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Abstract 
SSPR (Semantics-driven Syntactic Parser for Romanian) is a neural network ensemble parser developed for Romanian (a Python 3.5 
application based on the Microsoft Cognitive Toolkit 2.0 Python API) that combines the parsing decisions of a varying number (in our 
experiments, 3) of other parsers (MALT, RGB and MATE), using information from additional lexical, morpho-syntactic and semantic 
features. SSPR outperforms the best individual parser (MATE in our case) with 1.6% LAS points and it is in the same class with the 
top 5 Romanian performers at the CONLL 2017 dependency parsing shared task. The train and test sets were extracted from a 
Romanian dependency treebank we developed and validated in the Universal Dependencies format. The treebank, used in the CONLL 
2017 Romanian track as well, is open licenced; the parser is available on request. 
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1. Introduction 

A reliable, fast and freely available syntactic parser for 
Romanian was needed (by both linguists and computer 
scientists working in Natural Language Processing) when 
we decided to develop SSPR. Even if other attempts at 
creating Romanian parsers were documented before, none 
proved to be accessible or performant enough: Călăcean 
and Nivre (2009) reported a dependency parser based on 
MaltParser (Nivre et al., 2007) and trained on a small 
treebank (Hristea and Popescu, 2003), whose impressive 
results, 88.6% labelled attachment score (LAS) and 92% 
unlabelled attachment score (UAS), are expectable given 
the shortness and syntactic simplicity of the sentences in 
the data set; the Fips constituency rule-based parser was 
adapted for Romanian (Seretan et al., 2010) and is 
available for online use (http://www.latl.unige.ch/), but no 
evaluation is provided for this language; Colhon and 
Cristea (2016) focus only on noun phrases, using patterns 
to identify relations inside such structures; the dependency 
parser of Perez et al. (2016) reported 78.04% LAS when 
trained on an 8000 sentences treebank. Dumitrescu et al. 
(2017) RBG-based parser obtained a LAS of 79.44% in 
the CONLL 2017 Romanian track but new developments 
of Boroș and Dumitrescu (2018) employ a Bidirectional 
LSTM network that is still training at the time of the 
writing and whose foreseen results are much better. 
In a nutshell, the SSPR ensemble parser we have 
developed works by training a feed-forward neural 
network (NN) to recognize “good” vs. “bad” dependency 
relations from the minimum spanning tree (MST) of the 
directed graph of all existing (as many as possible) parses 
for the same sentence. For the training part, each edge of 
the graph is weighted by the inverse of the size of the set 
of parsers that found that edge (the “majority voting” 
combination strategy). The aim of the SSPR ensemble 
parser is to improve on the baseline “majority voting” 
combination of dependency parses by using the 
additional, lexical, morpho-syntactic and semantic 
features of the words participating in a relation, coupled 
with information related to the state of the partially 
completed parse. 

2. Working data 

The train/dev/test data that the SSPR NN used to train and 

evaluate came from the Romanian treebank annotated in 

Universal Dependencies (CONLL-U) format, named 

RoRefTrees (Barbu Mititelu et al., 2016b). It is a 

relatively large treebank (9523 sentences, 218365 words) 

with complex sentences (23 tokens/sentence on average) 

and a large coverage: it contains several text genres 

(literature - 1818 sentences, law - 1606 sentences, medical 

- 1210 sentences, FrameNet translations - 1092 sentences, 

academic writing - 950 sentences, news - 933 sentences, 

science - 362 sentences, Wikipedia - 251 sentences, 

miscellanea - 1302 sentences). The corpus, consistently 

annotated and manually validated, is freely available as a 

release at universaldependencies.org and it was used as 

training/development/testing data for Romanian in the 

CONLL 2017 dependency parsing shared task. 

Additionally, it can be queried online with user-friendly 

tools: http://clarino.uib.no/iness/page?page-id=iness-

main-page, http://bionlp-www.utu.fi/dep_search, 

http://lindat.mff.cuni.cz/services/pmltq/#!/home. 

3. Features 

3.1 Linguistic Features 

SSPR started as a project that aimed to elude errors 
typical to statistical parsing by employing additional 
semantic information. The standard practice in machine 
learning/statistical approaches to parsing is to use 
morpho-syntactic (POS and/or morpho-syntactic 
descriptions) and lexical (lemmas/word forms of the 
words and word embeddings computed from large raw 
corpora) features of the words to be linked and of those in 
a context (n-word windows) around the targeted words. 
Also, first-order syntactic features (extracted directly 
from the dependency relations themselves) and second-
order syntactic features (the partial analysis of a word, 
when already linked in the partial tree) complete the 
linguistic information usually exploited for automatic 
parsing. However, additional features, whenever 
available, are easy to integrate in data-driven systems and 
our initial intuition was that semantic features, like 
wordnet relations, sub-categorization frames and semantic 
classes can increase parsing performance. These features 
were provided by external programs and supplementary 
resources (e.g. an inventory of subcategorisation frames of 
verbs occurring in RoRefTrees, semi-automatically 
developed and hand validated by linguists). Moreover, 
information about constituency of noun, verb, adjectival 
and adverbial phrases was available through TTL (Ion, 
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2007), a tool that does the tokenization, lemmatisation and 
POS-tagging of the corpus. 
The set of linguistic features that SSPR used to improve 

the “majority voting” classifier is: 

 Sets of semantically-related words, derived by 

automatically clustering word embeddings (the 

feature SemClass) extracted from the CoRoLa corpus 

(Tufiș et al., 2016); 

 Manually validated subcategorisation frames for all 

the main verbs in the treebank, enriched with 

semantic restrictions on the arguments (Barbu 

Mititelu et al., 2016a) (the features VFrame, 

identifying the frame, and the VArg, identifying the 

associated argument(s), restricted to specified 

Romanian WordNet (Tufiș and Barbu Mititelu, 2014) 

senses); 

 Lexical chains between the words in the sentence (Ion 

and Ștefănescu, 2009): a lexical chain between a 

word w1 and a word w2 is a path in the Romanian 

WordNet that seeks to get from a specific sense of the 

word w1 to the relevant sense of the word w2 by 

following semantic relations in wordnet (the feature 

LXC); 

 Morpho-syntactic features provided by TTL (the 

features Type, Gender, Case, etc.); 

 Continuous constituents provided by TTL (the feature 

Chunk). 

3.2 The individual parsers and their 
performances 

The following open-source parsers were trained and 
evaluated using all the available linguistic features (see 
the scores marked with “+”) and using only the standard, 
lexical and morpho-syntactic features: 1) MALT parser 
with the LIBSVM classifier and with the “arc-eager” 
algorithm; 2) RBG parser with the standard, projective 
analysis model (Lei et al., 2014); 3) MATE parser with 
“default” parameters (Bohnet, 2010). 
Parsers performance was evaluated in a standard, 10-fold 
cross validation manner (with 80% training data, 10% 
development data and 10% test data) and Table 1 shows 
the average scores on the 10 different runs. 
The evaluation measures we employed were: 1) UAS, 
which gives the number of relations identified in the test 
set (the head and the dependent are both correctly 
identified), but it is not concerned with the relation type 
(subject, object, etc.); 2) LAS, which also considers the 
dependency relations label; 3) UAS/LAS without punct 

(UASp, LASp), which refers to the scores UAS and LAS 
as defined above, but ignoring the dependency relation 
that links the punctuation (punct, in our relation 
inventory); 4) Relaxed LAS (LASr), which refers to LAS 
as defined above, but ignoring the relations specific to the 
Romanian treebank, like “nmod:tmod”, which is a 
temporal noun modifier. This relation is an adaptation of 
the “nmod” relation, universally defined within the 
Universal Depenedency project (de Marneffe et al., 2014), 
i.e. valid for all natural languages. The project allows for 
language-specific relations, but only as subtypes of the 
universal ones and labelled accordingly. Thus, 
“nmod:tmod” is a language-specific relation, a subtype of 
the “nmod” relation, namely a temporal “nmod” (nominal 
modifier). All the relations of the type 

“universal:particular” are automatically reduced to 
“universal”; in our example, if the parser detects the 
relation “nmod”, it is classified as correct when compared 
to “nmod:tmod”; 5) Relaxed LAS without punct 
(LASpr), which is the relaxed LAS score, as defined 
above, that also ignores the dependency relation that links 
punctuation (it is the most permissive LAS score of all). 
Table 1 shows little but consistent improvement of all the 
parsers performances when using the additional syntactic-
semantic features over the standard scenarios (see LAS+ 
vs. LAS, UAS+ vs. UAS, etc.). We underlined the best 
values for each score and MATE parser superior yield is 
visible for all measures, except UASp+ (where the 
difference to the best parser’s performance is 
insignificant). It is important to note that we could obtain 
these improvements in the various UAS/LAS scores of all 
the three parsers only when using all of our 
supplementary features. Otherwise, there are certain 
subsets that work well for some parsers but degrade 
performance for other parsers. We thus think that it is 
important to optimize the supplementary feature set 
according to the parsers one wants to combine, such that 
the supplementary feature set provides improvements for 
all the parsers of the ensemble. 

Score MALT 

average 

RBG 

average 

MATE 

average 
LAS 0.7978 0.7906 0.809 

LAS+ 0.8038 0.8091 0.8138 

UAS 0.8544 0.8603 0.8668 

UAS+ 0.859 0.8693 0.8707 

UASp 0.8639 0.8706 0.8758 

UASp+ 0.8683 0.8808 0.88 

LASp 0.7992 0.7913 0.8096 

LASp+ 0.8054 0.8116 0.8152 

LASr 0.813 0.805 0.8229 

LASr+ 0.8185 0.8225 0.8276 

LASpr 0.8165 0.8077 0.8256 

LASpr+ 0.822 0.8271 0.8309 

Table 1: The contribution of supplementary syntactic-
semantic features to the UAS and LAS average scores for 
MALT, RBG and MATE parsers.  

4. SSPR implementation 

SSPR is a feed-forward neural network (NN) that learns to 

recognize a “correct” syntactic dependency relation vs. an 

“incorrect” one, from the MST “Majority Voting” 

combination strategy of multiple parses, taking into 

account its context as modelled by linguistic and 

structural features. There is no limit on the number of 

different parsers that can be combined by this NN, but it is 

of utmost importance that the parsers are as different as 

possible, from the analysis algorithm point of view, so 

that the reunion of all the dependency relations of a 

1575



sentence, generated by all available parsers (i.e. the 

directed graph of all existing parses of the sentence), 

should cover the correct analysis of the sentence. This 

way, we can make sure the combination algorithm will 

have a pool of choices from which to produce a correct 

analysis. 

SSPR is a Python 3.5 application that uses Microsoft 

Cognitive Toolkit 2.0 Python API to train and run the NN 

whose structure is presented in Figure 1. The input vector 

X is a binary vector and has N positions (corresponding to 

N values for all the features available for one training 

example, i.e. a dependency relation). There are two 

hidden layers, the first with 100 neurons (H), and the 

second with 10 neurons (G). The activation function for 

both hidden layers is tanh. The structure was obtained 

experimenting with NNs having 0, 1, or two hidden 

layers, and with 10, 50, 100, 500 or 1000 neurons in a 

hidden layer. The NN in Figure 1 was the one that gave 

the best results. The NN outputs a real vector of two 

positions  ̂, which is a probability distribution of the two 

possible states (correct/incorrect), computed with the 

softmax function. 

 

 

Figure 1: SSPR neural network 

The training examples for SSPR NN are acquired as 

follows: 

 Step 1. For each sentence in the training set, all 

the individual parsers were run and a directed 

graph A was constructed with the reunion of all 

the resulting analyses. The nodes of the graph A 

are lexical units, while the edges are dependency 

relations. Each edge is labelled with the name of 

the corresponding dependency relation and with 

the name of the parser that discovered it; 

 Step 2. If a relation r is identified between the 

words HEAD and DEP by more than one parser, 

then all the edges between HEAD and DEP 

labelled r are replaced by a single edge, which 

bears the label r and the set V of the parsers that 

discovered r; 

 Step 3. From the directed graph A, a Minimum 

Spanning Tree (MST) is constructed, using Chu-

Liu-Edmonds algorithm (Chu & Liu, 1965; 

Edmonds, 1967) where the weight of each edge 

is 1/|V|. In other words, we computed the tree that 

covers all the sentence and whose dependency 

relations are discovered simultaneously by as 

many of the individual parsers as possible (i.e. 

the real number 1/|V| is minimised). Steps 1-3 are 

reproducing the “Majority Voting” (MV, 

Surdeanu and Manning, 2010) strategy of 

combining independently-trained parsing 

models; 

 Step 4. The MST constructed at step 3 contains 

both correct and incorrect relations (given that 

the natural language may pose complicated 

parsing problems that none of the parsers 

available knows how to solve). Each relation in 

this tree is transformed in a training example (X, 

Y) for the SSPR NN, where X is the binary 

feature vector (see below) and Y is a binary 

vector with 2 positions computed by checking if 

the relation is also present in the gold-standard 

train set, which guarantees its correctness (Y= [1; 

0] for a correct relation and [0; 1] for an 

erroneous one). 

For each dependency relation that has to be classified as 

correct or incorrect, we construct and then concatenate in 

the input vector X the following “one-hot” vectors: 1) The 

binary vector of the parsers that identified the relation; 2) 

The binary vector of the morpho-syntactic properties of 

the dependent in the relation; 3) The binary vector of the 

label of the relation; 4) The binary vector of the 

dependent’s lemma; 5) The binary vector of the syntactic-

semantic features of the relation; 6) The binary vectors 

obtained by concatenating the vectors obtained at steps 1-

5 for the regent of the relation, for the leftmost child of the 

dependent and for the regent of the regent. 

SSPR NN is then trained to minimise the average (over 

the train set) of the cross entropy of the  and  ̂ vectors, 

standing for the ground-truth value and the estimated 

value with softmax.  

At run-time, the SSPR parser ensemble works as follows: 

 Step 1. All individual (the same as in training) 

parsers are run on a new test sentence and the 

directed graph A of all individual analyses is 

constructed; 

 Step 2. The NN is applied on each edge ai in A 

and the probability vector is computed as  ̂= 

[P(correct|X); P(incorrect|X)]; 

 Step 3. A Minimum Spanning Tree is con-

structed on the graph A, but this time the weight 

of each edge is given by the first position in the 

vector Y as computed by NN, namely by 

P(correct|X). 

In this manner, SSPR tries to improve on the MV 

combination strategy by proposing more informed 

weights for the MST construction. 

5. SSPR Evaluation 

To demonstrate the improvements that the SSPR parser 

brings in comparison with the MV ensemble baseline, we 

first compute a breakdown of the LAS score of the MV 

ensemble as a function of the number of individual parsers 

that find the correct dependency relation, averaged over 

our 10-fold cross validation test run. Table 2 shows the 

components of LAS for our three parsers MV ensemble, 

namely the LAS when all three parsers agree on the 

correct dependency relation (see the “3/3” row in Table 2) 

and the LAS when two out of three parsers agree on the 

correct dependency relation (“2/3”). When only one 
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parser finds the correct dependency relation (“1/3”), its 

LAS, in this case, contributes to the “oracle” LAS score, 

which is the maximum possible score that can be achieved 

by any ensemble of these three parsers. 

3/3 LAS+ 0.7218 

2/3 LAS+ 0.0968 

MV LAS+ 0.8186 

1/3 LAS+ 0.068 

ORACLE LAS+ 0.8866 

Table 2: A breakdown of the LAS score as a function of 

how many parsers found the correct dependency relation 

Table 3 shows the SSPR scores compared to the MATE 

scores, the best individual parser from Table 1. 

Score MATE 

average 

SSPR 

average 

LAS+ 0.8138 0.83 

UAS+ 0.8707 0.8844 

UASp+ 0.88 0.8928 

LASp+ 0.8152 0.8307 

LASr+ 0.8276 0.8434 

LASpr+ 0.8309 0.8461 

Table 3: Comparison between MATE and SSPR 

(averages over 10 train/dev/test random samples) 

The evaluation setting of SSPR is the same as the one 

described in Section 3.2. The individual parsers were 

trained on the train set, using all the available syntactic-

semantic features, and were run on the development set. 

The neural network SSPR was trained on the development 

set combining the three individual parsers outputs and was 

tested, together with each individual parser, on the test set. 

As Surdeanu and Manning (2010) note, our approach in 

combining independent parses of the same sentences can 

be described, as they put it, as “a meta-classifier that 

selects candidate dependencies based on their likelihood 

of belonging to the correct tree.” Furthermore, they assert 

that this strategy did not offer significant gains over the 

standard, “unweighted” MV but, as far as our experiments 

on Romanian dependency parsing go, Tables 2 and 3 

show that the SSPR meta-classifier is able to improve the 

LAS of the MV ensemble by 1.1% (from 81.86% to 83%). 

We can explain this significant increase as follows: 

- Surdeanu and Manning use seven parsers in their 

ensemble but six out of these seven parsers are, 

in fact, the same parser (the MALT parser) with 

different linking strategies. We postulate that 

these six flavours of the MALT parser output 

very similar parse trees such that the case where 

three or less parsers (the minority subset) agree 

on the correct dependency is poorly represented; 

- We use three different parsers, each with its own 

modelling of the parsing problem, such that the 

case where only one out of the three parsers (the 

minority subset) finds the correct dependency 

relation adds a significant 6.8% to the LAS of the 

MV ensemble. It is this pool of correctly found 

dependency relations from which SSPR is able to 

extract the 1.1% improvement of the MV 

ensemble LAS; 

- Lastly, we think that our NN-based meta-

classifier is superior to the L2-regularized 

logistic classifier that Surdeanu and Manning 

used to combine parses, mainly because we rely 

on a richer set of features that also include 

semantic features and second-order features. 

Table 3 shows that the SSPR NN ensemble parser is 1.6% 

LAS points and 1.5% LASpr points better than the best 

individual parser (MATE). The medium LASpr score of 

84.61% places SSPR in the same class with the best 

parsers in CoNLL-2017 task for Romanian (see Figure 2). 

Even though our evaluation setting is not identical to the 

one for CONLL 2017, the working corpus is the same and 

our 10-fold cross validation strategy provides a more 

robust result, for Romanian, than the CONLL 2017 1-fold 

run (the CONLL final parser ranking is backed up by the 

runs in various languages).  

Figure 2: LASpr scores in CONLL 2017 parsing shared 

task 

The LAS medium score of 83% reflects the general 

performance of SSPR, regardless of its domain of 

application, because the treebank we worked on is 

balanced and contains texts from various domains. Table 

4 shows the variation of LAS according to the domain. It 

can be noted that juridical, medical and scientific (from 

mathematics, physics and computer science) texts have 

over the medium scores: in their case, it is relatively 

simple to identify the elements between which a relation 

is very probable and this relation type is easy to predict 

(or machine learn): the topic is quite stable, ellipses are 

rare (a consequence of the need for clarity), predicates 

saturate their valences locally by words from predictable 

semantic classes. At the opposite pole, the literature 

domain, even if it does not contain long sentences, raises 

the most parsing problems: the authors' creativity 

manifests both in the sentence structure (dislocated 

arguments, unlexicalised ones, unusual word order, etc.) 

and in unusual combination of words (with spectacular 
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stylistic results), namely words from unexpected semantic 

classes taken as arguments. 

 

SSPR Average 

Belletrist 0.7839 

Juridical 0.8694 

Medical 0.8571 

Academic 0.8332 

Encyclopaedic 0.8001 

Journalistic 0.8373 

Scientific 0.8812 

Miscellanea 0.8053 

Table 4: LAS for SSPR according to the domain 

Conclusions 

We presented evidence that Romanian dependency 
parsing can be improved by using “better informed” 
ensembles of individual dependency parsers, in our case 
in the form of a neural network that learns to distinguish 
correct links from incorrect ones. The improvement 
margin can only increase when adding more, as different 
as possible, parsers into the mix that uses our 
supplementary linguistic features and we plan to extend 
this work by adding more such parsers to the ensemble.  
Specifically, we need to see what parsers from the 
CONLL 2017 shared task are open-sourced and readily 
available such that new ways of modelling dependency 
parsing could be of benefit to our ensemble parsing. One 
such example is the best parser from the CONLL 2017 
shared task on Romanian, namely the Stanford parser 
which is a NN-based dependency parser. 
Another direction we could take to improve ensemble 
parsing (or individual parsing for that matter) would be to 
better generalize a dependency relation. Our approach of 
using semantic features worked to a certain degree but, 
since NNs work well with “embeddings”, we can think of 
constructing “dependency relation embeddings” as real-
valued vectors that are computed with recursive NNs. 
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