
A Parser for LTAG and Frame Semantics

David Arps, Simon Petitjean
Heinrich-Heine-Universität Düsseldorf

david.arps@uni-duesseldorf.de, petitjean@phil.uni-duesseldorf.de

Abstract
Since the idea of combining Lexicalized Tree Adjoining Grammars (LTAG) and frame semantics was proposed (Kallmeyer and Osswald,
2013), a set of resources of this type has been created. These grammars are composed of pairs of elementary trees and frames, where
syntactic and semantic arguments are linked using unification variables. This allows to build semantic representations when parsing, by
composing the frames according to the combination of the elementary trees. However, the lack of a parser using such grammars makes
it complicated to check whether these resources are correct implementations of the theory or not. The development of larger resources,
that is to say large-coverage grammars, is also conditioned by the existence of such a parser. In this paper, we present our solution to this
problem, namely an extension of the TuLiPA parser with frame semantics. We also present the frameworks used to build the resources
used by the parser: the theoretical framework, composed of LTAG and frame semantics, and the software framework, XMG2.

Keywords: Parsing, Grammar, Syntax, Semantics, Tools, Systems, Applications.

1. Introduction
The development of linguistic resources such as precision
grammars and lexicons is a complex and time consuming
task. Even though the challenges offered by these tasks
often come from the size of the resources to develop, the
difficulty can be increased by the lack of tools processing
this type of data and allowing to test it. This is the case
of grammars using both the formalism of Lexicalized Tree
Adjoining Grammars and frames as semantic representa-
tions. For example, the description of the syntax-semantics
interface in (Zinova, 2017) uses a workaround (simulating
the lexical insertion while creating the grammar, and not
during parsing), as no parser for such a type of resource was
available at the time. This paper introduces a parser which
uses grammars of this type, based on an existing parser for
LTAG: TuLiPA.
In Section 2., we provide a short explanation of the frame-
work and show how it interacts with semantic parsing. In
Section 3., we summarize the compact description of our
resources in a metagrammar. In Section 4., we summarize
the architecture of the TuLiPA parser that we are using. In
Section 5., we introduce our new extension of TuLiPA to
handle frame semantics, and give an example of use of this
parser in Section 6..

2. Semantic Parsing with LTAG
2.1. Tree Adjoining Grammars
A Tree Adjoining Grammar consists of a set of elementary
trees, from which larger trees are built using substitution
and adjunction. Nodes in elementary trees have terminal or
non-terminal labels. In a lexicalized TAG, every elementary
tree has at least one terminal node. In a fully derived tree,
all leaf nodes have terminal labels and all internal nodes
have non-terminal labels. Elementary trees are either ini-
tial trees or auxiliary trees. The latter have one leaf node
marked as a foot node by an asterisk. The foot node and the
root node of the auxiliary tree have the same label. All trees
may have leaf nodes that are marked as substitution nodes
by an arrow. A derivation starts with an initial tree.
Two operations are used to combine trees during a deriva-
tion. In substitution, the root node of an elementary tree re-

places a non-terminal leaf node of another tree, where both
nodes have the same label. For adjunction, an auxiliary tree
is adjoined to a target node in another tree. The root node
of the auxiliary tree replaces the target node, and the part of
the target tree below the target node is attached to the foot
node in the auxiliary tree. An example is shown in Figure 1.
In1a, the elementary trees for ‘John’ and ‘Mary’ are substi-
tuted at the subject and object argument slots in the initial
tree for ‘loves’. The adverbial modifier ‘really’ is adjoined
at the VP node. The resulting derived tree is shown in 1b.
Elementary trees represent the constructional meaning of
their lexical items in that they have substitution nodes for
all arguments of the anchor. Recursive phenomena like
modification are modelled by adjunction, which leads to
long-distance dependencies in derived trees that were local
in one elementary tree (Joshi and Schabes, 1997). Thus,
all elementary syntactic structures can carry semantic in-
formation locally. Morphosyntactic information and links
to the semantic representation are stored in feature struc-
tures at the nodes of elementary trees (Vijay-Shanker and
Joshi, 1988). The acceptance of a derivation is determined
by unification of those feature structures.

2.2. Frames and semantic parsing
In the syntax-semantics interface for LTAG proposed by
(Kallmeyer and Osswald, 2013), semantic frames are repre-
sented as base-labelled, typed feature structures. They can
be understood as a straightforward representation of the se-
mantic and conceptual knowledge about a situation, while
having good computational properties as their composition
relies on the unification of attribute-value structures. LTAG
elementary trees are paired with frames by using unification
variables, as shown in Figure 2.
Here, the elementary tree for ’loves’ is paired with a frame
of type love, which has two attributes: an actor and a theme.
This frame, labelled by e, is the semantic representation as-
sociated to the verb, therefore the variable e is shared with
the feature structure of the syntactic node VP. The variables
associated to the actor and the theme in the frame are shared
with the two NP nodes of the syntactic tree (where they are
values of the attribute I). The elementary trees for ’John’

2223



NP

‘John’

S

VP

NP↓V

‘loves’

NP↓

NP

‘Mary’

VP

VP∗Adv

‘really’

(a) Elementary trees

S

VP

VP

NP

‘Mary’

V

‘loves’

Adv

‘really’

NP

‘John’

(b) Derived tree

Figure 1: A derivation in LTAG.

NP[I=u]

‘John’
u

[
person
name ‘John’

]

S

VP[I=e]

NP↓[I=y]V

‘loves’

NP↓[I=x]
e

love
actor x

theme y


NP[I=v]

‘Mary’
v

[
person
name ‘Mary’

]x,u

y,v

S

VP[I=e]

NP[I=y]

‘Mary’

V

‘loves’

NP[I=x]

‘John’ e



love

actor x

[
person
name ‘John’

]

theme y

[
person
name ‘Mary’

]



Figure 2: An example of pairing of LTAG trees and frames and the result of their combination.

and ’Mary’ are both paired with frames of type person,
where only the value of the attribute name differs, respec-
tively labeled by the variables u and v.

During parsing, as syntactic trees are combined (by adjunc-
tion or substitution), the semantic representations are also
combined. The unification of variables in the feature struc-
tures associated to the nodes triggers the unification of vari-
ables in the frames. In our example, as the substitution of
the subject NP takes place (combining the elementary trees
of ’love’ and ’John’), the respective values associated to the
attribute I in the feature structures are unified. This results
in the unification of the variables x and u, which makes the
frame for John become the actor of the event ’love’. The
same happens when the tree for ’Mary’ is substituted at the
object NP node of the ’love’ tree: y and v unify to let the
frame for ’Mary’ become the value of the theme attribute
in the frame e.

3. XMG and XMG2

For the electronic description of such resources, the ap-
proach proposed by (Kallmeyer and Osswald, 2013) is to
use a metagrammar. The latter makes the development
and maintenance of grammars easier by allowing abstrac-
tions. This is especially useful in LTAG grammars, as they
show a lot of structural redundancy. XMG, for eXtensible
MetaGrammar (Crabbé et al., 2013), permits the generation
of grammars from fully declarative specifications (called
metagrammars) which are based on logic programming and
constraints. The name XMG stands both for the description
language and the compiler for this language, that is to say
the tool that will create a grammar from a metagrammati-
cal description. Its newer evolution XMG2 (Petitjean et al.,
2016) allows for more flexibility regarding the type of lin-
guistic data to describe, for instance frames which were not
initially supported. XMG2 is not a more complex descrip-

2224



tion language and compiler, but a tool allowing to create
new compilers of the kind of XMG. It offers a collection
of different languages and compilers (automatically gener-
ated) dedicated to different description tasks. This set of
description tools allows us to generate all the resources that
we need in this paper using a single framework.
XMG comes with a system of dimensions which allows to
separate the levels of linguistic description (here syntax and
semantics, but also lexicon). The 〈syn〉 dimension allows
to describe trees by using dominance and precedence con-
straints between syntactic nodes, while the 〈frame〉 dimen-
sion allows the description of typed feature structures, as
well as type hierarchies (Lichte and Petitjean, 2015). The
〈lemma〉 and the 〈morph〉 dimensions can be used to gener-
ate a lexicon. The architecture of the lexicon that we use for
our parsing task will be described in the Section 6., together
with examples of XMG2 code using the four previsously
mentioned dimensions.
An XMG2 compiler takes as input a metagrammar, and
produces the lexicon of all the structures described in it.
In other words, it converts a compact representation of a re-
source into the resource itself. In our case, every entry of
the generated grammar is a pair of an unanchored tree and
a typed feature structure. Grammars generated with XMG2
can naturally be used for tasks such as generation or pars-
ing, provided that the adapted tool exists. The next section
introduces TuLiPA, which is one of these tools.

4. TuLiPA
Mildly context-sensitive grammar formalisms like TAG
have been shown to capture complex natural language phe-
nomena, such as cross-serial dependencies, while being
parsable in polynomial time. TuLiPA (“Tübingen Lin-
guistic Parsing Architecture” (Kallmeyer et al., 2008)) is
a parser for several mildly context-sensitive formalisms,
including LTAG. The LTAG grammars used by the origi-
nal TuLiPA version can feature semantic information using
predicate semantics as in the syntax-semantics interfaces of
Gardent and Kallmeyer (2003) and Kallmeyer and Romero
(2008).
The lexical information processed by TuLiPA is 2-layered.
The morphological lexicon maps inflected tokens to their
lemma, storing morphological information in a feature
structure. The lemmas are stored with semantic informa-
tion and the tree families to which the lemmas can be an-
chored. Before parsing, trees are anchored, i.e. for every
word of the input sentence, possible elementary trees are
selected where the semantic information on the lemma of
the word matches with the information on the anchor node
of the tree.
Therefore, the grammar used by TuLiPA, similarly to the
XTAG grammar (XTAG Research Group, 2001), is com-
posed of three elements: a lexicon of unanchored elemen-
tary trees (tree templates), a lexicon of lemmas and a lexi-
con of fully inflected forms. This is another level of factor-
ization (in addition to the metagrammatical one presented
in Section 3.) which helps reducing the size of the resource.
Currently, there are two parsing modes for parsing
LTAG with semantic frames available in TuLiPA. As of
(Kallmeyer et al., 2008), the input grammar is converted

Figure 3: The user interface of TuLiPA

to a simple Range Concatenation Grammar (RCG, Boul-
lier (1999)), which is used for parsing the input sentence,
The TAG derivation structures are extracted from the RCG
parsing results. Because this algorithm was designed to
handle multi-component TAG (which is an extension of
TAG), the conversion to RCG performed poorly on large-
scale LTAG grammars. We included the implementation
of a CYK parser by Thomas Schoenemann, based on the
deduction rules given in (Kallmeyer, 2010). The parsing
results, namely derivation trees, derived trees, derivation
steps and possibly semantic representations, can be viewed
in a graphical user interface or exported as XML files.
In the next section, we will describe how we extended
TuLiPA to be able to process LTAG grammars including
frame semantics.

5. A TuLiPA Extension for Frame Semantics
There are several motivations for the choice of TuLiPA as a
starting point for our parser: with TuLiPA, we already have
an open source LTAG parser, with graphical user interface,
and multiplatform (as it is written in Java). As explained in
the previous section, TuLiPA can already process semantic
descriptions expressed as predicates.
Our extension, released like TuLiPA as an executable jar1,
accumulates typed feature structures instead of predicates
during the parsing. The main changes are the following:

1. The grammars used are now composed of tree-frame
pairs as presented in Section 2.. They are generated by
XMG2, using the 〈syn〉 and the 〈frame〉 dimensions.

2. A type hierarchy (also produced by XMG2) must also
be given to the parser to process the unification of
typed feature structures.

3. The lexicon of trees and frames can be given sepa-
rately. If this option is chosen, the tree-frame pairs
are built during parsing (according to information pro-
vided by the lexicon).

Figure 3 shows the user interface of the parser where all the
input data is given.
In the next section, we will go through all the steps which
are necessary to create toy resources and recreate a parse
example.

1https://github.com/spetitjean/
TuLiPA-frames

2225

https://github.com/spetitjean/TuLiPA-frames
https://github.com/spetitjean/TuLiPA-frames


1 class commonnoun
2 declare ?NP ?N ?X0 ?X1
3 {
4 <syn>{
5 node ?NP [cat=np, i=?X0];
6 node ?N (mark=anchor) [cat=n, i=?X1];
7 ?NP -> ?N
8 };
9 <frame>{

10 ?X0[pizza]
11 }
12 }

Figure 4: XMG2 description for a proper noun elementary
tree and its frame.

1 class commonnoun
2 declare ?NP ?N ?X0 ?X1
3 {
4 <syn>{
5 node ?NP [cat=np, i=?X0];
6 node ?N (mark=anchor) [cat=n, i=?X1];
7 ?NP -> ?N
8 };
9 <iface>{[i=?X0]}

10 }

Figure 5: XMG2 description for a proper noun elementary
tree.

6. Example of Parsing
To recreate the analysis of ’John eats pizza’ similar to the
one given in Figure 2, we will first see how to create the
inputs needed by TuLiPA. The source code is available
online, see 1. All the input files (tree templates, frames,
lemma lexicon and morphological lexicon) are XML files
produced by XMG2. The use of a single framework is a
new feature: While the grammar and the frames were al-
ways produced by XMG, the morphological and lemma
files used to be generated by a tool called lexConverter.
The extensibility of XMG2 made it possible to create new
compilers to generate these lexicons, using a consistent
syntax and the same modular approach. In this work, we
will use three different XMG2 compilers called synframe,
lex and mph, which are accessible by the same command
(xmg compile).

6.1. The grammar
The first resource to build is a LTAG grammar composed
of at least 3 trees (transitive verb for ’eat’, proper noun for
’John’ and common noun for ’pizza’) paired with their cor-
responding frames. These structures are described in the
metagrammar and compiled using XMG2.
The XMG2 code describing a common noun tree and its
frame can be as in Figure 4. Our architecture uses the no-
tion of family, which are sets of trees which allow the same
lexical anchors. In our example, the family commonnoun is
composed of a unique tree, and the only lexical item com-
patible with this family is pizza.

1 class FramePizza
2 declare ?X0
3 {
4 <frame>{
5 ?X0[pizza]
6 };
7 <iface>{
8 [i=?X0]
9 }

10 }

Figure 6: XMG2 description for a single frame, to be paired
with a syntactic tree during parsing.

On the first line, class commonnoun means that we de-
fine an XMG2 abstraction, which is in fact the tree-frame
pair as it will be in the grammar. ?NP ?N ?X0 ?X1 are
unification variables used in the class. The tags syn and
frame separate the syntactic and the semantic descriptions.
In the syntactic one, two nodes (?NP and ?N) are created
with feature structures (?NP has category np, etc.). The
node ?N is marked as an anchor node. Finally, the con-
straint on line 7 means that XMG2 will only generate trees
where the NP node has the N node as daughter.
On the semantic side, we create a typed feature structure of
type pizza, labeled by the variable ?X0. However, pairing
the frame for a pizza with the TAG tree for a common noun
is not a very natural solution. We will now split this en-
try in two different lexicons: a purely syntactic lexicon of
unanchored elementary trees and a purely semantic lexicon
of frames. The syntactic tree commonnoun will be asso-
ciated to the semantic frame pizza only when this token
is read by the parser. The lemma lexicon will take care of
this binding, as explained in the following subsection. This
allows to associate different frames to one elementary tree,
giving more flexibility.
In our case, we can split syntax and semantics as shown in
Figures 5 and 6. The linking between the syntactic node
and the semantic frame is this time done through the in-
terface (iface). This dimension contains only a feature
structure, which allows to share information between other
dimensions. During parsing, when the elementary tree and
the frame are paired, the two interfaces are unified, re-
sulting in the unification of the two variables named ?X1
(which were independent until now, as every structure has
its own namespace). The two files (syntactic and semantic)
are compiled using the synframe compiler to produce the
two lexicons.

6.2. The lemmas
The second step is to create a lexicon of lemmas containing
at least three entries (one transitive verb and two nouns).
The entry for pizza is as shown in Figure 7.
Here, we specify the name of the lemma (entry), its syn-
tactic category cat and the family of trees which can be
anchored by it (fam), which is the one we created in the
previous XMG2 syntactic class, namely commonnoun. The
value of the sem feature indicates which frame this lemma
should be associated to. The class LemmaPizza is part of

2226



1 class LemmaPizza
2 {
3 <lemma> {
4 entry <- "pizza";
5 sem <- FramePizza;
6 cat <- n;
7 fam <- commonnoun
8 }
9 }

Figure 7: XMG2 description for the lemma ’pizza’.

1 class MorphPizza
2 {
3 <morpho> {
4 morph <- "pizza";
5 lemma <- "pizza";
6 cat <- n;
7 num <- sg
8 }
9 }

Figure 8: XMG2 description for the morphological entry
for ’pizza’.

a new XMG2 file, which must be compiled with the lex

compiler.

6.3. The inflected forms
Finally, we must write a lexicon of at least three inflected
forms (’John’ for the lemma ’john’, etc.). The entry for
’pizza’ (one of the inflected forms of the previously defined
lemma, along with ’pizzas’ for example) is shown in the
code of Figure 8. This entry associates the inflected form
’pizza’ to the lemma pizza, with additional features, here
only a syntactic category and a number. The XMG2 file
containing this class amongst others can be compiled with
the mph compiler to produce the lexicon of inflected forms.

6.4. The type hierarchy
The implementation of the type hierarchy in Figure 9a fol-
lows Lichte and Petitjean (2015). In the code, line 1 and 2
define the elementary types that are used in the hierarchy.
From line 3 on, constraints are declared on these elemen-
tary types. Constraints in the form of line 4 express type
subsumption: every activity is also an event. Con-
straints as in line 5 express that the unification of elemen-
tary types fails: When a minimal model of the type hierar-
chy is computed, entity and event do not have a com-
mon subtype. An example is provided in the next section.
It is also possible to express constraints on the attributes of
frames with a certain type. For a more detailled description,
see (Lichte and Petitjean, 2015). The graphical representa-
tion in Figure 9b has to be read top-down, with the most
general types on top.

6.5. The parse result
The result of the parse of the sentence ’John eats pizza’, as
shown by the graphical interface of the parser, is given in
Figure 10.

1 frame-types = {event, activity, eat,
2 entity, person, dish, pizza}
3 frame-constraints = {
4 activity -> event,
5 entity event -> -,
6 eat -> activity,
7 person -> entity,
8 dish -> entity,
9 dish person -> -,

10 pizza -> dish }

(a) Implementation in XMG2

event

activity

eat

entity

person dish

pizza

(b) Graphical representation

Figure 9: The implementation and graphical representation
of the type hierarchy used in ’John eats pizza’

On the left, we see the list of successful parses (only one),
the set of elementary trees which were used to derive the
selected parse, and the derivation steps. The derived tree is
shown at the top right, with the semantic representation at
the bottom.
The parse result is similar to the one which we gave in Fig-
ure 2. The semantic representation consists of one frame:
It has type activity-eat-event and two attributes, the
actor and target of the verb. Their values are shared
with the syntax: The actor is of type person-entity

and is unified with the interface feature in the subject-
np-node through the variable ?B0. The target is of type
pizza-dish-entity and corresponds to the object-np-
node, unified by the variable ?A0. These unifications are
triggered by substitution, and the insertion of ’john’ into
the frame is triggered by lexical anchoring. Note that the
type dish, which is not present in the eat frame nor in the
pizza frame, is inferred from the type hierarchy (as every
frame of type pizza must also have type dish). The in-
terface feature of the subject-n-node give an idea of this.
Unification via adjunction works in the same way.
The types of the feature structures are here conjunctive
types and get modified by the constraints expressed in
the metagrammar. For instance, one constraint in our
metagrammar specifies that all structures of type person

also have type entity, hence the conjunctive types
[person-entity].

7. Conclusion
In this paper, we presented our parser for LTAG and frame
semantics. The parser is an extension of TuLiPA and is
consequently based on the same architecture, meaning that
the grammar is separated into several levels: a lexicon of
unanchored elementary trees paired with frames (provided

2227



Figure 10: Result of the parse of ’John eats pizza’

together or separately), one of lemmas and one of inflected
forms. The composition of frames, implemented follow-
ing Kallmeyer and Osswald (2013), happens as elementary
trees are combined, triggered by the unification of linked
variables. In Section 6., we showed how to create the dif-
ferent resources to parse a simple example, and also that the
analysis done by our tool for this example was the expected
one. The availability of such a tool will make the use of the
existing LTAG grammars including frame based semantics
possible, and ease the creation of new ones.

As a next step, in order to improve parsing efficiency when
using large grammar resources, we consider implementing
grammar compression using subtree sharing and compres-
sion of these subtrees into minimal Finite State Automata,
as described in (Waszczuk et al., 2016)

We are also working on a parser for Role and Reference
Grammar (RRG, Van Valin (2005)), following the formal-
ization proposed in (Kallmeyer and Osswald, 2017). RRG
is a grammar theory based on flat constituent structures and
focusing on semantic and pragmatic aspects. We can of
course imagine that grammars based on RRG and frame
semantics will be created, with a framework similar to the
one presented in this paper, and tested with our tool.

8. Acknowledgements

The research presented here has been supported by the
TreeGraSP Project funded by an ERC Consolidator Grant.
We would like to thank three anonymous reviewers for their
valuable comments on earlier drafts of this article.

9. Bibliographical References
Boullier, P. (1999). On TAG and Multicomponent TAG

Parsing. Research Report RR-3668, INRIA.
Crabbé, B., Duchier, D., Gardent, C., Le Roux, J., and Par-

mentier, Y. (2013). XMG : eXtensible MetaGrammar.
Computational Linguistics, 39(3):1–66.

Gardent, C. and Kallmeyer, L. (2003). Semantic construc-
tion in feature-based tree adjoining grammar. In 10th
conference of the European Chapter of the Association
for Computational Linguistics.

Joshi, A. K. and Schabes, Y. (1997). Tree-Adjoining
Grammars. In G. Rozenberg et al., editors, Handbook of
Formal Languages, volume 3, pages 69–124. Springer,
Berlin, New York.

Kallmeyer, L. and Osswald, R. (2013). Syntax-driven se-
mantic frame composition in lexicalized tree adjoining
grammars. Journal of Language Modelling, 1(2):267–
330.

Kallmeyer, L. and Osswald, R. (2017). Combining
predicate-argument structure and operator projection:
Clause structure in role and reference grammar. In Pro-
ceedings of the 13th International Workshop on Tree Ad-
joining Grammars and Related Formalisms, pages 61–
70. Association for Computational Linguistics.

Kallmeyer, L. and Romero, M. (2008). Scope and Situa-
tion Binding in LTAG using Semantic Unification. Re-
search on Language and Computation, 6(1):3–52.

Kallmeyer, L., Lichte, T., Maier, W., Parmentier, Y.,
Dellert, J., and Evang, K. (2008). Tulipa: Towards a
multi-formalism parsing environment for grammar engi-
neering. In Coling 2008: Proceedings of the workshop

2228



on Grammar Engineering Across Frameworks, pages 1–
8, Manchester, England, August.

Kallmeyer, L. (2010). Parsing Beyond Context-Free
Grammars. Springer Publishing Company, Incorpo-
rated, 1st edition.

Lichte, T. and Petitjean, S. (2015). Implementing semantic
frames as typed feature structures with XMG. Journal of
Language Modelling, 3(1):185–228.

Petitjean, S., Duchier, D., and Parmentier, Y. (2016).
XMG 2: Describing Description Languages. In Logi-
cal Aspects of Computational Linguistics. Celebrating
20 Years of LACL (1996–2016) 9th International Confer-
ence, LACL 2016, Nancy, France, December 5-7, 2016,
Proceedings 9, pages 255–272. Springer Berlin Heidel-
berg.

Van Valin, Jr., R. D. (2005). Exploring the Syntax-
Semantics Interface. Cambridge University Press.

Vijay-Shanker, K. and Joshi, A. K. (1988). Feature struc-
tures based tree adjoining grammars. In Proceedings of
the 12th Conference on Computational Linguistics - Vol-
ume 2, COLING ’88, pages 714–719, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Waszczuk, J., Savary, A., and Parmentier, Y. (2016). En-
hancing practical TAG parsing efficiency by capturing
redundancy. In 21st International Conference on Imple-
mentation and Application of Automata (CIAA 2016),
Séoul, South Korea, July.

XTAG Research Group. (2001). A Lexicalized Tree Ad-
joining Grammar for English. Technical Report IRCS-
01-03, IRCS, University of Pennsylvania.

Zinova, J. (2017). Russian Verbal Prefixation: A
Frame Semantic Analysis. Heinrich-Heine-Universität
Düsseldorf dissertation.

2229


	Introduction
	Semantic Parsing with LTAG
	Tree Adjoining Grammars
	Frames and semantic parsing

	XMG and XMG2
	TuLiPA
	A TuLiPA Extension for Frame Semantics
	Example of Parsing
	The grammar
	The lemmas
	The inflected forms
	The type hierarchy
	The parse result

	Conclusion
	Acknowledgements
	Bibliographical References

