
Ensemble Romanian Dependency Parsing with Neural Networks

Radu Ion, Elena Irimia, Verginica Barbu Mititelu
Research Institute for Artificial Intelligence, “Mihai Drăgănescu”

13 “Calea 13 Septembrie”, Bucharest 050711, Romania

{radu, elena, vergi}@racai.ro

Abstract
SSPR (Semantics-driven Syntactic Parser for Romanian) is a neural network ensemble parser developed for Romanian (a Python 3.5
application based on the Microsoft Cognitive Toolkit 2.0 Python API) that combines the parsing decisions of a varying number (in our
experiments, 3) of other parsers (MALT, RGB and MATE), using information from additional lexical, morpho-syntactic and semantic
features. SSPR outperforms the best individual parser (MATE in our case) with 1.6% LAS points and it is in the same class with the
top 5 Romanian performers at the CONLL 2017 dependency parsing shared task. The train and test sets were extracted from a
Romanian dependency treebank we developed and validated in the Universal Dependencies format. The treebank, used in the CONLL
2017 Romanian track as well, is open licenced; the parser is available on request.

Keywords: parsing, treebank, neural networks.

1. Introduction

A reliable, fast and freely available syntactic parser for
Romanian was needed (by both linguists and computer
scientists working in Natural Language Processing) when
we decided to develop SSPR. Even if other attempts at
creating Romanian parsers were documented before, none
proved to be accessible or performant enough: Călăcean
and Nivre (2009) reported a dependency parser based on
MaltParser (Nivre et al., 2007) and trained on a small
treebank (Hristea and Popescu, 2003), whose impressive
results, 88.6% labelled attachment score (LAS) and 92%
unlabelled attachment score (UAS), are expectable given
the shortness and syntactic simplicity of the sentences in
the data set; the Fips constituency rule-based parser was
adapted for Romanian (Seretan et al., 2010) and is
available for online use (http://www.latl.unige.ch/), but no
evaluation is provided for this language; Colhon and
Cristea (2016) focus only on noun phrases, using patterns
to identify relations inside such structures; the dependency
parser of Perez et al. (2016) reported 78.04% LAS when
trained on an 8000 sentences treebank. Dumitrescu et al.
(2017) RBG-based parser obtained a LAS of 79.44% in
the CONLL 2017 Romanian track but new developments
of Boroș and Dumitrescu (2018) employ a Bidirectional
LSTM network that is still training at the time of the
writing and whose foreseen results are much better.
In a nutshell, the SSPR ensemble parser we have
developed works by training a feed-forward neural
network (NN) to recognize “good” vs. “bad” dependency
relations from the minimum spanning tree (MST) of the
directed graph of all existing (as many as possible) parses
for the same sentence. For the training part, each edge of
the graph is weighted by the inverse of the size of the set
of parsers that found that edge (the “majority voting”
combination strategy). The aim of the SSPR ensemble
parser is to improve on the baseline “majority voting”
combination of dependency parses by using the
additional, lexical, morpho-syntactic and semantic
features of the words participating in a relation, coupled
with information related to the state of the partially
completed parse.

2. Working data

The train/dev/test data that the SSPR NN used to train and

evaluate came from the Romanian treebank annotated in

Universal Dependencies (CONLL-U) format, named

RoRefTrees (Barbu Mititelu et al., 2016b). It is a

relatively large treebank (9523 sentences, 218365 words)

with complex sentences (23 tokens/sentence on average)

and a large coverage: it contains several text genres

(literature - 1818 sentences, law - 1606 sentences, medical

- 1210 sentences, FrameNet translations - 1092 sentences,

academic writing - 950 sentences, news - 933 sentences,

science - 362 sentences, Wikipedia - 251 sentences,

miscellanea - 1302 sentences). The corpus, consistently

annotated and manually validated, is freely available as a

release at universaldependencies.org and it was used as

training/development/testing data for Romanian in the

CONLL 2017 dependency parsing shared task.

Additionally, it can be queried online with user-friendly

tools: http://clarino.uib.no/iness/page?page-id=iness-

main-page, http://bionlp-www.utu.fi/dep_search,

http://lindat.mff.cuni.cz/services/pmltq/#!/home.

3. Features

3.1 Linguistic Features

SSPR started as a project that aimed to elude errors
typical to statistical parsing by employing additional
semantic information. The standard practice in machine
learning/statistical approaches to parsing is to use
morpho-syntactic (POS and/or morpho-syntactic
descriptions) and lexical (lemmas/word forms of the
words and word embeddings computed from large raw
corpora) features of the words to be linked and of those in
a context (n-word windows) around the targeted words.
Also, first-order syntactic features (extracted directly
from the dependency relations themselves) and second-
order syntactic features (the partial analysis of a word,
when already linked in the partial tree) complete the
linguistic information usually exploited for automatic
parsing. However, additional features, whenever
available, are easy to integrate in data-driven systems and
our initial intuition was that semantic features, like
wordnet relations, sub-categorization frames and semantic
classes can increase parsing performance. These features
were provided by external programs and supplementary
resources (e.g. an inventory of subcategorisation frames of
verbs occurring in RoRefTrees, semi-automatically
developed and hand validated by linguists). Moreover,
information about constituency of noun, verb, adjectival
and adverbial phrases was available through TTL (Ion,

1574

http://www.latl.unige.ch/
http://universaldependencies.org/
http://clarino.uib.no/iness/page?page-id=iness-main-page
http://clarino.uib.no/iness/page?page-id=iness-main-page
http://bionlp-www.utu.fi/dep_search
http://lindat.mff.cuni.cz/services/pmltq/%23!/home

2007), a tool that does the tokenization, lemmatisation and
POS-tagging of the corpus.
The set of linguistic features that SSPR used to improve

the “majority voting” classifier is:

 Sets of semantically-related words, derived by

automatically clustering word embeddings (the

feature SemClass) extracted from the CoRoLa corpus

(Tufiș et al., 2016);

 Manually validated subcategorisation frames for all

the main verbs in the treebank, enriched with

semantic restrictions on the arguments (Barbu

Mititelu et al., 2016a) (the features VFrame,

identifying the frame, and the VArg, identifying the

associated argument(s), restricted to specified

Romanian WordNet (Tufiș and Barbu Mititelu, 2014)

senses);

 Lexical chains between the words in the sentence (Ion

and Ștefănescu, 2009): a lexical chain between a

word w1 and a word w2 is a path in the Romanian

WordNet that seeks to get from a specific sense of the

word w1 to the relevant sense of the word w2 by

following semantic relations in wordnet (the feature

LXC);

 Morpho-syntactic features provided by TTL (the

features Type, Gender, Case, etc.);

 Continuous constituents provided by TTL (the feature

Chunk).

3.2 The individual parsers and their
performances

The following open-source parsers were trained and
evaluated using all the available linguistic features (see
the scores marked with “+”) and using only the standard,
lexical and morpho-syntactic features: 1) MALT parser
with the LIBSVM classifier and with the “arc-eager”
algorithm; 2) RBG parser with the standard, projective
analysis model (Lei et al., 2014); 3) MATE parser with
“default” parameters (Bohnet, 2010).
Parsers performance was evaluated in a standard, 10-fold
cross validation manner (with 80% training data, 10%
development data and 10% test data) and Table 1 shows
the average scores on the 10 different runs.
The evaluation measures we employed were: 1) UAS,
which gives the number of relations identified in the test
set (the head and the dependent are both correctly
identified), but it is not concerned with the relation type
(subject, object, etc.); 2) LAS, which also considers the
dependency relations label; 3) UAS/LAS without punct

(UASp, LASp), which refers to the scores UAS and LAS
as defined above, but ignoring the dependency relation
that links the punctuation (punct, in our relation
inventory); 4) Relaxed LAS (LASr), which refers to LAS
as defined above, but ignoring the relations specific to the
Romanian treebank, like “nmod:tmod”, which is a
temporal noun modifier. This relation is an adaptation of
the “nmod” relation, universally defined within the
Universal Depenedency project (de Marneffe et al., 2014),
i.e. valid for all natural languages. The project allows for
language-specific relations, but only as subtypes of the
universal ones and labelled accordingly. Thus,
“nmod:tmod” is a language-specific relation, a subtype of
the “nmod” relation, namely a temporal “nmod” (nominal
modifier). All the relations of the type

“universal:particular” are automatically reduced to
“universal”; in our example, if the parser detects the
relation “nmod”, it is classified as correct when compared
to “nmod:tmod”; 5) Relaxed LAS without punct
(LASpr), which is the relaxed LAS score, as defined
above, that also ignores the dependency relation that links
punctuation (it is the most permissive LAS score of all).
Table 1 shows little but consistent improvement of all the
parsers performances when using the additional syntactic-
semantic features over the standard scenarios (see LAS+
vs. LAS, UAS+ vs. UAS, etc.). We underlined the best
values for each score and MATE parser superior yield is
visible for all measures, except UASp+ (where the
difference to the best parser’s performance is
insignificant). It is important to note that we could obtain
these improvements in the various UAS/LAS scores of all
the three parsers only when using all of our
supplementary features. Otherwise, there are certain
subsets that work well for some parsers but degrade
performance for other parsers. We thus think that it is
important to optimize the supplementary feature set
according to the parsers one wants to combine, such that
the supplementary feature set provides improvements for
all the parsers of the ensemble.

Score MALT

average

RBG

average

MATE

average
LAS 0.7978 0.7906 0.809

LAS+ 0.8038 0.8091 0.8138

UAS 0.8544 0.8603 0.8668

UAS+ 0.859 0.8693 0.8707

UASp 0.8639 0.8706 0.8758

UASp+ 0.8683 0.8808 0.88

LASp 0.7992 0.7913 0.8096

LASp+ 0.8054 0.8116 0.8152

LASr 0.813 0.805 0.8229

LASr+ 0.8185 0.8225 0.8276

LASpr 0.8165 0.8077 0.8256

LASpr+ 0.822 0.8271 0.8309

Table 1: The contribution of supplementary syntactic-
semantic features to the UAS and LAS average scores for
MALT, RBG and MATE parsers.

4. SSPR implementation

SSPR is a feed-forward neural network (NN) that learns to

recognize a “correct” syntactic dependency relation vs. an

“incorrect” one, from the MST “Majority Voting”

combination strategy of multiple parses, taking into

account its context as modelled by linguistic and

structural features. There is no limit on the number of

different parsers that can be combined by this NN, but it is

of utmost importance that the parsers are as different as

possible, from the analysis algorithm point of view, so

that the reunion of all the dependency relations of a

1575

sentence, generated by all available parsers (i.e. the

directed graph of all existing parses of the sentence),

should cover the correct analysis of the sentence. This

way, we can make sure the combination algorithm will

have a pool of choices from which to produce a correct

analysis.

SSPR is a Python 3.5 application that uses Microsoft

Cognitive Toolkit 2.0 Python API to train and run the NN

whose structure is presented in Figure 1. The input vector

X is a binary vector and has N positions (corresponding to

N values for all the features available for one training

example, i.e. a dependency relation). There are two

hidden layers, the first with 100 neurons (H), and the

second with 10 neurons (G). The activation function for

both hidden layers is tanh. The structure was obtained

experimenting with NNs having 0, 1, or two hidden

layers, and with 10, 50, 100, 500 or 1000 neurons in a

hidden layer. The NN in Figure 1 was the one that gave

the best results. The NN outputs a real vector of two

positions ̂, which is a probability distribution of the two

possible states (correct/incorrect), computed with the

softmax function.

Figure 1: SSPR neural network

The training examples for SSPR NN are acquired as

follows:

 Step 1. For each sentence in the training set, all

the individual parsers were run and a directed

graph A was constructed with the reunion of all

the resulting analyses. The nodes of the graph A

are lexical units, while the edges are dependency

relations. Each edge is labelled with the name of

the corresponding dependency relation and with

the name of the parser that discovered it;

 Step 2. If a relation r is identified between the

words HEAD and DEP by more than one parser,

then all the edges between HEAD and DEP

labelled r are replaced by a single edge, which

bears the label r and the set V of the parsers that

discovered r;

 Step 3. From the directed graph A, a Minimum

Spanning Tree (MST) is constructed, using Chu-

Liu-Edmonds algorithm (Chu & Liu, 1965;

Edmonds, 1967) where the weight of each edge

is 1/|V|. In other words, we computed the tree that

covers all the sentence and whose dependency

relations are discovered simultaneously by as

many of the individual parsers as possible (i.e.

the real number 1/|V| is minimised). Steps 1-3 are

reproducing the “Majority Voting” (MV,

Surdeanu and Manning, 2010) strategy of

combining independently-trained parsing

models;

 Step 4. The MST constructed at step 3 contains

both correct and incorrect relations (given that

the natural language may pose complicated

parsing problems that none of the parsers

available knows how to solve). Each relation in

this tree is transformed in a training example (X,

Y) for the SSPR NN, where X is the binary

feature vector (see below) and Y is a binary

vector with 2 positions computed by checking if

the relation is also present in the gold-standard

train set, which guarantees its correctness (Y= [1;

0] for a correct relation and [0; 1] for an

erroneous one).

For each dependency relation that has to be classified as

correct or incorrect, we construct and then concatenate in

the input vector X the following “one-hot” vectors: 1) The

binary vector of the parsers that identified the relation; 2)

The binary vector of the morpho-syntactic properties of

the dependent in the relation; 3) The binary vector of the

label of the relation; 4) The binary vector of the

dependent’s lemma; 5) The binary vector of the syntactic-

semantic features of the relation; 6) The binary vectors

obtained by concatenating the vectors obtained at steps 1-

5 for the regent of the relation, for the leftmost child of the

dependent and for the regent of the regent.

SSPR NN is then trained to minimise the average (over

the train set) of the cross entropy of the and ̂ vectors,

standing for the ground-truth value and the estimated

value with softmax.

At run-time, the SSPR parser ensemble works as follows:

 Step 1. All individual (the same as in training)

parsers are run on a new test sentence and the

directed graph A of all individual analyses is

constructed;

 Step 2. The NN is applied on each edge ai in A

and the probability vector is computed as ̂=

[P(correct|X); P(incorrect|X)];

 Step 3. A Minimum Spanning Tree is con-

structed on the graph A, but this time the weight

of each edge is given by the first position in the

vector Y as computed by NN, namely by

P(correct|X).

In this manner, SSPR tries to improve on the MV

combination strategy by proposing more informed

weights for the MST construction.

5. SSPR Evaluation

To demonstrate the improvements that the SSPR parser

brings in comparison with the MV ensemble baseline, we

first compute a breakdown of the LAS score of the MV

ensemble as a function of the number of individual parsers

that find the correct dependency relation, averaged over

our 10-fold cross validation test run. Table 2 shows the

components of LAS for our three parsers MV ensemble,

namely the LAS when all three parsers agree on the

correct dependency relation (see the “3/3” row in Table 2)

and the LAS when two out of three parsers agree on the

correct dependency relation (“2/3”). When only one

1576

parser finds the correct dependency relation (“1/3”), its

LAS, in this case, contributes to the “oracle” LAS score,

which is the maximum possible score that can be achieved

by any ensemble of these three parsers.

3/3 LAS+ 0.7218

2/3 LAS+ 0.0968

MV LAS+ 0.8186

1/3 LAS+ 0.068

ORACLE LAS+ 0.8866

Table 2: A breakdown of the LAS score as a function of

how many parsers found the correct dependency relation

Table 3 shows the SSPR scores compared to the MATE

scores, the best individual parser from Table 1.

Score MATE

average

SSPR

average

LAS+ 0.8138 0.83

UAS+ 0.8707 0.8844

UASp+ 0.88 0.8928

LASp+ 0.8152 0.8307

LASr+ 0.8276 0.8434

LASpr+ 0.8309 0.8461

Table 3: Comparison between MATE and SSPR

(averages over 10 train/dev/test random samples)

The evaluation setting of SSPR is the same as the one

described in Section 3.2. The individual parsers were

trained on the train set, using all the available syntactic-

semantic features, and were run on the development set.

The neural network SSPR was trained on the development

set combining the three individual parsers outputs and was

tested, together with each individual parser, on the test set.

As Surdeanu and Manning (2010) note, our approach in

combining independent parses of the same sentences can

be described, as they put it, as “a meta-classifier that

selects candidate dependencies based on their likelihood

of belonging to the correct tree.” Furthermore, they assert

that this strategy did not offer significant gains over the

standard, “unweighted” MV but, as far as our experiments

on Romanian dependency parsing go, Tables 2 and 3

show that the SSPR meta-classifier is able to improve the

LAS of the MV ensemble by 1.1% (from 81.86% to 83%).

We can explain this significant increase as follows:

- Surdeanu and Manning use seven parsers in their

ensemble but six out of these seven parsers are,

in fact, the same parser (the MALT parser) with

different linking strategies. We postulate that

these six flavours of the MALT parser output

very similar parse trees such that the case where

three or less parsers (the minority subset) agree

on the correct dependency is poorly represented;

- We use three different parsers, each with its own

modelling of the parsing problem, such that the

case where only one out of the three parsers (the

minority subset) finds the correct dependency

relation adds a significant 6.8% to the LAS of the

MV ensemble. It is this pool of correctly found

dependency relations from which SSPR is able to

extract the 1.1% improvement of the MV

ensemble LAS;

- Lastly, we think that our NN-based meta-

classifier is superior to the L2-regularized

logistic classifier that Surdeanu and Manning

used to combine parses, mainly because we rely

on a richer set of features that also include

semantic features and second-order features.

Table 3 shows that the SSPR NN ensemble parser is 1.6%

LAS points and 1.5% LASpr points better than the best

individual parser (MATE). The medium LASpr score of

84.61% places SSPR in the same class with the best

parsers in CoNLL-2017 task for Romanian (see Figure 2).

Even though our evaluation setting is not identical to the

one for CONLL 2017, the working corpus is the same and

our 10-fold cross validation strategy provides a more

robust result, for Romanian, than the CONLL 2017 1-fold

run (the CONLL final parser ranking is backed up by the

runs in various languages).

Figure 2: LASpr scores in CONLL 2017 parsing shared

task

The LAS medium score of 83% reflects the general

performance of SSPR, regardless of its domain of

application, because the treebank we worked on is

balanced and contains texts from various domains. Table

4 shows the variation of LAS according to the domain. It

can be noted that juridical, medical and scientific (from

mathematics, physics and computer science) texts have

over the medium scores: in their case, it is relatively

simple to identify the elements between which a relation

is very probable and this relation type is easy to predict

(or machine learn): the topic is quite stable, ellipses are

rare (a consequence of the need for clarity), predicates

saturate their valences locally by words from predictable

semantic classes. At the opposite pole, the literature

domain, even if it does not contain long sentences, raises

the most parsing problems: the authors' creativity

manifests both in the sentence structure (dislocated

arguments, unlexicalised ones, unusual word order, etc.)

and in unusual combination of words (with spectacular

1577

stylistic results), namely words from unexpected semantic

classes taken as arguments.

SSPR Average

Belletrist 0.7839

Juridical 0.8694

Medical 0.8571

Academic 0.8332

Encyclopaedic 0.8001

Journalistic 0.8373

Scientific 0.8812

Miscellanea 0.8053

Table 4: LAS for SSPR according to the domain

Conclusions

We presented evidence that Romanian dependency
parsing can be improved by using “better informed”
ensembles of individual dependency parsers, in our case
in the form of a neural network that learns to distinguish
correct links from incorrect ones. The improvement
margin can only increase when adding more, as different
as possible, parsers into the mix that uses our
supplementary linguistic features and we plan to extend
this work by adding more such parsers to the ensemble.
Specifically, we need to see what parsers from the
CONLL 2017 shared task are open-sourced and readily
available such that new ways of modelling dependency
parsing could be of benefit to our ensemble parsing. One
such example is the best parser from the CONLL 2017
shared task on Romanian, namely the Stanford parser
which is a NN-based dependency parser.
Another direction we could take to improve ensemble
parsing (or individual parsing for that matter) would be to
better generalize a dependency relation. Our approach of
using semantic features worked to a certain degree but,
since NNs work well with “embeddings”, we can think of
constructing “dependency relation embeddings” as real-
valued vectors that are computed with recursive NNs.

Bibliografical References

Barbu Mititelu, V., Ion, R., Simionescu, R., Scutelnicu,
A., Irimia E. (2016a) Improving parsing using morpho-
syntactic and semantic information, in Revista Romana
de Interactiune Om-Calculator 9(4), 285-304, 2016.

Barbu Mititelu, V., Ion, R., Simionescu, R., Irimia, E.,
Perez C.-A. (2016b) The Romanian Treebank
Annotated According to Universal Dependencies.,
Proceedings of The Tenth International Conference on
Natural Language Processing (HrTAL2016),
Dubrovnik, Croatia, 29 September – 1 October 2016

Bohnet, B. (2010). Very High Accuracy and Fast
Dependency Parsing is not a Contradiction. The 23rd
International Conference on Computational Linguistics
(COLING 2010), Beijing, China.

Boroș T. and Dumitrescu, S.D., Multilingual tokenization
and part-of-speech tagging. Lightweight versus
heavyweight algorithms, to be published in Lecture
Notes in Artificial Intelligence, 2018.

Călăcean, M., Nivre, J. (2009) A Data-Driven
Dependency Parser for Romanian, Proceedings of the
Seventh International Workshop on Treebanks and
Linguistic Theories, 65-76.

Chu, Y. J.; Liu, T. H. (1965). "On the Shortest
Arborescence of a Directed Graph", Science Sinica, 14:
1396–1400

Colhon, M., Cristea, D. (2016). Dependency Parsing
within Noun Phrases with Pattern-based Approaches,
Proc. of the 12th Int. Conf. Linguistic Resources and
Tools for Processing the Romanian Language, 51-60.

de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen,
K., Ginter, F., Nivre, J., Manning, Ch. D. (2014).
Universal Stanford Dependencies: A cross-linguistic
typology. In Proceedings of LREC, 4585-4592.

Dumitrescu, S. D., Boroș T., Tufiș, D. (2017). RACAI's
Natural Language Processing pipeline for Universal
Dependencies, Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Universal
Dependencies, August, 2017, Vancouver, Canada,
Association for Computational Linguistics, 174-181.

Edmonds, J. (1967), "Optimum Branchings", J. Res. Nat.
Bur. Standards, 71B: 233–240.

Hristea, F.,Popescu, M. (2003) A Dependency Grammar

Approach to Syntactic Analysis with Special Reference

to Romanian. In F. Hristea and M. Popescu (eds.),

Building Awareness in Language Technology,

Bucharest, University of Bucharest Publishing House,

9-16.
Ion, R. and Ștefănescu, D. Unsupervised Word Sense

Disambiguation with Lexical Chains and Graph-based
Context Formalization. In Proceedings of the 4th
Language and Technology Conference: Human
Language Technologies as a Challenge for Computer
Science and Linguistics (Vetulani, Zygmunt).
November 2009, Poznan, Poland, pp. 190-194,

Ion, Radu. (2007). Word sense disambiguation methods

applied to English and Romanian, PhD Thesis,

Romanian Academy.

Lei, T., Xin, Y., Zhang, Y., Barzilay R. and Jaakkola, T.

(2014) Low-Rank Tensors for Scoring Dependency

Structures. ACL 2014.

Nivre, J., J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S.

Kübler, S. Marinov and E. Marsi (2007). MaltParser: A

language-independent system for data-driven

dependency parsing. Natural Language Engineering,

13(2), 95-135.

Perez, A.C., Mărănduc, C., Simionescu, R. (2016)

Including Social Media – A Very Dynamic Style – in

the Corpora for Processing Romanian Language. In:

Trandabăţ D., Gîfu D. (eds) Linguistic Linked Open

Data. RUMOUR 2015. Communications in Computer

and Information Science, vol 588. Springer, Cham,

139-153.

Seretan, V., Wehrli, E., Nerima, L., Soare, G. (2010)

FipsRomanian: Towards a Romanian Version of the

Fips Syntactic Parser, Proceedings of LREC 2010,

1972-1977.
Surdeanu, M. and Manning, C. D. (2010). Ensemble

Models for Dependency Parsing: Cheap and Good? In
Proceedings of the HLT 2010 Human Language
Technologies: The 2010 Annual Conference of the

1578

North American Chapter of the Association for
Computational Linguistics, 649-652.

Tufiș, D., Barbu Mititelu, V., Irimia, E., Dumitrescu, S.D.,
Boroș, T. (2016) The IPR-cleared Corpus of
Contemporary Written and Spoken Romanian
Language. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016). Portorož, Slovenia, pp. 2516-2521, May
2016

Tufiş, D., Barbu Mititelu, V. (2014) The Lexical Ontology
for Romanian, in Nuria Gala, Reinhard Rapp, Nuria
Bel-Enguix (Ed.), Language Production, Cognition,
and the Lexicon, series Text, Speech and Language
Technology, vol. 48, Springer, p. 491-504

1579

