
Multilingual Word Segmentation: Training Many Language-Specific
Tokenizers Smoothly Thanks to the Universal Dependencies Corpus

Erwan Moreau1, Carl Vogel2
1 Adapt Centre, 2 Trinity Centre for Computing and Language Studies, 1,2 Trinity College Dublin

Trinity College Dublin, Dublin 2
{moreaue, vogel}@scss.tcd.ie

Abstract
This paper describes how a tokenizer can be trained from any dataset in the Universal Dependencies 2.1 corpus (UD2) (Nivre et al.,
2017). A software tool, which relies on Elephant (Evang et al., 2013) to perform the training, is also made available. Beyond providing
the community with a large choice of language-specific tokenizers, we argue in this paper that: (1) tokenization should be considered as
a supervised task; (2) language scalability requires a streamlined software engineering process across languages.

Keywords: Universal Dependencies, Word Segmentation, Tokenization, Multilinguality, Interoperability

1. Introduction
This paper describes how a tokenizer can be trained from
any dataset in the Universal Dependencies 2.1 corpus
(UD2) (Nivre et al., 2017). A software tool, which relies
on Elephant (Evang et al., 2013) to perform the training,
is also made available. Beyond providing the community
with a large choice of language-specific tokenizers, this pa-
per explores two ideas:

• A new perspective on word segmentation. We argue
that tokenization does not depend only on language
and genre,1 but includes conventions and choices re-
lated to ambiguous cases within the same language-
genre pair. As a consequence, using some prede-
fined tokenizer might cause the loss of some infor-
mation, especially when combining multiple language
resources. It follows that, in general, tokenization
should be seen as a supervised task, where textual data
is tokenized following a given “model”: by making
this model explicit, one can enforce model consistency
when connecting various pre-tokenized language re-
sources together, hence avoiding errors which might
otherwise go undetected.2

• Towards language scalability. Major progress has
been achieved in multilingual language technology in
the recent years. In NLP applications, scalability in
terms of data size has been addressed for the most
part, but scalability in terms of language diversity is
still a significant challenge. The Universal Dependen-
cies 2.1 corpus includes 102 annotated datasets and
59 distinct languages, thanks to the authors’ and con-
tributors’ great effort (Nivre et al., 2017). Packaging

1E.g. tokenizing tweets versus tokenizing The New York
Times.

2This idea can be compared to the case of POS tags, for in-
stance: it is clear that mixing datasets annotated with different la-
beling schemes can lead to errors. In the case of tokenization, the
scheme consists in the guidelines that the annotators follow for
choosing which units represent tokens (otherwise stated, where
the annotators choose to put the boudaries between tokens).

such a diversity of languages in a uniform format is
a major step towards the ability to process multiple
languages in an homogeneous way, which is the cor-
nerstone of language-wise scalability. Bikel and Zi-
touni (2012, xxi) mention that “Previously, to build ro-
bust and accurate multilingual natural language pro-
cessing (NLP) applications, a researcher or developer
had to consult several reference books and dozens,
if not hundreds, of journal and conference papers.”
One might add that said researcher or developer would
also have to find, test and integrate multiple language-
specific software tools. Thus, language scalability also
requires a more streamlined engineering process: it
becomes impractical to find a specific software tool
for every language to process, let alone the best tool
for every language. This is why we argue that the eval-
uation of software tools should progressively shift the
focus from accuracy in a specific language to robust-
ness and adaptability to a wide range of languages. We
see the tool presented in this paper as a modest step in
this direction.

This paper is organized as follows. First, we explain in sec-
tion §2. why the need to tackle increasingly complex multi-
lingual tasks in NLP makes it necessary to have robust and
flexible pre-processing tools available, like tokenizers. In
§3. we present the state of the art in word segmentation, to-
gether with the existing tools available. In §4. we present a
new tool which satisfies the aforementioned criteria of ro-
bustness and flexibility. Finally we demonstrate the interest
of the tool in three experiments in §5.

2. Motivations
Many NLP shared tasks nowadays provide datasets anno-
tated with the linguistic information relevant to the task,
so that participants can focus on the core aspects of the
task rather than spend time on non-essential pre-processing
steps. For example, the CoNLL format and its variants are
widespread among the NLP community; a dataset provided
in this format usually contains word and sentence segmen-
tation, POS tagging, syntactic dependencies and possibly

1119

other relevant features. This kind of annotation is par-
ticularly helpful in the case of multilingual shared tasks,
since participants are unlikely to be familiar with all the
languages to process.
All these efforts of the community aim at tackling more
and more sophisticated problems on more and more di-
verse languages and types of data. As this natural trend
to address high-level tasks progresses, the need to work
with multiple datasets from various origins and in various
formats grows. For example, it is common to collect raw
data from the Internet in order to increase the coverage of
a ML model, rather than relying solely on the annotated
training data. But combining heterogenous datasets comes
with challenges, and unsurprisingly the first one is tok-
enization. Tokenization errors can be costly performance-
wise, as these errors may propagate through the whole pro-
cessing chain. While sometimes these problems can be di-
agnosed and fixed manually, typically when dealing with
only a few familiar languages, the multiplicity of languages
makes manual diagnosis impractical. Some generic tok-
enization methods can be used as a fallback, but this is
rarely optimal. As a consequence, such cases can only be
solved by training a tokenizer on the provided input data,
in order to apply the same tokenization choices in the third-
party corpus.

3. Related Work
Tokenization has traditionally been addressed with rule-
based systems (e.g. by Dridan and Oepen (2012)), but su-
pervised ML approaches are more and more common due
to their flexibility when tackling new languages (see e.g.
(Frunza, 2008)). Dridan and Oepen (2012) and Fares et
al. (2013) analyse the question of tokenization ambiguities
and the resulting diversity of tokenization conventions for
the English language, emphasizing the fact that many tok-
enization schemes co-exist in practice. In this context, both
(Mark and Bojar, 2012) and (Evang et al., 2013) propose
a supervised approach, considering tokenization as a se-
quence labeling problem. They both use Conditional Ran-
dom Fields (Lafferty et al., 2001) to solve it, but in (Evang
et al., 2013) the CRF features are enriched with the top N
most active neurons of a Recurrent Neural Network (RNN)
language model, based on the work of Chrupala (2013) for
character-level language modeling. This approach shows
significant improvement over the simple CRF one, as the
authors show with three datasets in English, Dutch and Ital-
ian. (Mark and Bojar, 2012) validate their system on En-
glish and Chinese.
In this work we use the Elephant3 tokenizer training soft-
ware, described in (Evang et al., 2013). This software it-
self relies on the Wapiti implementation (Lavergne et al.,
2010) for sequence labeling with CRFs, and on the work
of (Mikolov et al., 2010) for the RNN language modeling.
Although Elephant is capable of segmenting sentences as
well, in this work we focus on word segmentation only.

3The authors named their system Elephant because “like an
elephant in the living room, it is a problem that is impossible to
overlook whenever new raw datasets need to be processed or when
tokenization conventions are reconsidered.” (Evang et al., 2013,
1422).

4. Tool: An Elephant Wrapper
4.1. Motivations
The authors of Elephant (Evang et al., 2013) made
their system available at http://gmb.let.rug.nl/
elephant,4 and deserve our gratitude for making the ef-
fort to provide a clear documentation, including how to
reproduce their experiments. However, although a train-
ing script is provided, this script only allows training the
CRF model. Hence the user can either use one of the three
pre-trained models, or train a CRF-only model, without the
RNN language model features.5 Additionally, the user must
provide a CRF template file which describes the features
that the sequential model uses. This means that the user
has either to pick a template at random, or proceed by trial
and error in order to find a suitable template.
Finally, for users who simply need to tokenize some data
and cannot (or do not want to) train a model, Elephant con-
tains pre-trained tokenizers but for only three languages.
The tool that we propose is available at https://
github.com/erwanm/elephant-wrapper.6

It aims to fill the aforementioned usability gaps in Elephant,
together with providing users with a more universal tool for
word segmentation, in terms of technical usage (training
and testing capabilities) as well as diversity of languages.
The latter is made possible thanks to the availability of
the Universal Dependencies 2.1 corpus (Nivre et al., 2017),
which contains 102 datasets in 59 distinct languages.

4.2. Implementation
In the perspective of providing universal tokenizer training
capabilities, we propose several scripts intended to make
this part of the training more straightforward. Addition-
ally, our wrapper provides a convenient way to generate the
required IOB-labeled sequences7 of characters from a pre-
tokenized corpus. In particular, the .conllu format used
in UD2 (Nivre et al., 2017) is accepted as input, as well as
similar formats such as the one used in the 2017 Shared
Task on Identifying Verbal Multi-Word Expressions (see
§5.4.). This is intended to streamline the process of training
a tokenizer by making the required internal formats trans-
parent to the user, thus improving greatly the usability of
the system. The conversion to the IOB format is imple-
mented in the following way: following the general good
practice of preserving the form of the original data, the UD2
datasets contain annotations which indicate for every token
whether a space follows the token or not.8 Thus, it is possi-

4Last retrieved: 21/02/2018.
5Remark: training the RNN language model so that it can be

used with the existing CRF training script is not entirely trivial
because it requires converting the training data to Unicode char-
acters codes presented as “tokens”.

6The tool can also be found at https://www.scss.tcd.
ie/clg/elephant-wrapper.

7The IOB format consists of labeling every character with: B
for the beginning of a token, I for subsequent characters inside a
token, and O for characters outside any token (whitespaces).

8This indication is provided in column 10 of the
.conllu file: this column contains the parameter/value
pair SpaceAfter=No if and only if no space follows the token.
Remark: the .txt file could also be used, but this would require

1120

http://gmb.let.rug.nl/elephant
http://gmb.let.rug.nl/elephant
https://github.com/erwanm/elephant-wrapper
https://github.com/erwanm/elephant-wrapper
https://www.scss.tcd.ie/clg/elephant-wrapper
https://www.scss.tcd.ie/clg/elephant-wrapper

ble to rebuild the original text, together with the appropriate
IOB label for every character. Additionally, our conversion
script takes care of ignoring tokens corresponding to ex-
panded contractions when they appear: several languages
contain contracted tokens, e.g. “du” (of the) in French;
such cases are represented as follows in UD2: (1) the sur-
face token is given on the first line with a range of indexes
as value in the first column (e.g. 18-19 du), instead of
a single token index; (2) the tokens on the following lines
correspond to the expansion, and their indexes belong to the
previously seen range (e.g. 18 de followed by 19 le).
The expanded form is necessary for the morpho-syntactic
analysis, but is irrelevant for the tokenization part.
The tool also provides scripts which generate CRF template
files for Wapiti and run k-fold cross-validation with every
possible template in a predefined set. This way the best per-
forming template can be selected for the final training. The
template indicates which features are used in the sequential
model:

• Value n of n-grams features;

• Length of the window of characters;

• Using characters Unicode code point and/or Unicode
category;

• Using the top 10 RNN features or not.

The set of patterns to test is simple to configure, so that
the user can choose how thorough the search should be. Of
course, the time required to run the cross-validation process
depends on the number of templates to apply, but an option
is supplied to stop the search when the performance shows
no progress anymore.9

Finally, the tool provides 102 tokenizer models trained
from the UD2 corpus (see §5.1.). For the convenience of
the user, the language model to use by the tokenizer can be
given in different forms: as a custom model directory, as
the name of a UD2 dataset, or as the ISO639 standard code
for the language.10

5. Experiments
Below we present several experiments made with
the Elephant Wrapper tool introduced in §4.2.,
available at https://github.com/erwanm/
elephant-wrapper. The tool contains the scripts
required to reproduce these experiments. It was designed
to make batch processing of multilingual experiments as
simple as possible, with the idea of language scalability in
mind.11

5.1. Training Multiple Tokenizers from UD2
The first experiment is essentially intended to demon-
strate the feasibility and effectiveness of training multi-
ple language-specific tokenizers in an homogeneous way,

accessing the .conllu file anyway in order to identify the tokens’
boundaries.

9By default the template search space is explored from the sim-
plest templates to the most complex.

10In the latter case, if there are several UD2 datasets for the
same language, the default UD2 one (with no extension) is used.

11Feedback and contributions are welcome.

thus making the engineering design process straightfor-
ward. This is only made possible thanks to the consistency
in the annotation format across datasets offered by the UD2
corpus.
The experiment consists in training a tokenizer
for every dataset in the UD2 corpus using the file
<lang>-ud-train.conllu as training data, then
testing the tokenizer on the <lang>-ud-test.conllu
file. The method generalizes the one described in (Evang et
al., 2013) (see §3.): a CRF model is trained, which might
include features from a RNN language model previously
trained with the same training data. However, instead of
using only one specific template for the CRF model, the
cross-validation stage described in §4.2. is run over the
training set in order to find the optimal template among
a large set of possibilities (96 templates). Then the final
training is performed on the whole training set, using the
selected template. A simple generic tokenizer is used
as a baseline for the sake of comparison: it relies on
whitespaces and strips any sequence of punctuation signs
from the word. Both the trained tokenizer and the baseline
tokenizer are applied to the test set.
Table 1 gives the performance obtained by both the generic
tokenizer (baseline) and the trained tokenizer for every
dataset in UD2. For the evaluation we follow Shao et al.
(2017): performance is measured using the token-based re-
call, i.e. the proportion of tokens correctly identified among
the gold-standard tokens.12 For all the datasets but two,13,
the Elephant-trained system performs as well or better than
the baseline; in many cases the former dramatically outper-
forms the latter. The mean performance of the trained to-
kenizer is 99.23%; in average it improves the performance
by 86% compared to the baseline, but the mean poorly re-
flect the diversity of the cases: for 71% of the datasets the
performance increases by less than 5%, whereas for the top
13% it increases by more than 100%; the median improve-
ment is 2.7%.
Due to the large number of datasets and the authors’ ig-
norance of the vast majority of languages, it is com-
pletely impractical to investigate every case individually.
However we investigated the cases where the tokenizer
obtains a perfect score. Many such cases are due to
the lack of annotation indicating whether a token is fol-
lowed by a space or not (see 4.2.): Coptic, Danish,
Finnish-FTB, Gothic, Marathi, Norwegian-NynorskLIA,
Swedish Sign Language, Slovenian-SST, Telugu; in a few
cases this might be due to the nature of the data (e.g. for
the Swedish Sign Language); otherwise this is an error
which prevents reconstructing the non-tokenized text from
the data.14 Some ancient languages do not contain any

12The software also allows evaluation using character-based ac-
curacy or error rate.

13The performance decreases very slightly for Kazakh (-0.65%)
and Latin (-0.02%). In the case of Kazakh, this might be due to the
small size of the training set (only 511 tokens) causing the model
to overfit slightly; in the other case the difference is too small to
be significant.

14Since the annotations indicate the absence of space after a
token (see 4.2.), the system assumes that there are spaces every-
where between the tokens, in both the training and test set. This

1121

https://github.com/erwanm/elephant-wrapper
https://github.com/erwanm/elephant-wrapper

UD 2.1 Dataset name Training set Baseline Trained tokenizer UD 2.1 Dataset name Training set Baseline Trained tokenizer
size (tokens) Recall (%) Recall (%) size (tokens) Recall (%) Recall (%)

Afrikaans 33894 95.73 99.93 Italian [E] 252631 95.65 99.82
Ancient Greek 159895 96.35 99.97 Italian-ParTUT 45477 97.05 99.76
Ancient Greek-PROIEL 184382 99.29 100.00 Italian-PoSTWITA [E] 49478 88.63 99.60
Arabic 191869 97.13 99.96 Italian-PUD 17746 96.46 99.87
Arabic-NYUAD 502991 100.00 100.00 Japanese 161900 13.09 93.01
Arabic-PUD 16601 70.83 99.09 Japanese-PUD 21454 15.11 96.45
Basque [E] 72974 97.54 99.98 Kazakh [E] 511 96.27 95.64
Belarusian 5217 95.15 99.35 Korean 52328 93.53 99.64
Bulgarian [E] 124336 97.52 99.80 Kurmanji 7957 97.50 99.67
Buryat 8026 98.77 99.92 Latin [E] 8018 99.98 99.96
Cantonese 552 27.39 96.81 Latin-ITTB 270403 99.43 99.76
Catalan 416659 93.35 99.94 Latin-PROIEL 147044 99.90 100.00
Chinese 98608 18.23 92.08 Latvian 62397 97.45 99.13
Chinese-CFL 5805 12.98 94.45 Lithuanian 3210 95.94 99.06
Chinese-HK 1497 20.63 93.21 Marathi 2730 29.79 100.00
Chinese-PUD 17132 16.76 96.33 North Sami 16835 98.64 99.56
Coptic 4238 100.00 100.00 Norwegian-Bokmaal 243887 98.54 99.89
Croatian 169283 97.82 99.89 Norwegian-Nynorsk 245330 98.73 99.90
Czech [E] 1171190 98.47 99.95 Norwegian-NynorskLIA 8020 98.54 100.00
Czech-CAC [E] 471594 99.96 99.96 Old Church Slavonic 37432 91.78 100.00
Czech-CLTT 26225 92.97 99.54 Persian [E] 119945 92.91 100.00
Czech-FicTree 133137 96.27 99.99 Polish 61906 99.42 99.94
Czech-PUD 14852 98.63 99.88 Portuguese 191410 96.44 99.64
Danish 80378 98.01 100.00 Portuguese-BR 238334 98.04 99.88
Dutch [E] 186046 97.52 98.96 Portuguese-PUD 17511 98.72 99.77
Dutch-LassySmall 81243 95.48 99.84 Romanian 185113 96.87 99.49
English 204607 95.36 98.78 Romanian-Nonstandard 10352 95.87 98.28
English-LinES 50095 97.27 99.96 Russian 75964 96.06 99.89
English-ParTUT 43491 99.21 99.71 Russian-PUD [E] 15559 97.39 99.88
English-PUD 16941 97.60 99.89 Russian-SynTagRus 871082 96.82 99.58
Estonian 85567 96.10 99.81 Sanskrit 1158 8.22 99.59
Finnish 162827 97.22 99.53 Serbian 65764 96.58 99.88
Finnish-FTB 127359 99.08 100.00 Slovak [E] 80575 98.95 99.65
Finnish-PUD 12650 96.33 99.79 Slovenian 112530 98.99 99.87
French 346855 92.47 99.37 Slovenian-SST 9487 95.02 100.00
French-FTB 442228 66.57 100.00 Spanish 375149 98.47 99.95
French-ParTUT 23324 94.87 99.84 Spanish-AnCora [E] 443087 97.85 99.91
French-PUD [E] 19310 93.57 99.87 Spanish-PUD [E] 18258 99.16 99.96
French-Sequoia 49198 92.79 99.73 Swedish 66645 98.44 99.95
Galician 71928 97.96 99.83 Swedish-LinES 48325 99.08 99.95
Galician-TreeGal 4447 98.54 99.62 Swedish-PUD 15259 98.18 99.86
German 258927 97.56 99.14 Swedish Sign Language 644 59.22 100.00
German-PUD 16798 98.61 99.80 Tamil 5734 4.01 99.21
Gothic 35024 99.95 100.00 Telugu 5082 26.21 100.00
Greek [E] 41212 98.37 99.67 Turkish 36970 97.59 99.86
Hebrew 98348 97.34 99.93 Turkish-PUD 13228 94.90 99.83
Hindi 281057 16.27 99.97 Ukrainian 75054 96.18 99.63
Hindi-PUD 19063 13.74 99.92 Upper Sorbian 8589 96.74 100.00
Hungarian 20166 96.79 99.82 Urdu 108690 98.55 100.00
Indonesian 97531 98.50 99.97 Uyghur 8264 98.47 99.95
Irish 3183 97.01 99.43 Vietnamese 20285 79.37 85.42

Table 1: Token-based recall (percentages) for the 102 datasets in UD 2.1, for both the baseline tokenizer and the Elephant-
trained tokenizer. For the latter, the optimal model was selected by using cross-validation on the training set (see §4.2.);
datasets marked with “[E]” show cases for which a model containing the Elman features (top 10 RNN most active neurons)
is selected.

punctuation signs at all or very few, which makes the tok-
enization trivial: Ancient Greek-PROIEL, Latin-PROIEL,
Old Church Slavonic. A couple of datasets seem to be cor-
rupted in version 2.1 of the UD corpus: Arabic-NYUAD
and French-FTB (all the tokens are replaced with under-
score signs). Finally the cases of Persian, Upper Sorbian
and Urdu show no sign of error. We decided to keep all
these possibly erroneous cases in the results, because we
cannot distinguish easily which of them are actual errors
and have no way either to know if other datasets with ap-
parently regular performance contain errors.

makes the task of the tokenizer trivial.

The case of CJKV languages (Chinese, Japanese, Korean
and Vietnamese) is worth observing: although the CRF
approach was originally designed for Indo-European lan-
guages, it performs decently on these Asian languages, con-
sidering their specificities. The recall ranges from 85.42%
for Vietnamese to 99.64% for Korean; while the baseline
tokenizer performs very poorly with these languages with
a mean of 33.01%, the mean performance of the Elephant-
trained tokenizer is 94.15%.

In (Evang et al., 2013), experiments are performed on three
European languages: English, Dutch and Italian. Besides
the number of languages, the experimental setup also dif-

1122

fers by the number of CRF templates tested: in (Evang
et al., 2013) the characteristics determining the template
are tested with a few predefined values for all the lan-
guages. For instance, the first experiment concludes that
the use of both Unicode code points and categories gives
the best performance overall, even though using only the
former performs better for English; then the following ex-
periments use both Unicode code points and categories for
all the languages including English, for which this is sub-
optimal according to the previous experiment. By contrast,
our approach determines the best template for each indi-
vidual language among a large set of possibilities (96 in
this experiment) using cross-validation. Although this re-
quires more training time, it will generate a more accu-
rate model in general. From the perspective of language
scalability, it should be emphasized that the requirement to
streamline multilingual processes does not entail overlook-
ing language-specific features: the design of the process
should be as uniform as possible, but without “standardiz-
ing” the languages themselves.
One of the consequences of our approach is that the RNN
features are selected or not based on the results of the cross-
validation stage on the training data. It turns out that most
datasets in the UD2 corpus do not benefit from these fea-
tures: they were selected as part of the optimal template in
only 16 cases (16% of the datasets). In particular, none of
the CJKV languages benefits from them. In (Evang et al.,
2013), these features were reported to provide a significant
improvement in all three languages studied. Besides the
difference in the datasets, we suppose that this difference
might be caused by the more thorough search for an opti-
mal template in our experiment: by exploring many more
templates (with or without the RNN features), the process is
more likely to reach a optimal level of performance, equiv-
alent to the one that could have been reached with a less
fine-grained template containing RNN features.

5.2. Training on a Different Dataset in the Same
Language

The second experiment aims to illustrate the fact that
tokenization follows a particular scheme, and different
schemes lead to different ways to tokenize a text even
within the same language. Consequently, when a task relies
on matching tokens from a text with a given pre-tokenized
language resource, it is important to ensure the consistency
of the tokenizer with the “scheme” which was used to gen-
erate the resource. We illustrate this point by running the
following experiment with five languages in UD2 for which
several distinct datasets are provided: a tokenizer is trained
with the training set of every dataset for the language, and
applied to the test set of every dataset as well. Table 2
shows the performance in every case. As expected in any
similar supervised ML setting, the best results are consis-
tently achieved when the training and test set are drawn
from the same corpus (with only one exception in Italian).
This experiment shows that token boundaries do not only
depend on the language, and therefore that applying a cer-
tain tokenizer for this sole reason is not always optimal. In
particular, the fact that traditional tokenizers are rule-based
does not imply that there is a unique way to tokenize a lan-

Training set Chinese Chinese Chinese Chinese
CFL HK PUD

Chinese 92.08 71.32 75.09 90.46
Chinese-CFL 60.96 94.45 72.31 65.71
Chinese-HK 57.57 70.05 93.21 60.76

Chinese-PUD 77.42 70.40 73.12 96.33

Training set Czech Czech Czech Czech Czech
CAC CLTT FicTree PUD

Czech 99.95 99.96 93.73 99.99 99.69
Czech-CAC 96.38 99.96 95.78 94.30 97.33
Czech-CLTT 95.79 99.37 99.54 90.95 97.14

Czech-FicTree 99.16 99.88 94.41 99.99 99.38
Czech-PUD 98.79 99.89 94.90 99.43 99.88

Training set English English English English
LinES ParTUT PUD

English 98.78 99.35 99.24 99.77
English-LinES 95.40 99.96 98.18 96.93

English-ParTUT 95.45 98.45 99.71 98.98
English-PUD 96.37 98.97 99.32 99.89

Training set French French French French
ParTUT PUD Sequoia

French 99.37 99.36 97.69 99.36
French-ParTUT 98.66 99.84 96.79 98.55

French-PUD 97.88 99.36 99.87 98.22
French-Sequoia 99.00 99.36 96.74 99.73

Training set Italian Italian Italian Italian
ParTUT PoSTWITA PUD

Italian 99.82 99.82 96.19 99.65
Italian-ParTUT 99.65 99.76 90.56 99.68

Italian-PoSTWITA 97.81 99.13 99.60 98.76
Italian-PUD 99.44 99.73 89.35 99.87

Table 2: Token-based recall (percentages) when apply-
ing a tokenizer trained on a given dataset (rows) to another
dataset (columns) in the same language. The highest per-
formance for each test set is highlighted in bold. Example:
when applying the model trained on the Italian-ParTUT
training set to the Italian-PUD test set, the recall is 99.68%.

guage. This is why we think that word segmentation should
be considered a supervised task.

5.3. Impact of the Size of the Training Set
Since tokenization should be seen as a supervised task, it
is important to know how much data is needed to train an
accurate model. This is why in this section we study the
impact of the size of the training set on the perfomance of
the tokenizer. The experiment simply consists in training a
model using only a subset of the training set instead of the
whole data, for various sizes of the subset; then the model
is applied to the regular test set. For this experiment we
select a group of datasets for which a large training set is
provided, in order to collect the results for a large range of
sizes.
Figure 1 shows the impact on performance of linearly in-
creasing the size of the training set from 890 sentences to
8900, for the 20 largest datasets. Some datasets obtain a
decent level of performance with as little as 890 sentences:
for instance the Spanish one reaches 99.94%. However the
variance is high, with most datasets far from their maxi-
mum performance. In fact, the main difference when in-
creasing the size of the training set is that the variance de-
creases: the mean progresses as well, but the most impor-
tant observation that can be made from Figure 1 is that, as
the size of the training set increases, all the languages reach
a high level of performance. In other words, even if a small
training set might suffice to obtain an accurate tokenizer,

1123

training it with a large number of sentence makes it more
likely to be accurate. In terms of performance, Figure 2
shows that the performance mostly follows a logarithmic
progression with respect to the size of the training set. This
means that when the performance reaches a high level, in-
creasing it more requires to add a much larger amount of
data.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

97%

98%

99%

100%

890 1780 2670 3560 4450 5340 6230 7120 8010 8900
Number of sentences

Figure 1: Token-based recall by number of sentences in the
training set for the 20 largest datasets in UD 2.1 (by size of
the full training set in number of sentences). Each boxplot
represents the performance on the test set of a model trained
with n sentences, for all 20 datasets.

●

●

95%

96%

97%

98%

99%

100%

10 100 1000 10000
Number of sentences

Figure 2: Token-based recall by number of sentences in
the training set with exponential progression on the X axis,
for the 10 largest datasets in UD 2.1.

5.4. Use Case: Detecting Multi-Word
Expressions

As an example of a complex multilingual task in which
supervised tokenization can help (see §2.), the authors of
this paper participated in the 2017 Shared Task on Iden-
tifying Verbal Multi-Word Expressions (VMWE) (Savary
et al., 2017). The task consists in identifying VMWEs in
18 different languages. The input data is provided in the
CoNLL format, annotated with tokens, POS tags and de-
pendencies.15 In the approach described by Maldonado et
al. (2017) and Moreau et al. (2017), we propose to lever-
age third-party raw text corpora in order to calculate se-
mantic context vectors for the candidate expressions. Since

15All the datasets but the following three are provided in the
CoNLL format: Bulgarian, Hebrew and Lithuanian (these lan-
guages are discarded in our experiments).

Baseline Trained tokenizer Improvement
Precision 81.39 81.27 -0.15
Recall 22.43 22.83 +1.77
F-score 35.17 35.64 +1.35

Table 3: Sentence-level micro precision, micro recall and
micro F-score of the reranker over all the datasets (i.e., con-
sidering all the instances from all the datasets together).
(VMWE17 Shared Task data, §5.4.)

computing context vectors requires a large resource, we
opted for using the Europarl corpus (Koehn, 2005), which
is available in 12 among the 15 required languages.16 The
candidate expressions are provided by the first component
of the system, a sequence labeling system using CRF. The
CRF component provides 10 candidate labeled sequences,
the top one being the default choice; the second component
(reranker) aims to replace the default choice with one of the
other candidates if needed, based on semantic similarity.
In order to make the semantic vectors as reliable as possi-
ble (i.e., as representative of the meaning of the expression
as possible), the system must match all the occurrences of
a candidate VMWE (extracted from the input data) in the
third-party corpus. But Europarl might not contain every
possible VMWE found in the VMWE17 data, or might
contain too few occurrences for some VMWEs. More-
over, the discrepancies between the tokenized input data
and the third party data (when tokenized using a generic to-
kenizer) might prevent matching correctly VMWEs which
contain words tokenized in a different way. In particular,
VMWEs frequently include function words which are sus-
ceptible to tokenization errors, like “c’est” (it is) in French:
if the tokenizer does not properly recognize the apostro-
phe as part of the first token “c’ ”,17 expressions which
contain “c’est” cannot be matched. Moreover, even using
a language-specific tokenizer might not always solve this
problem, because some tokenization ambiguities cannot be
solved other than by an arbitrary choice depending on in-
terpretation; for instance, the documentation about the way
tokenization is carried out for French in the UD2 corpus
mentions that: “This tokenizing and segmentating choice
is arbitrary and other French treebanks could choose to
do otherwise.”18 As a consequence, a dataset-specific tok-
enizer should be trained on the provided input data in order
to tokenize the third-party corpus accurately.
Table 3 shows the performance of the reranker on its own,
first when tokenizing Europarl with a generic tokenizer
(baseline) and then when tokenizing with a specific model
trained on the appropriate training data. It can be observed
that the precision decreases slightly, but the recall increases
more strongly so that the F-score also increases.

16The following three languages are discarded for this reason:
Farsi, Maltese and Turkish.

17One may notice that this is the opposite in English: the apos-
trophe should normally be assigned to the token on its right hand-
side, like “’s” in “it’s”.

18https://github.com/
UniversalDependencies/docs/blob/
pages-source/_fr/tokenization.md; last retrieved:
19/02/2018.

1124

https://github.com/UniversalDependencies/docs/blob/pages-source/_fr/tokenization.md
https://github.com/UniversalDependencies/docs/blob/pages-source/_fr/tokenization.md
https://github.com/UniversalDependencies/docs/blob/pages-source/_fr/tokenization.md

Language Baseline Trained tokenizer Improvement
CS 19.59 19.59 0.00
DE 23.65 23.73 +0.34
EL 08.72 08.72 0.00
ES 14.45 14.45 0.00
FR 17.46 19.68 +12.71
HU 36.39 36.39 0.00
IT 19.18 19.18 0.00
PL 16.12 16.22 +0.61
PT 10.73 10.58 -1.43
RO 06.38 06.38 0.00
SL 12.02 12.02 0.00
SV 10.56 10.56 0.00

Table 4: Proportion of VMWEs from the VMWE17 test
data found in Europarl by dataset (percentages).20

In order to understand these results, one has to look at
the different ways in which the tokenization of Europarl
can impact the performance of the reranker. First, a can-
didate expression which was not identified before in Eu-
roparl might be identified thanks to the more accurate to-
kenization. Table 4 shows the proportion of expressions
which are identified in Europarl: while for most languages
using the appropriate tokenization model does not impact
this proportion or only slightly, the French dataset shows a
large improvement. We think that this is due to the case of
the apostrophe, which is ubiquitous in French and cannot
be handled properly by the baseline tokenizer. Second, a
more accurate tokenization can affect the context words of
an expression, and thus improve the accuracy of the con-
text vectors, i.e. the vectors can be more representative of
the meaning of the VMWE. This effect can be observed in
Table 5, which gives the recall by dataset for the expres-
sions covered in Europarl: the recall increases by 8% over-
all, with many languages showing a significant improve-
ment up to double the baseline recall (for Hungarian). The
F-score for these instances follows a similar trend, with an
average improvement of 6.96%.
Thus the effect of a better tokenization varies greatly de-
pending on the language, but in general it gives the reranker
more and/or better information through the context vec-
tors; thanks to this, the reranker can then take more risk
in proposing an alternative labeled sequence, hence the in-
crease in recall. This explanation is confirmed by breaking
down the performance by number of expressions in the sen-
tence, as shown in Table 6: when using the Elephant-trained
model for Europarl, the performance decreases for the sen-
tences which contain no VMWE at all, but increases notice-
ably for all the cases where the sentence contains at least
one expression. It is worth noticing that the improvement
includes the cases containing multiple expressions, which
are the hardest to identify.
Finally, considering the whole system (CRF and reranker
components together) and the official evaluation measure
used in the VMWE17 Shared Task, the advantage of super-
vised tokenization translates into a modest 0.3% F-score
improvement at the level of expressions, as shown in Table
7. This can be explained for the most part by the higher

20Counting the VMWEs in the gold standard test set, but only
if the CRF component returns the gold labeled sequence as one of
the 10 candidates (since otherwise the reranker cannot select the
right answer).

Language Baseline Trained tokenizer Improvement
CS 58.03 58.55 +0.89
DE 27.27 34.33 +25.87
EL 37.70 42.62 +13.04
ES 32.84 34.33 +4.55
FR 34.09 34.48 +1.15
HU 12.77 27.66 +116.67
IT 9.76 9.76 0.00
PL 32.43 32.43 0.00
PT 45.00 49.15 +9.23
RO 57.14 57.14 0.00
SL 36.96 34.78 -5.88
SV 6.56 6.56 0.00
All (macro) 32.55 35.15 +8.00

Table 5: Recall by dataset for the 8,544 sentences which
contain at least one expression which appears in Europarl
(percentages).

exprs. Proportion Baseline Trained tokenizer
/ sentence data Macro Micro Macro Micro

0 81.0% 53.8 52.6 53.1 51.7
1 16.4% 23.5 26.8 25.6 28.1
2 2.2% 30.4 25.6 36.6 25.8
3 0.3% 31.0 16.7 34.3 18.2

All 100% 29.1 35.2 29.9 35.6

Table 6: Macro and micro F-score (percentages) at sentence
level by number of expressions in the sentence, for all the
datasets.

risk that the reranker takes, which increases the recall at the
cost of decreasing the precision. Additionally, the official
evaluation measure does not particularly reward the fact the
system captures more difficult cases, as shown in Table 6.

6. Conclusion

In this paper we proposed a method to train multiple tok-
enizers using multilingual resources, like the Universal De-
pendencies 2.1 corpus. We showed that word segmentation
can and should be seen as a supervised process, as opposed
to a language-uniform process. More generally, this ap-
proach is in line with the view that language scalability is
one of the most important challenges in NLP tasks. As a
consequence, NLP tasks have to evolve into a more stream-
lined software engineering process across languages. We
see the software tool that we propose for tokenization as a
contribution to this idea.

Language Baseline Trained tokenizer Improvement
CS 70.64 70.69 +0.07
DE 28.70 30.99 +7.98
EL 37.57 37.72 +0.40
ES 49.05 49.68 +1.28
FR 58.40 57.92 -0.82
HU 68.47 67.95 -0.76
IT 16.28 15.87 -2.52
PL 72.42 72.19 -0.32
PT 65.22 66.06 +1.29
RO 83.53 83.53 0.00
SL 44.02 43.63 -0.89
SV 31.91 31.91 0.00
All 52.18 52.34 +0.31

Table 7: VMWE17 official evaluation measure: F-score at
the MWE level (percentages).

1125

7. Acknowledgements
The ADAPT Centre for Digital Content Technology is
funded under the SFI Research Centres Programme (Grant
13/RC/2106) and is co-funded under the European Re-
gional Development Fund.
The graphics in this paper were created with R (R Core
Team, 2012), using the ggplot2 library (Wickham,
2009).

8. Bibliographical References
Bikel, D. and Zitouni, I. (2012). Multilingual Natural Lan-

guage Processing Applications: From Theory to Prac-
tice. IBM Press, 1st edition.

Chrupala, G. (2013). Text segmentation with character-
level text embeddings. CoRR, abs/1309.4628. Work-
shop on Deep Learning for Audio, Speech and Language
Processing, ICML 2013.

Dridan, R. and Oepen, S. (2012). Tokenization: Returning
to a long solved problem a survey, contrastive experi-
ment, recommendations, and toolkit. In Proceedings of
the 50th Annual Meeting of the Association for Compu-
tational Linguistics: Short Papers - Volume 2, ACL ’12,
pages 378–382, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Fares, M., Oepen, S., and Zhang, Y. (2013). Ma-
chine Learning for High-Quality Tokenization Replicat-
ing Variable Tokenization Schemes. In Alexander Gel-
bukh, editor, Computational Linguistics and Intelligent
Text Processing: 14th International Conference, CI-
CLing 2013, Samos, Greece, March 24-30, 2013, Pro-
ceedings, Part I, pages 231–244, Berlin, Heidelberg.
Springer.

Frunza, O. (2008). A Trainable Tokenizer, Solution
for Multilingual Texts and Compound Expression To-
kenization. In Nicoletta Calzolari (Conference Chair),
et al., editors, Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco, may. European Lan-
guage Resources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2008/.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001).
Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In Proceed-
ings of the Eighteenth International Conference on Ma-
chine Learning, ICML ’01, pages 282–289, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Maldonado, A., Han, L., Moreau, E., Alsulaimani, A.,
Chowdhury, K. D., Vogel, C., and Liu, Q. (2017). Detec-
tion of Verbal Multi-Word Expressions via Conditional
Random Fields with Syntactic Dependency Features and
Semantic Re-Ranking. In Proceedings of The 13th Work-
shop on Multiword Expressions, pages 114–120, Valen-
cia.

Moreau, E., Alsulaimani, A., Maldonado, A., Han, L., Vo-
gel, C., and Chowdhury, K. D. (2017). Semantic Re-
Ranking of CRF Label Sequences for Verbal Multi-Word
Expression Identification. To appear.

R Core Team, (2012). R: A Language and Environment
for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-07-0.

Savary, A., Ramisch, C., Cordeiro, S., Sangati, F., Vincze,
V., QasemiZadeh, B., Candito, M., Cap, F., Giouli, V.,
Stoyanova, I., and Doucet, A. (2017). The PARSEME
Shared Task on Automatic Identification of Verbal Multi-
word Expressions. In Proceedings of the 13th Workshop
on Multiword Expressions, Valencia.

Shao, Y., Hardmeier, C., and Nivre, J. (2017). Recall is
the Proper Evaluation Metric for Word Segmentation.
In Proceedings of the Eighth International Joint Confer-
ence on Natural Language Processing, volume 2, pages
86–90.

Wickham, H. (2009). ggplot2. Elegant Graphics for Data
Analysis. Springer-Verlag New York.

9. Language Resource References
Evang, Kilian and Basile, Valerio and Chrupała, Grzegorz

and Bos, Johan. (2013). Elephant: Sequence Labeling
for Word and Sentence Segmentation. Association for
Computational Linguistics.

Koehn, Philipp. (2005). Europarl: A parallel corpus for
statistical machine translation.

Lavergne, Thomas and Cappé, Olivier and Yvon, François.
(2010). Practical Very Large Scale CRFs. Association
for Computational Linguistics.

Ji Mark and Ondej Bojar. (2012). TrTok: A Fast and Train-
able Tokenizer for Natural Languages.

Tomas Mikolov and Martin Karafiát and Lukás Burget and
Jan Cernocký and Sanjeev Khudanpur. (2010). Recur-
rent neural network based language model. ISCA.

Nivre, Joakim and Agić, Željko and Ahrenberg, Lars
and Aranzabe, Maria Jesus and Asahara, Masayuki and
Atutxa, Aitziber and Ballesteros, Miguel and Bauer,
John and Bengoetxea, Kepa and Bhat, Riyaz Ahmad
and Bick, Eckhard and Bosco, Cristina and Bouma,
Gosse and Bowman, Sam and Candito, Marie and Ce-
birolu Eryiit, Gülşen and Celano, Giuseppe G. A. and
Chalub, Fabricio and Choi, Jinho and Çöltekin, Çar
and Connor, Miriam and Davidson, Elizabeth and de
Marneffe, Marie-Catherine and de Paiva, Valeria and
Diaz de Ilarraza, Arantza and Dobrovoljc, Kaja and
Dozat, Timothy and Droganova, Kira and Dwivedi,
Puneet and Eli, Marhaba and Erjavec, Tomaž and Farkas,
Richárd and Foster, Jennifer and Freitas, Cláudia and
Gajdošová, Katarı́na and Galbraith, Daniel and Gar-
cia, Marcos and Ginter, Filip and Goenaga, Iakes and
Gojenola, Koldo and Gökrmak, Memduh and Gold-
berg, Yoav and Gómez Guinovart, Xavier and Gonzáles
Saavedra, Berta and Grioni, Matias and Grūzītis, Nor-
munds and Guillaume, Bruno and Habash, Nizar and
Hajič, Jan and Hà M, Linh and Haug, Dag and Hladká,
Barbora and Hohle, Petter and Ion, Radu and Irimia,
Elena and Johannsen, Anders and Jørgensen, Fredrik and
Kaşkara, Hüner and Kanayama, Hiroshi and Kanerva,
Jenna and Kotsyba, Natalia and Krek, Simon and Laip-
pala, Veronika and Lê Hng, Phng and Lenci, Alessandro
and Ljubešić, Nikola and Lyashevskaya, Olga and Lynn,
Teresa and Makazhanov, Aibek and Manning, Christo-
pher and Mărănduc, Cătălina and Mareček, David and
Martı́nez Alonso, Héctor and Martins, André and Mašek,

1126

Jan and Matsumoto, Yuji and McDonald, Ryan and Mis-
silä, Anna and Mititelu, Verginica and Miyao, Yusuke
and Montemagni, Simonetta and More, Amir and Mori,
Shunsuke and Moskalevskyi, Bohdan and Muischnek,
Kadri and Mustafina, Nina and Müürisep, Kaili and
Nguyn Th, Lng and Nguyn Th Minh, Huyn and Niko-
laev, Vitaly and Nurmi, Hanna and Ojala, Stina and
Osenova, Petya and Øvrelid, Lilja and Pascual, Elena
and Passarotti, Marco and Perez, Cenel-Augusto and
Perrier, Guy and Petrov, Slav and Piitulainen, Jussi
and Plank, Barbara and Popel, Martin and Pretkalnia,
Lauma and Prokopidis, Prokopis and Puolakainen, Ti-
ina and Pyysalo, Sampo and Rademaker, Alexandre
and Ramasamy, Loganathan and Real, Livy and Rit-
uma, Laura and Rosa, Rudolf and Saleh, Shadi and San-
guinetti, Manuela and Saulīte, Baiba and Schuster, Se-
bastian and Seddah, Djamé and Seeker, Wolfgang and
Seraji, Mojgan and Shakurova, Lena and Shen, Mo
and Sichinava, Dmitry and Silveira, Natalia and Simi,
Maria and Simionescu, Radu and Simkó, Katalin and
Šimková, Mária and Simov, Kiril and Smith, Aaron
and Suhr, Alane and Sulubacak, Umut and Szántó,
Zsolt and Taji, Dima and Tanaka, Takaaki and Tsar-
faty, Reut and Tyers, Francis and Uematsu, Sumire and
Uria, Larraitz and van Noord, Gertjan and Varga, Viktor
and Vincze, Veronika and Washington, Jonathan North
and Žabokrtský, Zdeněk and Zeldes, Amir and Zeman,
Daniel and Zhu, Hanzhi. (2017). Universal Dependen-
cies 2.0.

1127

	Introduction
	Motivations
	Related Work
	Tool: An Elephant Wrapper
	Motivations
	Implementation

	Experiments
	Training Multiple Tokenizers from UD2
	Training on a Different Dataset in the Same Language
	Impact of the Size of the Training Set
	Use Case: Detecting Multi-Word Expressions

	Conclusion
	Acknowledgements
	Bibliographical References
	Language Resource References

