for several lan-
guages.
Guo et al. (2016) and Ammar et al. (2016a) have conducted
multilingual parsing studies for Indo-European languages
using the model transfer approach. They demonstrated that

a multilingual model can yield better results than monolin-
gual models for different European languages. However,
their approach relied on the existence of a massive par-
allel corpus, as their experiment was based on Europarl.1

Thus the problem of low-resource languages remains un-
addressed, especially in cases when no parallel corpus is
available. In this paper, we propose a simple but powerful
method for creating a dependency parsing model when no
annotated corpus or parallel corpus is available for training.
Our approach requires only a small bilingual dictionary and
the manual annotation of a handful of sentences. We as-
sume that the performance one can obtain with this ap-
proach depends largely on the set of languages used to train
the model. This is why we have developed several models
using genetically related and non-related languages, so as
to gain a better understanding of the limitations or possibil-
ities of model transfer across different language families.
In this study, we are working with languages that, until very
recently, did not or still do not have a Universal Depen-
dency corpus: North Saami2 and Komi-Zyrian, henceforth
Komi.3 (In this paper, we use ISO 639-3 codes to refer to
the languages in tables.) This alone does not make them
low-resource languages, but they are still poorly equipped
with regard to NLP tools. Saami language technology has
been in active development for a longer time in the Giel-
latekno project of the University of Tromsø,4, but in the
case of Komi, resources have only very recently begun to
emerge. Work has also been done on these languages within
the framework of language documentation; however, with
the exception of a few individual projects (Blokland et al.,
2015; Gerstenberger et al., 2016), this field has generally
not paid much attention to the use of NLP tools. The same
scenario applies to many other low-resource languages. On
the other hand, the amount of written data in smaller lan-
guages may have grown rapidly in last years thanks to an in-
creased online presence and various digitalization projects.

1www.statmt.org/europarl
2glottolog.org/resource/languoid/id/nort2671
3glottolog.org/resource/languoid/id/komi1268
4giellatekno.uit.no
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This makes it possible to build word embeddings, as the
only resource needed for these is a sufficiently large amount
of text.
A major contribution of this work also lies in the new re-
sources that have been developed as a result of it. We have
created a new UD-type corpus for Komi5 (version 0.1 used
in this study), as well as bilingual dictionaries, multilingual
word embeddings for Komi and Saami, and a multilingual
parser, all of which are freely available in public reposito-
ries.6 7

The structure of the paper is as follows. We first provide an
overview of our approach (Section 2) before detailing the
multilingual resource representation used (Section 3) and
our parsing model (Section 4). We then describe a series
of experiments aiming at validating the approach (Section
5) before presenting an analysis of our results along with
some thoughts for future work (Section 6).

2. Approach
The languages used for training the models have been se-
lected with the assumption that genetically related lan-
guages or contemporary contact languages, at least in cer-
tain scenarios, share structural similarities with the low-
resource languages in question. Our aim is to test whether it
is possible to use the annotated data from larger languages
as part of the training data, exploiting this structural simi-
larity.
Our work with Northern Saami was initially motivated by
it being one of the surprise languages in the CoNLL 2017
Shared Task. After the Shared Task ended, the larger
training data became available in the dev-branch of the
UD North Sami GitHub repository in the Universal Depen-
dencies project8, which enabled us to carry out broader test-
ing. With Komi-Zyrian, the situation is essentially the same
as it was with the North Saami before the recent release of
the new data: we have 85 manually annotated examples we
can use to train and test the parsing result. The training
and testing set was created manually for Komi for the pur-
pose of this study, but we are currently expanding it. This
Komi-Zyrian treebank will be included in Universal Depen-
dencies project during 2018.
Currently, only English has been used as a control lan-
guage with no direct contact or genetic relation with Komi
or Saami. Our expectation is that the match rate between
Russian and Komi-Zyrian should be exceptionally high, as
there has been such a long history of contact between these
languages, leading to a variety of morphosyntactic changes
in Komi (Leinonen, 2006, p. 241). North Saami has a com-
plex contact relationship with Finnish, but in addition to
this, it is also a closely genetically related language (Aikio,
2012, p. 67–69). From this point of view, one could expect
Finnish to perform well in parsing both Komi and North
Saami, although the similarities between these languages
have not been studied in great detail from the perspective
of syntax and dependency structures. Other types of ex-
periments have also been conducted using this approach,

5github.com/langdoc/UD Komi-Zyrian
6github.com/jujbob/multilingual-bist-parser
7github.com/jujbob/multilingual-models
8github.com/UniversalDependencies/UD North Sami

for example, by using a Komi-Zyrian–Russian multilingual
model to parse data that contains both languages in the form
of code-switching: in these tests, the parser has been shown
to be able to analyse language-specific constructions when
they occur within same utterance (Partanen et al., 2018).

3. Multilingual Lexical representation
3.1. Preparation of Language Resources
The bilingual lexicons were taken from the Giellatekno in-
frastructure (Giellatekno, 2017), as these are rather large
and have been released with a GNU GPLv3 license. As
some portions of this data are derived from printed dic-
tionaries, not all entries are directly usable for our pur-
poses. Multi-word translations and entries containing ques-
tion marks have been removed. Table 1 shows the sizes of
the dictionaries used.

Bilingual pairs Bi-dictionary Bi-embedding
Finnish–Komi 12,879 2.3GB
Finnish–North Saami 12,398 2.4GB
Komi–English 8,746 7.5GB
North Saami–Finnish 10,541 2.4GB
Russian–Komi 12,354 5.7GB

Table 1: Dictionary sizes and size of bilingual word em-
beddings generated by each dictionary.

We have used the pretrained Finnish and Russian Fast-
Text word embeddings published by Facebook in May
2017 (Bojanowski et al., 2016). Since the Komi and
Saami Wikipedias are relatively small, we have also
trained larger word embeddings using FastText. For Komi,
we have used Public Domain books digitalized in the
Fenno-Ugrica collection (https://fennougrica.
kansalliskirjasto.fi/) and proofread by The
Finno-Ugric Laboratory for Support of the Electronic Rep-
resentation of Regional Languages in Syktyvkar (http:
//komikyv.org/). For North Saami, we have used
the SIKOR North Saami free corpus (http://hdl.
handle.net/11509/100), which has been published
with a CC-BY 3.0 license.

3.2. Projection of Multiple Word Embeddings
onto a Single Space

In the previous section, we described how we obtained and
trained monolingual embeddings for each language, but
each of those embeddings is trained in its own vector space.
In order to transform the different embeddings into one sin-
gle bilingual word embedding (encoded through a single
vector space model), we apply the linear transformation
method proposed by Artetxe et al. (2016). According to
comparisons presented in Artetxe et al. (2017, p. 457), the
size of dictionaries we used is well above what is needed to
carry out the mapping task using this method.
The method is as follows. Let target language X and source
language Y be the word embedding matrix trained by two
different languages. And let D={(xi,yi)}mi=1 (where xi ∈
X , yi ∈ Y ) be a bilingual dictionary consisting of word-
embedding vector pairs. Our goal is to find a transformation
matrix W such that xW approximates y. This is done by
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minimizing the sum of squared errors, following Mikolov
et al. (2013):

argmin
W

m∑
i=1

‖xiW − yi‖2 (1)

However, the application of a linear transformation to an
embedding without constraints may cause a degradation of
performance since the computation of mapping may break
monolingual invariance. Artetxe et al. (2016) proposed an
orthogonal mapping method that lets W be an orthogonal
matrix and makes it possible to avoid a degradation of per-
formance.
We followed this method in order to map two different
embeddings and produce bilingual word embeddings with
language-specific prefixes preceding each surface forms.
For example, in case of a English-French pair, the projected
embedding can have “eng:dog” and “fra:chien”. To train
word embeddings related to more than two languages, we
first selected a standard source language S and then mapped
it with each target language T=(t1,t2,ti ..). Based on the
trained parameter WT = (Wt1, Wt2, Wti ..), we can thus build
a multilingual word embedding by multiplying the param-
eter Wti and all the surface forms included in ti.

4. Cross-Lingual Dependency Parsing
Model

Traditionally, many parsers have applied linear supervised
learning models with hand-crafted feature functions. The
feature function takes features for classifying head-modifier
and relations among tokens (i.e. “word forms and POS tags
from first and second tokens on top of the stack”) (Kiper-
wasser and Goldberg (2016)). Parsers also require many
templates in order to make a decision about the relations be-
tween tokens. However, extracting the proper features and
templates manually is a difficult and time-consuming job.
In order to address the limitation of manual work, Chen
and Manning (2014) proposed using non-linear classifiers
with a neural network model. This method encodes lexi-
cal (words) and non-lexical (POS tags) features as vectors
and then concatenates the features of each token to feed the
non-linear classifiers. This has two advantages: On the one
hand, non-linear classifiers show better performance than
linear models in identifying relations between tokens, and
on the other hand, the use of a neural network with concate-
nated features alleviates the need for manual work because
the neural model, especially in Recurrent Neural Networks
(RNNs), has access to tokens and features computed previ-
ously for a given sentence.
Our basic feature representation approach is based on Chen
and Manning (2014), with the exception of the method used
for pretrained multilingual embeddings. In order to take
into account lexical resources during parsing, we have ex-
tended the multilingual graph-based parser based on the
bidirectional LSTM feature representations proposed by
Lim and Poibeau (2017).

4.1. Bidirectional LSTM Feature
Representations

Recent advances in NLP have been possible largely due to
innovative feature representations that provide an accurate

overview of word relations inside the sentence (Cho, 2015;
Huang et al., 2015). A good example is the BIST-parser
proposed by Kiperwasser and Goldberg (2016), which is
based on bidirectional LSTM learning. BiLSTM is a pow-
erful learning model for sequential data because it consists
of two LSTM layers, a Forward layer that reads the sen-
tence from left to right, and another that reads it from right
to left. For example, given a sentence t = (t1,t2,...,tn), in
which the symbol ◦ denotes a concatenation operation, the
BiLSTM function can be represented as: BiLSTM(t1:n, i) =
LSTMForward(t1:i) ◦ LSTMBackward(ti:n).

4.2. Cross-Lingual Feature Representations
In their paper, Lim and Poibeau (2017) proposed a system
for multilingual parsing based on bidirectional LSTM fea-
ture representations. They followed most of the approach
used for the BIST-parser (see Kiperwasser and Goldberg
(2016) and the previous section) and transformed it into a
multi-source trainable model with multilingual word em-
beddings and language hot-encoding. This system obtained
an LAS F1 score of 70.93% in the 2017 CoNLL Shared
Task (rank 5/33). For this paper, we have extended the
parser using the multilingual word embeddings proposed
in Section 3, and have adapted the same token representa-
tion methods and dimensions proposed by Lim and Poibeau
(2017).
Token Representation. Given an input sentence t =
(t1,t2,...,tn), a word form w, a corresponding POS tag p, pre-
trained word embedding xw and language hot-encoding l,
the ith token is defined as: ti = e(wi) ◦ e(pi) ◦ e(xwi) ◦ e(li),
where e denotes the embedding vector of each feature and
e(xwi) is the pretrained word embedding introduced in Sec-
tion 3. Additionally, we added a language hot-encoding
vector composed of 0 and 1 for each language as proposed
earlier (Naseem et al., 2012; Ammar et al., 2016a). Com-
pared with monolingual parsers, most use e(wi) and e(pi),
with additional features such as distance between head node
and language-specific lexical features included in the UD
corpus. Note that ti feeds into BiLSTM(t1:n i) in order to
store the Forward and Backward contexts from the LSTM.

4.3. Parsing Model
There are two mainstream approaches to parsing, one be-
ing the transition-based model (Nivre, 2004) and the other
the graph-based model (McDonald et al., 2005b). For this
study, we chose the graph-based approach based on the
BIST-parser since graph-based approaches seem to show
better performance for parsing UD-type corpora (Dozat et
al., 2017). From the features and tokens stored in the BiL-
STM layer, the BIST-parser computes a candidate tree for
each head word and modifier, after which scores attached to
the different candidate trees are computed using the multi-
layer perceptron (MLP), which is a basic neural network
model that can be used as a scoring function. Finally,
the system finds the best dependency parsing trees based
on the sum of the subtrees. For further information on
the graph-based and arc-factored model used in the BIST-
parser, please see Taskar et al. (2005) and McDonald et al.
(2005a).
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Case Training corpus LAS UAS
1 sme (20) 32.96 46.85
2 eng (12,217) 32.72 50.44
3 fin (12,543) 40.74 54.24
4 sme (20) + eng (12,217) 46.54 61.61
5 sme (20) + fin (12,543) 51.54 63.06

Table 2: Labeled attachment scores (LAS) and unlabeled
attachment scores (UAS) for Northern Saami (sme)

5. Experiment
We conducted a series of experiments on Saami and Komi.
For Saami, we tested different language combinations for
the cross-lingual model. All the experiments were carried
out using 20 training sentences in Saami, as was the case
for the 2017 CoNLL Shared Task, which means these re-
sults can be compared to the ones in the official CoNLL
evaluation. For Komi, no annotated corpus was available,
but we designed ten different experiments, again explor-
ing different language combinations for the cross-lingual
model. The experiments for Komi are representative of an
extremely low-resource scenario, which is quite common,
meaning the approach can be reused for a wide variety of
other languages.
Training Corpus. We used corpora available in the Uni-
versal Dependency 2.0 format (Nivre et al., 2017) to train
and test all models except for Komi. Since there is no UD
2.0 Komi corpus, we used 10 sentences for training and
75 sentences for the testing set (the corpus was designed
specifically for this study). Following previous works by
Guo et al. (2015) and Zhang and Barzilay (2015), we used
gold POS sets for training and testing for Komi. For Saami,
however, the teams in the CoNLL Shared Task used pre-
processed POS tagging sets processed by UDpipe. In order
to maintain the same conditions as in the Shared Task, we
also used the preprocessed POS tagging sets to compare
with others in Table 3.
Training Conditions. Since we wanted to explore low-
resource scenarios (even in the case of Saami, for which
larger data now exists), we assumed that there had been no
development data for parameter tuning, and we restricted
all training experiments to run just one epoch with the train-
ing corpus without early stopping (i.e. the 5th-low of col-
umn titled “Case” in Table 2 runs only 12,563 iterations).
Similar restrictions have also been suggested by Ammar
et al. (2016b), who proposed running one epoch, and by
Guo et al. (2016), who proposed restricting iterations to
20,000 for low-resource scenarios. However, when training
a model with multi-source training data, the size of training
corpora for low-resource languages is comparably smaller
than for high-resource languages. Following the previous
work of Guo et al. (2016), we iterated 20 times more for
low-resource training data than for high-resource. In Table
2 and Table 4, the sizes of the training sets used are pro-
vided in brackets.
Comparison with the CoNLL Shared Task. We used the
same training environments in these experiments as for the
CoNLL Shared Task (the same training sets and no devel-
opment set). Moreover, in order to guarantee similar ex-
perimental conditions, we allowed the training models to

Team LAS UAS
C2L2 (Ithaca) 48.96 58.85
IMS (Stuttgart) 40.67 51.56

HIT-SCIR (Harbin) 38.91 52.51
This work 42.50 54.94

Table 3: The highest results of this experiment compared
with top 3 results for Saami from the CoNLL 2017 Shared
Task.

Case Training corpus LAS UAS
1 kpv (10) 22.33 51.78
2 eng (12,217) 44.47 59.29
3 rus (3,850) 53.85 71.29
4 fin (12,543) 48.22 66.98
5 kpv (10) + eng (12,217) 50.47 66.23
6 kpv (10) + rus (3,850) 53.1 69.98
7 kpv (10) + fin (3,850) 53.66 71.29
8 kpv (10) + fin (12,543) 55.16 73.73
9 kpv (10) + eng (12,217) + fin (12,543) 52.5 68.57

10 kpv (10) + rus (3,850) + fin (12,543) 56.66 71.86

Table 4: Labeled attachment scores (LAS) and unlabeled
attachment score (UAS) for Komi (kpv). We doesn’t con-
duct training for “kpv + eng + rus” language combination
because of unrealistic training scenario (It takes more than
40GB memory for training)

run just one epoch, following Guo et al. (2016). Table
3 reports the official 2017 CoNLL results. C2L2 (Cor-
nell Univ.) obtained the best performance for Saami with
a delexicalized transfer approach (using a Finnish training
corpus and a corpus of 20 Saami sentences as a develop-
ment set for parameter tuning without lexicalized features).
IMS (Stuttgart) used a delexicalized transfer approach with
a very large training corpus based on 40 different training
corpora in UD, obtaining the second-best result. Compared
with the result of the Shared Task, it seems that our ap-
proach (lexicalized cross-lingual transfer parsing with re-
sources from relevant languages) can be effective for pars-
ing low-resource languages. However, additional language
features and the application of the ensemble mechanism
also seem to be very important. This is due to the fact that
the team C2L2 outperform others with more than 6.4 per-
cent of LAS score based on character embeddings as ad-
ditional features and an ensemble mechanism composed of
three different dependency parsers.

6. Analysis
All the experiments we conducted using Finnish for train-
ing obtained better results than other language combina-
tions (i.e. English for Saami and Russian and English for
Komi). This means that transferring knowledge from ge-
netically related languages is, at least in our case, a very
efficient method for parsing. This is true in the case of
Saami and Finnish, but also in the case of Finnish and
Komi, which are arguably more distantly related to one an-
other than Finnish and Saami. A contact language can also
be of significant help in improving the results with a low-
resource language, as can be seen in the case of Russian
and Komi.
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Even in cases where the LAS scores (i.e. labels of the syn-
tactic dependencies) were not significantly different, there
was often greater variation in the UAS scores (unlabeled
dependencies). This means that although the actual labels
may not have been assigned correctly, the basic relations
were found and the root was correctly recognized. It is also
worth noting that the highest UAS scores were obtained
with the Komi–Finnish pair, although the Komi–Russian–
Finnish multilingual model gave the best overall result.
Our results show that adding even a small number of target-
language example sentences into a parser that uses bilingual
word embeddings can improve the result significantly. The
size of the available training corpus is very important, and
the quality of the bilingual dictionaries used to align word
embeddings is also crucial.

7. Conclusion
In this paper, we have presented a multilingual approach to
parsing that is effective for languages with few resources
and no syntactically annotated corpora available for train-
ing. We have shown that our multilingual models provide
better results than monolingual ones. Adding training mate-
rial from other languages usually did not decrease the pars-
ing result. It should, however, be noted that the relative
size of the different corpora used for training seems to be
relevant, since using corpora that are too imbalanced may
weaken the result. More detailed analysis of the results,
beyond the LAS and UAS scores, is most likely needed
in order to determine the exact influences of different lan-
guage pairs or combinations. It remains a question for fur-
ther study whether the improvements observed here are ac-
tually attributable to the genetic relationship between the
language, or if the same result could be obtained by simply
selecting languages that are otherwise typologically similar.
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