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Abstract

Accurate prediction of suitable discourse connectives (however, furthermore, etc.) is a key component of any system aimed at building
coherent and fluent discourses from shorter sentences and passages. As an example, a dialog system might assemble a long and
informative answer by sampling passages extracted from different documents retrieved from the Web. We formulate the task of discourse
connective prediction and release a dataset of 2.9M sentence pairs separated by discourse connectives for this task. Then, we evaluate
the hardness of the task for human raters, apply a recently proposed decomposable attention (DA) model to this task and observe that the
automatic predictor has a higher F1 than human raters (32 vs. 30). Nevertheless, under specific conditions the raters still outperform the
DA model, suggesting that there is headroom for future improvements.
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1. Introduction
Discourse connectives, also referred to as discourse mark-
ers, discourse cues, or discourse adverbials, are used to bind
together and to explicate the relation between pieces of text.
It is a common language class exercise to be asked to fill in
suitable connectives to a text in order to improve the text
flow. Similarly, it is important for computational summa-
rization and text adaptation systems to be able to fill in suit-
able discourse connectives to produce natural-sounding ut-
terances.
In this work, we study the problem of automatic discourse
connective prediction. We limit ourselves to connectives
which appear at the beginning of a sentence, linking the
sentence to the preceding one. Even in this limited set-
ting, an automatic discourse connective predictor has many
concrete use cases. For example, in a question-answering
setting it could help to generate answers by collating sen-
tences from multiple sources. In extractive text summariza-
tion, it could be used to determine what is the best way to
join two sentences that used to be separated by one or more
sentences. As part of a text-authoring application, it could
suggest suitable connectives at the beginning of a sentence.
In the literature, discourse connective prediction has been
recently studied merely as an intermediate step for the
well-studied problem of implicit discourse relation predic-
tion (Xu et al., 2012; Zhou et al., 2010). However, consider-
ing the aforementioned applications, we argue that connec-
tive prediction makes an interesting and relevant problem
in its own right.
The contributions of this work are twofold:

1. We present an extensive experimental study on the
problem of discourse connective prediction and show
that a recently proposed decomposable attention
model (Parikh et al., 2016) yields a good performance
on this task. The model clearly outperforms a popu-
lar word-pair model and obtains a better performance
than human raters on the same task and data.

2. We describe the dataset that we collected, consist-

*Work performed during an internship at Google.

ing of 2.9 million adjacent sentence pairs (with and
without a connective) extracted from the English
Wikipedia. For 10 000 sentences, we also include con-
nectives filled in by human raters. The dataset is pub-
licly available at: https://github.com/ekQ/
discourse-connectives

2. Related Work
A few earlier works study discourse connective prediction
alone, but recently it has been studied merely as an interme-
diate step for discourse relation prediction. Next we pro-
vide a brief overview of these two lines of work, starting
from the latter.

2.1. Predicting Connectives for Implicit
Discourse Relation Prediction

Implicit discourse relation prediction has attracted consid-
erable attention in recent years (Braud and Denis, 2016;
Liu and Li, 2016; Qin et al., 2016; Qin et al., 2017; Ruther-
ford and Xue, 2015; Wu et al., 2017; Zhang et al., 2016).
Earlier Pitler et al. (2008) showed that if a discourse con-
nective is known, the explicit discourse relation1 can be in-
ferred with a 93.09% accuracy, which has inspired several
efforts at predicting connectives to improve implicit dis-
course relation prediction. Zhou et al. (2010) predicted
connectives using an N -gram language model, whereas Xu
et al. (2012) employed word pairs and a selection of lin-
guistically informed features. Liu et al. (2016), on the other
hand, showed that predicting both connectives and relations
using a convolutional neural network in a multi-task setting
improves the relation prediction performance.

2.2. Discourse Connective Prediction
Some earlier works have focused on connective prediction
alone and developed various hand-crafted features for dis-
tinguishing between connectives. For example, Elhadad
and McKeown (1990) explored pragmatic features for dis-
tinguishing between the connectives but and although,

1Later, it has been shown that a single discourse connective can
actually convey multiple discourse relations (Rohde et al., 2015;
Rohde et al., 2016).

1643



and between because and since. Later Grote et al.
(1998) developed a specialized lexicon for discourse con-
nectives based on the relevant constraints and preferences
associated with the connectives. While these works do not
present an experimental evaluation of the proposed sys-
tems, we evaluate our connective prediction models exten-
sively in order to understand their applicability to real-life
scenarios. Furthermore, our aim is to learn the representa-
tions of the two arguments and their relationship automat-
ically which allows us to distinguish between a large set
of connectives without extensive manual efforts required to
craft features that separate the connectives.
In addition to predicting the most suitable discourse con-
nective, several methods have been developed for predict-
ing the presence of a discourse connective (Yung et al.,
2017; Di Eugenio et al., 1997; Patterson and Kehler, 2013).
We also predict the presence of a connective by considering
[No connective] as one of the classes to be predicted.

3. Data Collection
We compile a list of 79 discourse connectives based on
the Penn Discourse Treebank (PDTB) (Prasad et al., 2008).
Since our focus is on sentence concatenation, we ignore the
(forward) connectives, which typically point to the follow-
ing sentence rather than the previous one, such as “After
the election, [. . . ]”. However, for several ambiguous con-
nectives, the forward use can be ruled out by requiring a
comma after the connective (e.g. Instead,); we include
such connectives in our data. Discontinuous connectives,
such as “If [. . . ] then [. . . ]”, are not included.
Data samples for discourse connective prediction can be
collected from any large unannotated text corpus. In this
instance, we use the English Wikipedia2 and collect every
pair of consecutive sentences within the same paragraph
where the latter sentence begins with one of the 79 dis-
course connectives. As a result, we obtain a dataset of 1.95
million sentence pairs separated by a connective. Addition-
ally, we collect 0.91 million examples of consecutive sen-
tences not separated by a discourse connective, labeled as
[No connective], for a total of 2.86 million sentence
pairs.3

The frequency distribution of the connectives is very
skewed; however occurs 720 334 times, whereas else,
only 43 times in the beginning of a sentence. In order
to make the connective prediction task more feasible for
the models and for human raters, we select a subset of
sufficiently frequent and distinct connectives (e.g. for
example is included but for instance is not since it
conveys the same meaning and is less frequent). The details
of the selection process are omitted in the interest of space,
but the resulting 19 connectives are listed in Table 1.
Finally, we split the data into train, development, and test
sets. We balance the connective classes, since in an un-
balanced dataset most examples would be labeled as [No
connective] and many connectives would be extremely

2A snapshot from September 5, 2016.
3Note that our models are tested only on consecutive sen-

tences, for which the ground truth connectives are known, but they
can be applied to connect also disjoint sentences.

Connective Occurrences Connective Occurrences

however 720 334 on the other hand 20 301
for example 111 711 in particular, 16 011

and 73 644 indeed, 15 286
meanwhile, 57 971 overall, 9 513
therefore 44 064 in other words 8 888
finally, 33 076 rather, 5 596

nevertheless 32 952 by contrast, 4 605
instead, 30 973 by then 4 279
moreover 25 583 otherwise, 3 563

then, 21 731

Table 1: The list of 19 connectives studied in the experi-
ments in addition to the [No connective] class. Only
the connectives which are sufficiently frequent and distinct
in their meaning have been selected.

under-represented, limiting the applicability of the resulting
classifier. For the development and test sets, we pick 500
samples per connective (including [No connective])
by under-sampling without replacement. This results in two
balanced datasets of 10 000 samples. For the training set,
we pick 20 000 samples per connective by under-sampling
the majority classes and oversampling the minority classes,
creating a balanced dataset of 400 000 samples. Connective
samples from a single Wikipedia article are not included
in more than one of the three datasets to avoid over-fitting
through potential repetition within a single article.
In comparison with the PDTB dataset, which contains in-
formation about both discourse connectives and discourse
relations, the main advantage of the collected dataset is
its size. PDTB contains only 40 600 examples (1.4% of
the size of the collected dataset), which causes sparsity is-
sues (Li and Nenkova, 2014). This can slow down the
development of new models, particularly complex neural
models that often require large training datasets to general-
ize well.

4. Connective Prediction Models
The decomposable attention (DA) model was recently in-
troduced by Parikh et al. (2016) for the natural language
inference (NLI) problem which aims to classify entailment
and contradiction relations between a premise and a hy-
pothesis. Discourse connective prediction is related to the
NLI problem since entailment and contradiction can be
explicitly indicated by certain connectives (for instance,
therefore and by contrast, respectively). How-
ever, the larger number of classes makes connective predic-
tion more challenging. DA was shown to yield a state-of-
the-art performance on the NLI task while requiring almost
an order of magnitude fewer parameters than previous ap-
proaches. For all these reasons, it seems natural to apply
the DA model to the connective prediction problem.
Marcu and Echihabi (2002) proposed to use word-pair fea-
tures to predict discourse relations based on discourse con-
nectives mapped to these relations. Similarly, many later
implicit discourse relation prediction models are based on
word-pair features (Marcu and Echihabi, 2002; Pitler et al.,
2009; Xu et al., 2012; Zhou et al., 2010) or aggregated
word-pair features (Biran and McKeown, 2013; Rutherford
and Xue, 2014). Therefore, we use a model called WORD-
PAIRS to have a baseline for the DA model.

1644



4.1. The Decomposable Attention Model
The DA model consists of three steps, attend, compare,
and aggregate, which are executed by three different feed-
forward neural networks F , G, and H , respectively. As in-
put, the model takes two sentences a and b represented by
sequences of word embeddings. The sequences are padded
by “NULL” tokens to fix their lengths to 50 tokens.
In the attend step, the model computes non-negative at-
tention scores for each pair of tokens across the two input
sentences. This computation ignores the order of the tokens
and it produces soft-alignments from a to b and vice versa.
In the compare step, the model computes comparison vec-
tors between each input token and its aligned sub-phrase.
The aligned sub-phrase is a linear combination of the em-
bedding vectors of the other sentence weighted by the at-
tention scores.
Finally, in the aggregate step, the comparison vectors are
summed over the tokens of a sentence and then the aggre-
gate vectors of the two sentences are concatenated. The
resulting vector is fed into the third feed-forward network
which outputs ŷ containing scores for each class. The pre-
dicted class is given by ŷ = argmaxi ŷi.
The weights of the three networks are randomly initial-
ized, after which the model is trained in an end-to-end
manner. Our implementation of the DA model has the
following differences compared to the original model de-
scribed by Parikh et al. (2016): (i) we do not use the self-
attention mechanism which was reported to provide only a
small improvement over the vanilla version of DA; (ii) we
do not project down the embedding vectors but use 100-
dimensional word2vec embeddings (Mikolov et al., 2013)
which are updated during the training; (iii) we use layer
normalization (Ba et al., 2016) which makes the model con-
verge faster.

4.2. The Word-Pair Model
The WORDPAIRS model considers as features all word
pairs which appear across the two arguments (e.g. word A
appears in Arg 1 and word B in Arg 2) in at least five sam-
ples in the training dataset. Such features are employed by
many implicit discourse relation prediction models (Marcu
and Echihabi, 2002; Pitler et al., 2009; Zhou et al., 2010;
Xu et al., 2012). Additionally, we incorporate single word
features (e.g. word A appears in Arg 2) since these slightly
improved the results. With these binary features, we train
logistic regressors using the one-vs-rest scheme to predict
one of the 20 different connectives.4

5. Experiments
Next we present experimental results on discourse connec-
tive prediction using human raters, the DA model and the
WORDPAIRS model. For this task, we remove the connec-
tive (if any) from the second sentence in each test pair, and
measure the ability of the model (or the raters) to identify
the removed connective.

4We trained two versions of the WORDPAIRS model: using
stochastic gradient descent with mini-batches and using LIBLIN-
EAR with 100k samples (i.e. 25% of the training data) which we
could fit into the memory of a 256 GB machine. The reported
results are based on the latter approach, which performed better.

Model Macro F1 Accuracy

RANDOM 5.00 5.00
WORDPAIRS 14.81 15.60

DA 31.80 32.71
Human Raters 23.72 23.12

Table 2: Discourse connective prediction performance of
a RANDOM baseline, the WORDPAIRS model, the decom-
posable attention model (DA) and human raters.

5.1. Accuracy of Human Raters
To better understand what is reasonable to expect from an
automatic predictor, we use a crowd-sourcing platform to
ask human raters to reconstruct the removed connectives for
each of the 10 000 test sentence pairs. Each sentence pair is
annotated by three (not necessarily the same three) native
English speakers. The raters are shown the two sentences,
the latter of which starts with a [Connective goes here]
placeholder, and asked to select the most suitable connec-
tive from the 20 options, including [No connective].
This layer of human annotations is also released as part of
the connective dataset. The raters are instructed to pick
the most natural connective in case there are multiple suit-
able options. Furthermore, they are asked to pick [No
connective] only if adding a connective would make
the concatenation sound ungrammatical or artificial, or if
the two sentences seem to be completely disconnected. The
sentences are not pre-processed apart from upper-casing
the first character of the second sentence to avoid giving
away the presence of a connective in the original sentence.
The order of the connectives is randomized, except for [No
connective] which is always shown last.
On the whole test-set, human annotators achieve a macro-
averaged F1 score of 23.72. The confusion matrix gener-
ated by the raters’ decisions is presented on the left side
of Figure 1. It shows that the raters are strongly biased
towards [No connective] despite the indication to re-
frain from using it. A similar bias was observed by Ro-
hde et al. (2016) for the task of filling in a suitable
conjunction before a discourse connective. There are at
least two possible explanations for this bias: (i) in the
sake of clarity and in line with common scientific writ-
ing guidelines, Wikipedia editors tend to use connectives
quite generously, and (ii) the artificial balancing of the
datasets makes [No connective] under-represented in
the test data compared to the actual distribution of dis-
course connectives vs. [No connective]. The con-
fusion matrix also shows that there are clusters of con-
nectives that raters tend to confuse, even though they do
not necessarily encode exactly the same relation. Ex-
amples are rather, and instead,, for example
and in particular,, on the other hand and
by contrast,. For 57.1% of the test questions, there
is a consensus among at least two raters and for 11.4%, all
three raters agree on the most suitable connective.

5.2. Accuracy of the Models
In this section, the DA model and the WORDPAIRS model
are employed to perform the same task as the human raters,
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Figure 1: Confusion matrices for the human raters (left) and DA model (right) predicting the discourse connectives used by
Wikipedia authors. The counts of the human raters are divided by three (i.e., the number of raters) for easier comparison.

i.e., learning to reconstruct the connective possibly re-
moved from the beginning of the second sentence in each
test pair. A balanced dataset is used for both training
and testing the models as described in Section 3. The DA
model is evaluated using the following hyper-parameters
optimized on the development set: network size (one hid-
den layer with 200 neurons), batch size (64), dropout ratios
for the F , G, and H networks (0.68, 0.14, and 0.44, re-
spectively), and learning rate (0.0018). The model is imple-
mented in TensorFlow (Abadi et al., 2015) and the training
is run for 300 000 batch steps. The results, reported in Ta-
ble 2, show that DA clearly outperforms the WORDPAIRS
baseline with an F1 score of 31.80 vs. 14.81.

5.3. Comparison Between the Raters and the
Decomposable Attention Model

Table 3 compares the accuracy of DA predictions to the
rater decisions. The macro-averaged F1 score of human
raters is 23.72 which is, quite surprisingly, lower than the
F1 score of the DA model, 31.80. The difference is smaller
when considering majority votes on the subset of 5 714
tasks for which there is a consensus among at least 2 out
of 3 raters, which results in a 30.36 F1 score for the raters.
On these less ambiguous cases, the model performance also
increases to 32.68.
As we mentioned in Section 5.1., human raters are clearly
less eager to introduce a connective than Wikipedia editors.
Therefore, we also evaluate the setting in which we exclude
the questions for which either the ground-truth label, or the
rater-assigned majority label, or the model-assigned label
is [No connective]. The results, listed in the last line
of Table 3, show that under these conditions human raters
actually outperform the model.
The confusion matrix of DA is shown on the right side
of Figure 1. For each connective, the true connective is
the most frequent prediction. Connective on the other

Setting n Raters (F1) Model (F1)

A 10 000 23.72 31.80
B 5 714 30.36 32.68
C 3 204 41.97 36.65

Table 3: Macro-averaged F1 scores for human raters and
the decomposable attention model. The three settings are:
(A) All test set items; (B) Only the items for which there
is a consensus among at least 2 out of 3 raters; (C) Con-
sensus items ignoring those where either ground truth, or
the rater assigned, or the model assigned label is [No
connective].

hand has the lowest F1 score (15.06), whereas by then
has the highest (57.29). Some of the most frequent mistakes
are between similar connectives, such as however vs.
nevertheless, and instead, vs. rather,. These
errors are by and large consistent with those of human raters
(left side of the figure). This confirms that the model is ac-
curately capturing the meaning of the relation, and when it
does not select the gold connective it is making similar ap-
proximations to what people would do. Furthermore, the
Figure 1 shows that raters have a more pronounced ten-
dency to select frequent connectives, such as however and
and. To further exemplify, in Table 4 we show a selection
of wrong and correct decisions made by DA and human
raters. A manual inspection of these and other examples
shows that in some cases a larger context than the previ-
ous sentence is required for inferring the connective. For
instance, to correctly decide whether finally, is more
suitable than then, one may have to inspect a larger con-
text.
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Figure 2: Two examples of the alignment matrix between the first (y-axis) and the second argument (x-axis) generated by
the DA predictor. The darker the color, the higher the alignment score.

Arguments Gold DA Raters

Arg 1: From 1913 to 1917 Lucey served as Illinois Attorney General.
Arg 2: Lucey was appointed to the Illinois Public Utilities Commission in 1917 and served until 1920. then then [No connective]

Arg 1: In Ahmedgarh Municipal Council, Female Sex Ratio is of 901 against state average of 895.
Arg 2: Child Sex Ratio in Ahmedgarh is around 841 compared to Punjab state average of 846. moreover moreover meanwhile

Arg 1: If the question was answered correctly, the team would receive the next clue.
Arg 2: The chosen team member would have to try again. otherwise otherwise then

Arg 1: Lee then continued on to Boston, arriving 25 June.
Arg 2: The ranks of General Washington’s Navy were being thinned by captures. meanwhile by then meanwhile

Arg 1: Cooper was promoted as an alternate leader to Ahern.
Arg 2: It was thought he could shore up the National Party’s vote in its conservative rural heartland. in particular however in particular

Arg 1: Taylor urged Pius XII to explicitly condemn Nazi atrocities.
Arg 2: Pius XII spoke against the ”evils of modern warfare”, but did not go further. instead in particular instead

Table 4: Examples of mistakes and correct predictions made by the DA model and by the raters.

5.4. Model Interpretation
An advantage of the DA model is that it is possible to ex-
amine which words the model attends to when inferring a
connective. In some cases, the attended words are clearly
meaningful semantically or linguistically, whereas in other
cases the soft-alignment matrix that the model produces is
harder to interpret. Examples of the former case are rep-
resented in Figure 2, which shows the alignment matrices
from the tokens of the first sentence (y-axis) to the tokens
of the second sentence (x-axis) so that the rows sum to 1. In
the left example, the model correctly predicts however as
the connective after aligning the word attempt with refuse
and not. These word pairs indicate contrast which makes
however a likely connective. In the right example, the
model aligns the phrase was disqualified with had gone and
correctly predicts by then as the connective. The corre-
sponding tenses, i.e., past and past perfect, respectively, are
likely clues of the presence of by then.

6. Conclusions
We studied the problem of discourse connective prediction,
which has many useful applications in text summariza-
tion, adaptation and conversationalization. We collected a
dataset of 2.9 million pairs of consecutive sentences and
connectives, and made it publicly available to facilitate fur-
ther research on this problem, as well as other related bi-

sequence classification tasks. We showed that the recently
proposed decomposable attention model performs surpris-
ingly well on the connective prediction task, even better
than human raters on the same representative test set con-
sisting of 10 000 samples. We also observed that, unlike the
model, human raters have a preference for implicit connec-
tives, as they do outperform the model if the comparison is
restricted to the cases in which the majority of raters agrees
on an explicit connective. The alignment matrices produced
by the model suggest that the predictor is picking up rele-
vant lexical, syntactic and semantic clues. The confusion
matrix of the predictor shows very similar error patterns to
the matrix generated from human raters, further confirming
the meaningfulness of the decisions made by the model.
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