Text Normalization Infrastructure that Scales to
Hundreds of Language Varieties

Mason Chua, Daan van Esch, Noah Coccaro, Eunjoon Cho, Sujeet Bhandari, Libin Jia
Google LLC, 1600 Amphitheatre Parkway, Mountain View, CA 9404ﬂ
{aftran, dvanesch, noahc} @google.com

Abstract
We describe the automated multi-language text normalization infrastructure that prepares textual data to train language models used in
Google’s keyboards and speech recognition systems, across hundreds of language varieties. Training corpora are sourced from various
types of data sets, and the text is then normalized using a sequence of hand-written grammars and learned models. These systems need
to scale to hundreds or thousands of language varieties in order to meet product needs. Frequent data refreshes, privacy considerations
and simultaneous updates across such a high number of languages make manual inspection of the normalized training data infeasible,
while there is ample opportunity for data normalization issues. By tracking metrics about the data and how it was processed, we are
able to catch internal data preparation issues and external data corruption issues that can be hard to notice using standard extrinsic
evaluation methods. Showing the importance of paying attention to data normalization behavior in large-scale pipelines, these met-
rics have highlighted issues in Google’s real-world speech recognition system that have caused significant, but latent, quality degradation.

Keywords: language model, text normalization, internationalization, industrial systems, data mining, data processing, scale,

less-resourced languages

1. Introduction

As technology adoption increases, products need to sup-
port ever more language varieties (ITU/UNESCO Broad-
band Commission, 2017). For example, there is a clear
need for spell-checking and keyboards in hundreds or even
thousands of language varieties. These applications typi-
cally require a language model, as do more advanced tech-
nologies like speech recognition systems. It would not be
feasible to maintain separate training pipelines for all these
use cases multiplied by all these language varieties, so we
use one unified pipeline that is flexible enough to train all
the models. The training includes automatic, configurable
preprocessing for each data set, allowing text from a variety
of sources to be normalized into the domains appropriate
for keyboard prediction and speech recognition (Schwarm
and Ostendorf, 2002; |Ju et al., 2008} |Scannell, 2014)).

2. Training Pipeline

Each language model is produced by interpolation of
component models, which are trained on individual data
sources. The training set for the typical component model
begins as publicly crawled or logs data. It is processed by
language identification classifiers and privacy-enhancing
systems (including for anonymization). The data is then
filtered and edited by a sequence of normalizers (section
2.1) specific to the use case and language variety.

The creation of the interpolated language model is con-
trolled by a configuration file specifying how to find and
normalize each data set, as well as global model options
like interpolation method. The configuration system sep-
arates language-specific data and its preprocessing from
the training algorithms used. A single training binary can
therefore train a model for any supported language, and
new languages can be added simply by adding a configu-
ration file, without changes to the trainer logic. Due to this

Work done while at Google LLC.

automation and abstraction, the amount of manual work re-
quired to add new languages or train new models does not
depend on the size of the data sets.

Having a single training pipeline controlled by language-
specific configuration files is critical to operating at large
scale, across many language varieties and use cases. For
any given language, there may be half a dozen different
language models, each with their own configuration file, re-
flecting varying use cases, including keyboard input (Hell-
sten et al., 2017), on-device or cloud-based speech recog-
nition, handwriting recognition, and more. In total, we cur-
rently maintain about 2,700 distinct configuration files (not
all of which are used for production applications). Each
of these language models may include more than a dozen
different types of data sources.

2.1. Text Normalization

One critical part of the configuration files is the specifica-
tion of the normalizations to apply to the textual data. Each
training example is potentially modified or discarded by
several functions, usually implemented as Thrax grammars
(Roark et al., 2012), including the data cleaning in section
2.1.1, annotators required for class-based language models
(Vasserman et al., 2015; van Esch and Sproat, 2017), and
enforcers of spelling consistency. Other types of normal-
izers deal with language identification, privacy enhance-
ment and anonymization, and offensive content filtering.
The most complex type of normalizer uses language mod-
els trained by this same pipeline, e.g. to ensure consistent
string variation (section 2.1.2) or capitalization.

2.1.1. Thrax-based Normalization

Most of the data preprocessing is done by grammars writ-
ten in Thrax, which was chosen for its composability with
other finite state transducers used in our systems (Mohri
et al., 2008). In order to support several languages with-
out a proportional increase in engineering cost, we use a

1353

shared language-independent normalizer template of about
200 lines of code. It can be instantiated for each lan-
guage by adding a few dozen more lines of code that define
language-specific character sets and rewrite rules, and call
upon the language’s pronunciation models and word lists.

The language-independent template is the composition of
the following rewrite rules, with only minor differences be-
tween speech recognition (presented here) and keyboard.

1. Ensuring that tokens are always separated by a single
space. Turns “hi there” into “hi there”.

2. Applying any language-specific formatting fixes de-
fined when the template is instantiated for a specific
language. There are usually no fixes, but in Azer-
baijani and Turkish, for example, we use this step to
make sure dotted and dotless I are preserved by the
language-independent lowercaser in the next step.

3. Lowercasing the sentence in languages that have case.
For example, “Hello, Dr. Nduom, how are you?” be-
comes ‘“hello, dr. nduom, how are you?”

4. Discarding any examples that are not associated with a
pronunciation by the language-specific verbalizer. For
example, “bbbbbbbbbbbbx a cat stepped on the key-
board”.

5. Detaching punctuation from words. This step sim-
plifies upcoming steps and makes sure the language
model recognizes all occurrences of a vocabulary item
as the same regardless of what sentence-level punc-
tuation it appears next to. For example, “hello, dr.
nduom, how are you?” becomes “hello , dr . nduom ,
how are you ?”

6. Reattaching punctuation that is part of the word, like
in the English abbreviations “no.” and “esq.” For ex-
ample, “hello, dr . nduom , we shipped a no . 2 pencil
to peppler st . yesterday .” becomes “hello , dr. nduom
, we shipped a no. 2 pencil to peppler st. yesterday .”
This step and the previous one are separate for the sake
of code readability.

7. Deleting each freestanding punctuation symbol unless
the speech recognizer for that language supports in-
putting the symbol by saying its name (‘“hello comma
Doctor Nduom comma how are you question mark”).

8. Making the spelling consistent for some common
or product-relevant words. For example, correcting
“youtobe” to “youtube” or “color” to “colour” in many
varieties of English. This step uses hand-curated lists.

9. Restoring proper capitalization for internal symbols
that will be expanded during recognition. For exam-
ple, “meet at $time” becomes “meet at STIME”.

10. Applying any language-specific rewrites that are more
easily expressed on normalized data. In Italian, for ex-
ample, we ensure that numbers are written as Roman
numerals in certain street names.

11. Deleting any extra spaces left over due to step

The rewrite rules are typically much less than twenty lines
of code, possibly reusing shared character classes, defini-
tions or word lists. Step 4] for example, is implemented as
the PASS_ONLY _VALID_SENTENCES acceptor below.

core_token = Optimize|
config.GRAPHEME+ |
config.LOANWORD_GRAPHEME+ |
config.VERBALIZABLE];

token = Optimize|
(config.INITIAL_PUNCTUATION?
core_token config.FINAL_PUNCTUATIONx)
non_terminal];

export PASS_ONLY_VALID_SENTENCES =
Optimize|[
(token u.space) *
token
config.FINAL_PUNCTUATION«*];

It defines an acceptor of zero or more word-and-space pairs
followed by an additional word and zero or more sentence-
final punctuations. config is the language-specific con-
figuration, which must provide grammars defining valid
punctuations and lists of allowed words.

2.1.2. Learned Normalization

Keyboards and speech recognition systems should consis-
tently produce text in a particular style in order to be useful
to the user. Since the training data includes Web text and
search queries, there will be typos and intentional varia-
tion in spelling, capitalization and punctuation. We use a
learned normalizer, called the string variation normalizer,
to remove some of these inconsistencies and make the train-
ing data match the style of a reference corpus.

While the individual actions performed on the string are ex-
pressed as Thrax grammars, the string variation normalizer
allows us to specify them without context. Instead, it learns
when to apply them from the reference corpus. For exam-
ple, for some output like “During the Renaissance period,
people visited B&Bs on Valentine’s Day”, the normalizer
had to decide whether to capitalize “Renaissance”, whether
to write “period” or “.”, whether to use an ampersand or
“and” in “B&Bs”, whether to capitalize “Valentine’s” and
“Day”, and whether to use an apostrophe in “Valentine’s”.
The string variation normalizer evaluates all possible se-
quences of edits of this sort and chooses the result with the
best score according to a language model trained on the ref-
erence corpus.

The language model used by the string variation normalizer
is trained using the same pipeline as the end-use language
model itself, except with a corpus that is cleaner and usu-
ally human-curated. It might seem overcomplicated to in-
troduce a language model to normalize the text for training
the final language model, but this complexity is outweighed
by the added value in terms of accuracy and stylistic consis-
tency. The use of the string variation normalizer typically
results in at least a 1% relative decrease in word error rate
and a 1% relative increase in sentence accuracy for speech
recognition when evaluated on a voice search test set. In

1354

one case, the recognizer used by voice search had relative
changes of -5.7% word error rate and +2.1% sentence ac-
curacy.

3. Monitoring to Allow for Scaling

The complexity and diversity of normalization processes
described in section 2.1 are justified by user-facing quality
gains, confirmed by experiments showing higher accuracy
on extrinsic evaluations. However, this complexity also cre-
ates opportunities for data normalization issues that are not
easily caught by extrinsic evaluation. Incorrect removal of
punctuation, for example, is more easily caught by inspect-
ing the data before and after normalization. There are also
opportunities for data to become corrupted at its source be-
fore it reaches the normalization pipeline, for example due
to incorrect character encoding or unexpected control sym-
bols.

These issues could be caught by carefully inspecting the
intermediate data between every normalization step for ev-
ery new model trained. However, we avoid this approach
for three reasons: privacy considerations; the sheer number
of language models across languages (each one with many
data sets that undergo many steps of normalization); and
wanting staff to be able to develop improvements to mod-
els even when they do not speak the language involved.
We instead automate the inspection process by logging met-
rics during training, exemplified in the next section. The
monitoring of these metrics has allowed us to identify nor-
malization issues in several production language models. In
US English, for example, the fixing of identified issues has
resulted in a 6.6% relative word error rate decrease on a test
set consisting of Google Home queries. Without automatic
monitoring, problems in languages that are less familiar to
research and engineering staff would be even more likely to
occur.

Due to the size of the data sets, which can contain tens of
billions of sentences, even simple metrics, like the size of
the corpus, require parallel computation enabled by Flume
(Chambers et al., 2010). Operations are automatically com-
bined at runtime to avoid repeated iterations over the data.

3.1. Possible Data Issues and their Associated
Monitoring

This section describes some potential data corruption issues
that can arise and how they are caught using logged metrics.

Low quality for one dialect or region. When a lan-
guage is spoken in more than one region or country, we
often include multiple regions in a single model. Selecting
training data from the right regions warrants extra care be-
cause changes can severely impact quality for populations
of users in ways that can only be detected with expensive
region-specific evaluations or test sets that are not always
available. We therefore tag each piece of data with the re-
gion it came from, usually at the country level, and audit
the histogram of tags for unexpected changes.

Language change. The language models are automati-
cally re-trained with fresh data every few weeks in order
to keep up with some types of language change, broadly
construed. This process works well for neologisms, trend-
ing search terms and seasonal variations in the distribution

of topics being written about. Changes that involve new
characters, however, require manual intervention, because
the normalization process (section 2.1.1) filters out unrec-
ognized characters. If a new currency symbol is added, like
the Indian rupee sign was in 2010 (Everson, 2010), we want
to notice and expand the currency character lists used by
our Thrax grammars. There are an infinite variety of possi-
ble external issues that could lead to malformed data. For
example, if a popular keyboard were to have a bug where it
used the wrong (but visually identical) Unicode codepoint,
we would want to be alerted to fix the data, rather than dis-
carding it in step 4]

To help identify character normalization issues, we log the
number of times each character occurs before and after nor-
malization. A sudden or gradual increase of this count
for a particular character is reason to investigate whether
there has been a change to the writing system. We also
log how many vocabulary items each character appears in.
Unexpected changes can indicate issues in the normalizer
pipeline. A bug that causes sentence-level punctuation to
be attached to tokens, for example, might be caught due to
an increase in the number of vocabulary items that contain
punctuation characters.

Deletion during normalization. Normalizers, explained
in section 2.1, have the power to discard or corrupt all the
data before it reaches the trainer. If Web markup is acci-
dentally included in the data, for example, normalizers that
assume markup has been removed will discard the data due
to unrecognized tokens. To detect this type of issue, we log
how many times each normalizer discards, accepts or edits
the input. Excessive discarding or sudden changes in the
distribution of actions suggest a bug in the normalizer logic
or an incorrect assumption about its inputs. The counts are
automatically presented to experimenters in a stacked bar
chart (figure|[T).

Search query corpus normalization

\ \ Acceptances
o cleanup NN [
s string = Rejections
= variation ‘ |
[J]
N class
g | |
S song
Z | |
0 5000 10000 15000 20000

Figure 1: A made-up example of the horizontal stacked bar
chart generated for each data set used by each model. The
three colors of each bar show how many training examples
were passed as-is, edited and deleted by each normalizer,
respectively. The four normalizers were applied to the data
in top-to-bottom order. Since the output of a normalizer is
the input of the next normalizer, each bar is as long as the
non-rejection part of the bar above it.

Data from the wrong language, script or corpus. Data
might be annotated with the wrong language code due to
quality issues with the internal language identification sys-
tem or end-user devices misreporting their locale. Since

1355

each corpus usually represents a different data source (such
as voice search queries or crawled text), this issue is more
likely to happen in a single corpus than all corpora at once.
A model trained with significant amounts of data from the
wrong language will be noticed before deployment due to
worse sentence accuracy and word error rate. But those
metrics do not directly show what happened, only that there
is a problem. So we log the number of vocabulary items
that are unique to each corpus. A high number may suggest
incorrect language data in that corpus.

Similarly, normalizer grammar bugs can result in training
data with non-canonical characters. For example, Greek
text might contain Unicode Greek math symbols instead of
standard Unicode Greek letters, which could decrease qual-
ity by creating both incorrect output text and more spar-
sity of contexts in the language model. So we also re-
port character-based metrics, displaying each character’s
Unicode name (for example, “GREEK SMALL LETTER
IOTA WITH DIALYTIKA AND TONOS”) with its count
in the data and the model’s vocabulary. This also allows
for faster detection of tokenisation issues that result in
sentence-level punctuation attached to words.

Although we cannot foresee all data misclassification mis-
takes, many will involve sudden or gradual changes in cor-
pus size. If, for example, all assistant-type queries were to
start being classified as maps-type queries, every data re-
fresh would shrink the assistant-type corpus and grow the
maps-type corpus. Language model interpolation would
also become less effective due to the apparent disappear-
ing distinction between user behavior in the two products.
So we monitor corpus sizes and interpolation weights for
sudden changes and unexpected trends.

Inadequate pronunciation information. A speech rec-
ognizer is only as good as its implicit or explicit pronuncia-
tion model that associates phoneme sequences with text. To
better diagnose quality issues, we log how many vocabulary
items get a pronunciation in the recognizer purely by con-
sulting a human-curated pronunciation dictionary, coupled
with Thrax verbalization rules (Sak et al., 2013aj;|Sak et al.,
2013b). The remaining items rely on some learned model
(Wu et al., 2014; ivan Esch et al., 2016)). If the number of
words receiving a manual pronunciation is high, quality is-
sues are unlikely to be due the learned model.

4. Conclusion

We described our text normalization infrastructure that
trains language models for speech recognition and key-
board prediction in hundreds of language varieties. Most
of its internals are language-independent, with language-
specific behavior specified in configuration options, train-
ing data and a limited portion of normalizer grammars. The
sharing of most infrastructure enables a common set of au-
diting techniques that have allowed us to catch text normal-
ization errors across languages.

5. Bibliographical References
Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry,
R. R., Bradshaw, R., and Weizenbaum, N. (2010).

Flumejava: easy, efficient data-parallel pipelines. In
ACM Sigplan Notices, volume 45, pages 363-375. ACM.

Everson, M. (2010). Proposal to encode the INDIAN RU-
PEE SIGN in the UCS. In Universal Multiple-Octet
Coded Character Set. International Organization for
Standardization.

Hellsten, L., Roark, B., Goyal, P, Allauzen, C., Beau-
fays, F., Ouyang, T., Riley, M., and Rybach, D. (2017).
Transliterated mobile keyboard input via weighted finite-
state transducers. In Proceedings of the 13th Interna-
tional Conference on Finite State Methods and Natural
Language Processing (FSMNLP 2017), pages 10-19.

ITU/UNESCO Broadband Commission. (2017). The State
of Broadband 2017: Broadband catalyzing sustainable
development. Broadband Commission for Sustainable
Development.

Ju, Y.-C., Odell, J., and Ju, Y. C. (2008). A language-
modeling approach to inverse text normalization and data
cleanup. International Speech Communication Associa-
tion, September.

Mohri, M., Pereira, F., and Riley, M. (2008). Speech
recognition with weighted finite-state transducers. In
Springer Handbook of Speech Processing, pages 559—
584. Springer.

Roark, B., Sproat, R., Allauzen, C., Riley, M., Sorensen, J.,
and Tai, T. (2012). The opengrm open-source finite-state
grammar software libraries. In Proceedings of the ACL
2012 System Demonstrations, pages 61-66. Association
for Computational Linguistics.

Sak, H., Beaufays, F., Nakajima, K., and Allauzen, C.
(2013a). Language model verbalization for automatic
speech recognition. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Confer-
ence on, pages 8262-8266. IEEE.

Sak, H., Sung, Y.-h., Beaufays, F., and Allauzen, C.
(2013b). Written-domain language modeling for au-
tomatic speech recognition. In INTERSPEECH, pages
675-679.

Scannell, K. (2014). Statistical models for text normaliza-
tion and machine translation. In Proceedings of the First
Celtic Language Technology Workshop, pages 33-40.

Schwarm, S. and Ostendorf, M. (2002). Text normaliza-
tion with varied data sources for conversational speech
language modeling. In Acoustics, Speech, and Signal
Processing (ICASSP), 2002 IEEE International Confer-
ence on, volume 1, pages [-789. IEEE.

van Esch, D. and Sproat, R. (2017). An expanded taxon-
omy of semiotic classes for text normalization. Proc. In-
terspeech 2017, pages 4016—4020.

van Esch, D., Chua, M., and Rao, K. (2016). Predicting
pronunciations with syllabification and stress with recur-
rent neural networks. In INTERSPEECH, pages 2841—
2845.

Vasserman, L., Schogol, V., and Hall, K. (2015).
Sequence-based class tagging for robust transcription in
asr. In Sixteenth Annual Conference of the International
Speech Communication Association.

Wu, K., Allauzen, C., Hall, K., Riley, M., and Roark, B.
(2014). Encoding linear models as weighted finite-state
transducers. In Fifteenth Annual Conference of the Inter-
national Speech Communication Association.

1356

	Introduction
	Training Pipeline
	Text Normalization
	Thrax-based Normalization
	Learned Normalization

	Monitoring to Allow for Scaling
	Possible Data Issues and their Associated Monitoring

	Conclusion
	Bibliographical References

