LitText: Building Literary Corpora for Computational Literary Analysis
A Prototype to Bridge the Gap between CL and DH

Andrew U. Frank, Christine Ivanovic
Geoinformation TU Wien, Comparative Literature University Vienna
Gusshausstr. 27-29 1040 Wien Austria, Sensengasse 3a 1090 Wien Austria
frank @ geoinfo.tuwien.ac.at, christine.ivanovic @univie.ac.at
{frank, christine} @gerastree.at

Abstract
The design of LitText follows the traditional research approach in digital humanities (DH): collecting texts for critical reading and
underlining parts of interest. Texts, in multiple languages, are prepared with a minimal markup language, and processed by NLP
services. The result is converted to RDF (a.k.a. semantic-web, linked-data) triples. Additional data available as linked data on the
web (e.g. Wikipedia data) can be added. The DH researcher can then harvest the corpus with SPARQL queries. The approach is
demonstrated with the construction of a 20 million word corpus from English, German, Spanish, French and Italian texts and an example
query to identify texts where animals behave like humans as it is the case in fables.

Keywords: linked-data, semantic-web, RDF, SPARQL, digital humanities

1. Introduction

Literary analysis, like all other fields of Digital Humani-
ties (DH) based on the evaluation of texts in natural lan-
guages, can benefit from advances in computational lin-
guistics (CL) (Pustejovsky et al., 2017a). Many language
tools for linguistic analysis are available, and produce re-
sults which could be useful for corpus-based literary analy-
sis. Moretti (2005) and others have demonstrated viable ap-
proaches to computational literary analysis, and have pro-
duced valuable results (e.g. (Fischer et al., 2017)). Projects
like DARIAH (Blumm et al., 2016), LAPSS (Ide et al.,
2015)), and others have brought together CL tools in uni-
fied frameworks to make the results of CL easier to use.
Despite this, the uptake of CL in literary studies has been
slow so far, and very few of the immense number of literary
publications show use of CL.

More efforts in bridging the gap between CL and DH are
required. It could be beneficial to take a step back from
technical issues, and instead focus on the research practices
of literary studies researchers. These usually consist of (1)
selecting texts which will be analyzed; and (2) reading the
texts and identifying parts with properties relevant to the
research goal by underlining them. The approach is proba-
bly similar for most text-based DH. A tool for DH should
therefore be presented following this model of (1) building
a corpus and (2) selecting text pieces of interest.

CL can identify parts with specific text properties in a cor-
pus quicker than a human reader, it can process texts sys-
tematically, and it can browse a corpus larger than any hu-
man could peruse. The DH researcher has only to describe
what properties the relevant text parts should have. [Lord et
al. (2000) followed an approach where the researcher gives
some example texts she is interested in, and the search en-
gine then finds all text similar to the given one, with the
risk that the automatic detection misses the intention of
the researcher. Lit Text is based on explicitly formulated
queries using SPARQL (see section|[8).

LitText focuses on the methods available for researchers

to query processed texts. It reduces manual preprocess-
ing to a minimum, to make it possible to build substantial,
research-focus-specific corpora (e.g. of 19th century En-
glish novels) which includes texts in multiple languages.
LitText is centered around a query facility to describe
the properties relevant text pieces should have, and retrieves
these together with metadata about the texts; other data use-
ful for the analysis and available in linked-data format can
be added. Results can be further processed using spread-
sheet software.

The DH researcher only has to master two kinds of coding:

e a simple markup language to add metadata to text files
and to delimit the literal text of interest;

e a standardized, widely available query language
(SPARQL) for which extensive instructional materi-
als and a wide choice of query processing software are
available.

Results can be displayed in a regular web browser, or fur-
ther processed with spreadsheet software. Many DH re-
searchers are already familiar with such programs for sort-
ing, computing, counting etc.

A method to build a specialized corpus with a query facil-
ity that can retrieve pieces of text and then manipulate them
in a spreadsheet is a processing model that is conceptually
close to current research methods in text-based humanities.
Empowering text-based DH researchers to build their own
corpora processed on their own hardware under their con-
trol can also reduce fears of copyright infringement (for a
technical solution, see: (Pustejovsky et al., 2017a; [Zeng et
al., 2014)).

There are three novel aspects in Lit Text, all justified by
the focus on “ease of use” for the DH researcher:

1. Processing texts in multiple languages, hiding the
technical complexity from the DH researcher.

2. Storing the result of the NLP analysis as linked data
(Berners-Lee et al., 2009; [Manola et al., 2004)).

798

3. Using the standardized query language
SPARQL(Harris et al., 2013) to search for rele-
vant text parts.

Section 2 shows an example task and query which will be
used to demonstrate the power of LitText in Section 8.
Section 3 compares the approach with other, similar efforts.
Section 4 will cover the preparation of the text, while Sec-
tion 5 addresses the processing of text with NLP. In Section
6 we discuss adding a processed text to the corpus, and in
Section 7 the inclusion of additional data. Section 8 shows
how the example query is formulated and executed. Section
9 reports on actual performance, and moves on to future ex-
tension and conclusions.

2. Example Task for Literary Analysis

The literary analysis we envision is a very broad field, and
CL support must go beyond mere statistical style analysis
(Holmes and Kardos, 2003). The running example query
used is to identify “animal fables”, considered here as texts
in which animals are reported to behave like humans, i.e.
they think and use intelligent communication. Examples
are e.g. the classic fables ascribed to Aesop; systematic
search reveals that modern literary texts include similar lit-
erary tropes. Such an analysis requires more language anal-
ysis than can be provided by simple word frequency analy-
sis etc.

The proposed algorithm to identify such texts finds sen-
tences where the subject is an animal, and the verb ex-
presses either “think” or “communicate”. The approach
is to lemmatize the text and to construct dependency trees
in which subject and verb can be identified and checked
whether the subject noun has “animal” among its hyper-
nyms, as well as the verbs “think” or “communicate”. We
will show how such a query can be formulated in section
Bl

Processing natural language is error-prone, reflecting the
flexibility and context-sensitivity of human language. The
outlined approach is obviously affected by errors in NLP
tools when identifying the dependency structures, i.e. the
subject and the verb of a sentence. The current system only
considers sentences where the subject is a noun; Lit Text
does not yet use the coreference analysis produced by some
NLP tools, e.g. Stanford coreNLP (Recasens et al., 2013)).
The method currently implemented relies on the hypernyms
in WordNet (Fellbaum, 1998) and considers only the first,
most often encountered WordNet sense. It produces omis-
sion errors by failing to identify all nouns describing an-
imals, as well as commission errors by identifying nouns
which are not animals. Fortunately, for literary analysis,
such errors can be tolerated; the human interpreter reads the
identified sentences, decides whether they are useful for his
research and discards irrelevant ones.

3. Design Compared to Previous Work

DARIAH is an European infrastructure incorporated in
2014, connecting multiple nationally funded projects
to collect tools useful for a wide range of humanity
fields to allow them to analyze natural-language text
(http://www.dariah.eu/). It uses standard tools (Manning

et al., 2014) to process text and allows for the storage of
input text and results. The goal is to overcome non-trivial
technical installation difficulties, and assure the availability
of NLP tools — a first step for researchers from the human-
ities to apply these tools to their specific problems.

The somewhat comparable project LAPPSgrid (Ide et al.,
2015) has similar goals (http://www.lappsgrid.org/). It adds
considerations for copyright restrictions attached to the
texts to permit the holding of copyright-restricted texts,
their processing, and making results available in accor-
dance with those restrictions (e.g. HathiTrust) (Pustejovsky
et al., 2017b).

LitText splits the work of the DH researcher into two
tasks: (1) building the corpus, and (2) searching the cor-
pus. The software to build the corpus applies NLP tools to
text which is marked and retains the result for later analy-
sis; the same set of processes is applied to all texts; addition
of NLP tools requires changes in the code. The corpus is
represented as RDF triples and is searched with standard
SPARQL query processors (Harris et al., 2013). The re-
searcher can add new text to the store and they are auto-
matically processed and entered in the corpus, ready to be
queried.

4. Preprocessing

Preparing a text for processsing by NLP tools is the first im-
pediment for literary scholars trying to use NLP. The goal
of LitText is to facilitate the collection of texts into a
corpus relevant to a particular investigation. In order to
collect many texts into a corpus, the effort to prepare the
texts must be minimal, as well as flexible to allow use of
different sources. The researcher must (a) add metadata to
identify the text and other aspects a researcher would want
to include in a query; (b) distinguish the part of text that
is to be included in the analysis (here called “literal text”)
from other text parts in the file; and (c) identify the lan-
guage a text piece is written in (multiple languages per file
are allowed).

In LitText, we opt for a simplistic markup for text files.
Preparing a text means finding a source, assuring proper
UTF-8 encoding (e.g. with iconv), adding some markup for
metadata (title, author, year of publication), and separation
of the actual text from other text material included in the
file (e.g. table of content, preface, original file name) - all
of which can be done easily in any text editor.

.originalFile http:.../174.txt.utf—8
.publication 1890

.Language: English

.Title: The Picture of Dorian Gray

. Author: Oscar Wilde

.ignoreTo

s%% START OF THIS ...

Produced by HIML version by
.ignoreEnd

The artist is the creator of beautiful things. To

Much of the material we used comes from Project Guten-
berg (Hart, 1992) and we prepared a small tool that pro-
duces most of the markup automatically and fixes some
issues with UTF-8 encoding; downloading and marking
up a literary text from Project Gutenberg takes less than

799

2 minutes. Corresponding tools for other frequently used
sources can be constructed with any suitable programming
language (all that is needed is to read a text input and add
some markup).

5. Processing

A text with markup is processed by NLP programs, and the
result translated into the N-Triples format, which is a W3C
recommendation for the semantic web (Beckett, 2014). The
conversion of a text file to subject-predicate-object triples is
carried out in two phases:

1. The metadata, the layout, and the surface texture (e.g.
sections, paragraphs) and, if desired, the full text can
be captured and translated into the N-Triples format
for later use in query formulation (see example).

2. The text is isolated and sent to language-specific NLP
services. Using the markup, the text is split into parts
in a single language. Differences in language-specific
NLP processing are handled internally. At the mo-
ment, LitText is prepared to handle English, Ger-
man, French, Spanish and Italian text, using Stanford
Core NLP (Manning et al., 2014) and TinT (Palmero
Aprosio and Moretti, 2016). Five server processes are
set up at different ports; in addition, German text is
lemmatized using TreeTagger as a service at an ad-
ditional port (Schmid, 2013). Adding a language re-
quires an adaptation of the LitText program and
setting up a server for the language specific NLP.

An example of the translation of a text head and a line of
text as RDF triples:
<http :// gerastree . at#kafka—kafka_urteil_1913 >
<http :// gerastree .at/1it_.2014#author>
”Franz Kafka”@de ;
<http :// gerastree .at/1lit_.2014#dedikation>
”fir Frdulein Felice B.” @de ;
<http :// gerastree.at/1it_.2014#titel >
"DAS URTEIL” @de ;
<http :// gerastree .at/lit_.2014#untertitel >
"EINE GESCHICHTE VON FRANZ KAFKA” @de ;
a <http :// gerastree.at/1it_.2014#Werk> .

<http :// gerastree . at#kafka—kafka_urteil-1913/L00003>

<http :// gerastree . at/layout.2017#lineNumber> 3 ;

<http :// gerastree . at/layout_2017#lineText>
”"DAS URTEIL” @de ;

<http :// gerastree .at/layout_2017#pageNumber>
”[54/0002]”

a <http :// gerastree . at/layout_2017#Line> ;

<http ://www.w3.0rg/2000/01/rdf —schema#partOf>
<http :// gerastree . at#kafka—kafka_urteil . 1913 > .

The result of the NLP process in XML format is analyzed
and translated into triple structure, preserving the produced
Treebank codes (Taylor et al., 2003) as much as possible.
Dependency codes are already from the Universal Depen-
dency set (Schmid, 2013) (see http://universal dependen-
ciesorg/). The minimal differences between NER codes
(e.g. for German text we find I-LOC, etc. and for Spanish
text LUG) can be normalized without loss. The processing
produces a file in the N-Triple format, i.e. one linked data
triple - subject, predicate, object - per line. Tools to convert
the result to a more human-readable format like Turtle are
available (e.g. rapper by Beckett (2001)).

The programs are designed to regularly scan a directory and
convert any new markup files into N-Triples files. Adding

a new markup file to a directory is sufficient to trigger the
conversion — and later the inclusion in the corpus — auto-
matically.

6. Storing

The N-Triples are stored in any triple store, some available
as open-source or free. We use Jena triplestore (Khadilkar
et al., 2012)), using utilities we constructed for loading the
N-Triple files into the store which relies on standardized
HTTP protocol SPARQL update commands (Harris et al.,
2013); they should work with any other triplestore. The
programs are designed to incrementally build a store by
scanning all N-Triples files in a directory, and storing new
ones into the triple store.

7. Additional Data Sources

WordNet data for hypernyms are required to answer the ex-
ample query. WordNet can be downloaded in triple for-
mat (McCrae et al., 2014) based on the lemon schema and
loaded in a triplestore. The resources, especially the hyper-
nym relations, can be accessed in SPARQL queries.
We opted to store the set of nouns in hypernym relations to
“animal” — or, for verbs, “think” (in wordnet “cerebrate”)
or “communicate” — separately with a SPARQL update
query for later use in the analysis. Storing the hypernym
relation reduces the complexity of later query formulation
and speeds up processing (see section 8.). An example up-
date query to insert a list of the nouns which are hypernyms
to “animal”, considering only the first WordNet sense (the
SPARQL prefix abbreviations are given in the appendix):
insert

{graph <http :// gerastree.at/al>

{ ?lexentry lit:nounClass wn:Animal .
?lexentry lemon: writtenRep ?lem .

using <http :// gerastree .at/wn>
WHERE

{

?lexentry wn:part_of_speech wn:noun .
?lexentry lemon:sense ?sense .

?sense wn:sense_number ?sensenum .
filter (?sensenum = 1) .
?sense lemon:reference ?synset.

?synset wn:hypernym+ ?obj
?0bj rdfs:label ?lo .
filter (?lo = “animal”@eng) .

?lexentry lemon:canonicalForm ?cf .
?cf a lemon:Form .
?cf lemon:writtenRep ?lem .

}

Adding other semantic web data resources is equally
straightforward; of particular interest are likely geographic
gazetteers, the movie database, and Wikipedia.

8. Querying

A triplestore offers a HTTP protocol query facility, the so-
called SPARQL endpoint, where queries are submitted, and
answers are returned. SPARQL is a very powerful, general-
purpose triplestore query language (Harris et al., 2013). It
is somewhat patterned after SQL but logically simpler be-
cause storage is always in binary relations (Manola et al.,
2004; Prud’ Hommeaux et al., 2008)).

800

An example query shows the potential to formulate com-
plex queries: “find all texts in the store in which “animals”
behave like humans, e.g. “think” and “communicate” ”.
The result includes the sentences in which such literary
forms occur, as well as the author, the title of the text, the
subject, and the verb.

SELECT ?author ?werk ?sentform ?subjlemma ?verblemma
FROM <http :// gerastree . at/c>
#the corpus of literary text
FROM <http :// gerastree . at/al>
#the graph with the hypernyms
WHERE {
?dep nlp:dependency ”"NSUBJ” .
?dep nlp:dependent ?subj
?dep nlp:governor ?verb.

?subj nlp:lemma3 ?subjlemma.
?verb nlp:lemma3 ?verblemma.

?verb nlp:pos ?catv.
filter (strstarts (?catv, "V”)).

?subj nlp:pos ?cats.

filter (strstarts (?cats, "N”)).

?lexs lemon:writtenRep ?subjlemma .
?lexs lit:nounClass wn:Animal .
?lexv lemon: writtenRep ?verblemma .
{?lexv lit:nounClass wn:Communicate}
union {?lexv lit:nounClass wn:Cerebrate } .

?subj rdfs:partOf ?sent .
?sent nlp:sentenceForm ?sentform .

?sent rdfs:partOf ?snip .

?snip rdfs:partOf ?para .

?para lit:inWerk ?werk .

?werk lit:author ?author .
} order by ?werk

The literal text is stored in graph c and the extracted hy-
pernym relations in graph al. The query progresses top-
down: first it fills the variable ?dep with a node in a de-
pendency tree which is a subject-noun phrase, and takes the
subject and the verb part (? sub j and ?verb). Next, check
that ?verb is indeed a verb and ?subj a noun, and re-
trieve (for subject and verb) the corresponding lemmata as
?subjlemma and ?verblemma. The next steps are tests
whether the subject is an animal, and whether the verb indi-
cates either communicating or thinking. The remainder of
the query is tracing from the sentence to the text (?werk)
and the author.

The output of the result is stated in the SELECT clause, and
gives the qualified sentences as well as the author and title
of the text containing that sentence.

The processing approach is somewhat simplistic as it omits
constructions where the subject is an animal but not a noun -
using coreference information would probably reduce such
errors. It incorrectly includes constructions where the first
sense of the noun is an animal, but the noun is used in a dif-
ferent sense. Sentences in which a dog barks, a cat meows
etc. are excluded with special rules (see[0.1). Texts which
should be considered “animal fables” (in the present narrow
definition) are characterized by frequent occurrences, while
other texts have only a few stray occurrences of qualifying
constructions.

Queries to obtain text statistics (distinct word count, length
of sentences, etc.) can be formulated with SPARQL GROUP
BY and COUNT.

9. Simplification of Query with
Preprocessing

The SPARQL query in the previous section [8.| is likely not
workable for the intended DH researcher. Several prepro-
cessing steps are possible to simplify the query close to the
CPQ style(Hardie, 2012) query

[pos="noun" & hypernym="animal"]

9.1. Construct Hypernym List and Classify
Words in Text

A list of all words in WordNet which are hyponyms to some
interesting wordclasses (e.g. animal, artefact, communi-
cate) are easy to construct. Using such a list to classify all
tokens in a text and mark each with the hypernym of the
interesting classes allows to test a token with e.g.

?tok a nlp:Animal.

The list of “interesting” wordclasses contains entries like:
_ranimal lit:wordClassPattern wn:Animal
; lit:wordClassRep "animal"@eng ;
lit:wordClassKind wn:noun.

and is easily adaptable.

Stored hypernym relations provide a hook for corrections
for undesirable relations. For example, to exclude “made-
moiselle” from the class “Animal” requires a triple

wn:mn wn:isNotClass "mademoiselle"@eng

or to exclude “dogs bark” from communication
wn:bark wn:isNotNounVerbNoun "dog"@eng;
wn:isNotNounVerbVerb "bark"@eng.

9.2. Use Universal Dependency and POS tags

Using the Universal Dependency and PoS tags removes dif-
ferences between the coding of texts of different languages.
CoreNLP (in version 3.9.0) produces UD dependency an-
notations but not POS tags from the UD.POS list. We
can translate the PennTreeTags produced by coreNLP to
UD.POS tags or better, use a pipeline which directly pro-
duces UD.POS tags (Straka and Strakova, 2017).

The dependency graph can be represented in triples with
one triple per dependency, at the cost of deviating from the
XML structure produced by CoreNLP processors.

E.g. ?verb nlp:nsubj ?subj.

9.3. Simplified queries

These two preprocessing steps searching for nouns which

are hyponyms of animal becomes
select ?word
{ ?tok nlp:pos "NOUN” .

?tok a nlp:Animal.

?tok nlp:lemma3 ?word.

}

which is not far from the desired CPQ like query. The more
complex query for sentences with animals which think or
communicate becomes:

select str(?sl) str(?vl) str(?sf)

FROM <http :// gerastree . at/englishl >
FROM <http :// gerastree . at/tk13>

where {
?verb nlp:nsubj ?subj
?subj a wn:Animal.

{?verb a wn:Cerebrate } union
{?verb a wn:Communicate } .

801

?subj nlp:lemma3 ?sl .

?verb nlp:lemma3 ?vl .

?subj rdfs:partOf ?sentence .
?sentence nlp:sentenceForm ?sf .

}

The query is finding a verb with a noun subject (first line)
and then to check that the subject is an animal (second
line), the verb is in the wordclasses cerebrate or commu-
nicate (third line). The remaining lines find the lemmata
for subject and verb and the text of the sentence, in which
the construct occurs.

10. Performance

Overall performance, even on dated and limited hardware,
is satisfactory. We tested on a PC with an Intel i5 proces-
sor and 3.2 GHz with 24 GB of memory (the memory is
mostly necessary for NLP processing of literary texts like
“Ulysses” by Joyce; ordinary grammatical text is processed
using less than 8 GB). The java engine was started with 6
GB of memory for each of the coreNLP services and with
10 GB for the jena-fuseki triplestore. The example corpus
we built consists of about 266 literary texts (mostly books)
for a total of 20.1 million words.

e Download and markup of one text from Project Guten-
berg takes less than 2 minutes.

e NLP processing a literary text runs at about 70 words
per second for an English text including co-reference
analysis, 190 words/second for a German text (with
separate lemmatization process) and 530 words/sec for
Italian text.

e A word in text produces about 10 triples.

e Storing the triples in the triplestore processes about
4,000 triples per second.

e The preprocessing of the full corpus takes a total of
about 2 days.

o the text files take 0.67 GB, the processed and stored
triples 2.2 GB and the triplestore 75 GB.

Processing the example query [0.3] shown earlier takes 6
seconds (corpus of English text of 2 M words and hardware
as before).

The code can be downloaded from a github ac-
count (andrewufrank.github.com/LitText)
and combined with a suitable triple store (e.g.
jena.apache.org/download/index.cgi).

The SPARQL endpoint is accessible on
http://nlp.gerastree.at:3030.

11. Future Work

A number of improvements are envisioned:

e integrate hypernym data for other languages without
making the query writing more complex is challeng-
ing.

e use ideas from Abstract Meaning Representation Lan-
guage (AMR) (Vanderwende et al., 2015 |Winiwarter,
2015; Xue et al., 2014) to simplify queries across texts
in multiple languages.

e use co-reference data produced by NLP programs.

e add other language servers to LitText (e.g. Dutch,
Japanese, Farsi)

e build multi-lingual corpora in order to facilitate com-
putational comparative literature studies (Ivanovic,
2017); a prototype is to be developed with original
texts and translations author Yoko Tawada, who writes
both in Japanese and German.

e include safeguards for the protection of copyrights, to
allow integration of data not in the public domain.

12. Conclusions

LitText is a suite of programs for researchers in DH to
build multi-language corpora for projects as linked-data,
and to explore them using the standardized SPARQL query
language. The design goal was to minimize the amount of
technical detail a DH researcher would need to use the sys-
tem. The GUI should follow a conceptual model familiar
to most DH researchers:

o build the corpus to be studied
e parts of text of interest to the research

Texts require minimal preparation with a simple markup
language to add metadata about the text and identify the
sections of text to be studied; multiple languages in a single
file are possible, and the NLP processing is transparent to
the user. The results are stored in a triple store, and can be
queried with the standardized query language SPARQL. A
DH researcher needs to learn a minimum set of NLP codes,
e.g. afew Universal Dependency codes. Further processing
of results is possible with spreadsheet software. Texts can
be added anytime simply by adding files with markup to
a directory. When queries are repeated, they search the in-
creased corpus. The motto ”all methods applied to all texts”
(Ivanovic and Frank, 2015} [Ivanovic and Frank, 2016)) is
respected: the full corpus can be reprocessed in a few days
and the reevaluation of queries takes only minutes.
Technically, Lit Text revolves around a linked data triple
store and the corresponding SPARQL update and query lan-
guage. The main program takes a text file with markup,
sends the pertinent text to the required, language-specific
NLP processes, and converts the result to a triple format.
Utilities to download text from research-specific sources
and to automate markup as far as automatically possible
are small extensions. Storage and query can be done with
any SPARQL 1.1 conformant program; loading triples into
triple stores and accessing the SPARQL endpoint uses the
HTTP protocol and can be done in a web browser. Addi-
tional resources which are available as linked data can eas-
ily be incorporated (e.g. WordNet, Wikipedia). The use of
standards makes a plethora of additional software available
and reduces the number of utilities which must be specially
programmed.

Acknowledgments

We thank an anonymous reviewer who suggested a CQP
style query formulation (Hardie, 2012} which inspired im-
provements in the query.

802

Bibliographical References

Beckett, D. (2001). Raptor RDF parser toolkit. Univer-
sity of Bristol.[Online]. Available: http://www. redland.
opensource. ac.

Beckett, D. (2014). RDF 1.1 -triples: A line-based syntax
for an RDF graph. W3C Recommendation.

Berners-Lee, T., Bizer, C., and Heath, T. (2009). Linked
data-the story so far. International Journal on Semantic
Web and Information Systems, 5(3):1-22.

Blimm, M., Schmunk, S., Gietz, P, Horstmann, W.,
and Hiitter, H. (2016). Vom Projekt zum Betrieb:
Die Organisation einer nachhaltigen Infrastruktur fiir
die Geisteswissenschaften DARIAH-DE. ABI Technik,
36(1):10-23.

Fellbaum, C. (1998). WordNet. Wiley Online Library.

Fischer, F., Gobel, M., Kampkaspar, D., Kittel, C., and Tril-
cke, P. (2017). Network dynamics, plot analysis: Ap-
proaching the progressive structuration of literary texts.
In Digital Humanities 2017 (Montréal, 8—11 August
2017). Book of Abstracts.

Hardie, A. (2012). CQPweb — combining power, flexibil-
ity and usability in a corpus analysis tool. International
Journal of corpus linguistics, 17(3):380—409.

Harris, S., Seaborne, A., and Prudhommeaux, E. (2013).
SPARQLI1.1 query llanguage.

Hart, M. (1992). The history and philosophy of project
gutenberg. Project Gutenberg, 3:1-11.

Holmes, D. I. and Kardos, J. (2003). Who was the author?
an introduction to stylometry. Chance, 16(2):5-8.

Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., DiPersio,
D., Shi, C., Suderman, K., Verhagen, M., Wang, D., and
Wright, J. (2015). The language application grid. In In-
ternational Workshop on Worldwide Language Service
Infrastructure, pages 51-70. Springer.

Ivanovic, C. and Frank, A. U. (2015). Corpus-based
research in Computational Comparative Literature. In
Francesco Mambrini, et al., editors, Proceedings of the
Workshop on Corpus-Based Research in the Humanities
(CRH). Warsaw, Poland, pages 69-78.

Ivanovic, C. and Frank, A. U. (2016). Korpusanalyse in der
computergestiitzten Komparatistik. In Digital Humani-
ties deutsch (DHd).

Ivanovic, C. (2017). Die Vernetzung des Textes: Im
Moglichkeitsraum digitaler Literaturanalyse. Zeitschrift
fiir digitale Geisteswissenschaften.

Khadilkar, V., Kantarcioglu, M., Thuraisingham, B., and
Castagna, P. (2012). Jena-hbase: A distributed, scal-
able and efficient rdf triple store. In Proceedings of the
2012th International Conference on Posters & Demon-
strations Track-Volume 914, pages 85-88. CEUR-WS.
org.

Lord, G., Smith, M. N., Kirschenbaum, M. G., Clement,
T., Auvil, L., Rose, J.,, Yu, B., and Plaisant, C.
(2006). Exploring erotics in Emily Dickinson’s corre-
spondence with text mining and visual interfaces. In
Digital Libraries, 2006. JCDL’06. Proceedings of the
6th ACM/IEEE-CS Joint Conference on, pages 141-150.
IEEE.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,

Bethard, S., and McClosky, D. (2014). The Stanford
CoreNLP natural language processing toolkit. In ACL
(System Demonstrations), pages 55—60.

Manola, F., Miller, E., McBride, B., et al. (2004). RDF
primer. W3C recommendation, 10(1-107):6.

McCrae, J., Fellbaum, C., and Cimiano, P. (2014). Pub-
lishing and linking WordNet using lemon and RDF. In
Proceedings of the 3rd Workshop on Linked Data in Lin-
guistics.

Moretti, F. (2005). Graphs, maps, trees: abstract models
for a literary history. Verso.

Palmero Aprosio, A. and Moretti, G. (2016). Italy goes to
Stanford: a collection of CoreNLP modules for Italian.
ArXiv e-prints, September.

Prud’Hommeaux, E., Seaborne, A., et al. (2008). Sparql
query language for rdf. W3C recommendation, 15.

Pustejovsky, J., Ide, N., Verhagen, M., and Suderman,
K. (2017a). Enhancing access to media collections and
archives using computational linguistic tools. In CDH@
TLT, pages 19-28.

Pustejovsky, J., Verhagen, M., Rim, K., Ma, Y., Ran, L.,
Liyanage, S., Murdock, J., McDonald, R. H., and Plale,
B. (2017b). Enhancing access to digital media: The lan-
guage application grid in the HTRC data capsule. In Pro-
ceedings of the Practice and Experience in Advanced Re-
search Computing 2017 on Sustainability, Success and
Impact, PEARC17, pages 60:1-60:3, New York, NY,
USA. ACM.

Recasens, M., de Marneffe, M.-C., and Potts, C. (2013).
The life and death of discourse entities: Identifying sin-
gleton mentions. In HLT-NAACL, pages 627-633.

Schmid, H. (2013). Probabilistic part-of speech tagging
using decision trees. In New methods in language pro-
cessing, page 154. Routledge.

Straka, M. and Strakova, J. (2017). Tokenizing, POS tag-
ging, lemmatizing and parsing UD 2.0 with UDpipe.
Proceedings of the CoNLL 2017 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependencies,
pages 88-99.

Taylor, A., Marcus, M., and Santorini, B. (2003). The
penn treebank: an overview. In Treebanks, pages 5-22.
Springer.

Vanderwende, L., Menezes, A., and Quirk, C. (2015). An
AMR parser for English, French, German, Spanish and
Japanese and a new AMR-annotated corpus. In Proceed-
ings of NAACL-HLT, pages 26-30.

Winiwarter, W. (2015). Jamred: a japanese abstract mean-
ing representation editor. In Proceedings of the 17th In-
ternational Conference on Information Integration and
Web-based Applications & Services, page 11. ACM.

Xue, N., Bojar, O., Hajic, J., Palmer, M., Uresova, Z.,
and Zhang, X. (2014). Not an interlingua, but close:
Comparison of English AMRs to Chinese and Czech. In
LREC, volume 14, pages 1765-1772.

Zeng, J., Ruan, G., Crowell, A., Prakash, A., and Plale,
B. (2014). Cloud computing data capsules for non-
consumptiveuse of texts. In Proceedings of the 5th ACM
workshop on Scientific cloud computing, pages 9-16.
ACM.

803

Appendix

The common prefix values for SPARQL are:

PREFIX
PREFIX
PREFIX
PREFIX

9%PREFIX

prefix
prefix
prefix

YDoprefix
Joprefix
Joprefix
JDprefix
YDprefix
JDoprefix

rdfs: <http ://www.w3.0rg/2000/01/rdf —schema#>
rdf: <http ://www.w3.0rg/1999/02/22 — rdf —syntax —ns#>
wn: <http :// wordnet—rdf. princeton.edu/ontology#>
nlp: <http :// gerastree.at/nlp_2015#>
li: <http ://def.seegrid.csiro.au/isotc211/is019115/2003/lineage#>
lemon: <http ://lemon—model. net/lemon#>
lit: <http:// gerastree.at/1it_2014#>
layout: <http:// gerastree.at/layout_2017#>

dcterms: <http :// purl.org/dc/terms/>

dc: <http :// purl.org/dc/elements/1.1/>

pgterms: <http ://www. gutenberg.org/2009/pgterms/>
marcrel: <http ://id.loc.gov/vocabulary/relators/>
dcam: <http :// purl.org/dc/dcam/>

cc: <http ://web.resource.org/cc/>

804

	Introduction
	Example Task for Literary Analysis
	Design Compared to Previous Work
	Preprocessing
	Processing
	Storing
	Additional Data Sources
	Querying
	Simplification of Query with Preprocessing
	Construct Hypernym List and Classify Words in Text
	Use Universal Dependency and POS tags
	Simplified queries

	Performance
	Future Work
	Conclusions

