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Abstract 

ROOT9 is a supervised system for the classification of hypernyms, co-hyponyms and random words that is derived from the already 

introduced ROOT13 (Santus et al., 2016). It relies on a Random Forest algorithm and nine unsupervised corpus-based features. We 

evaluate it with a 10-fold cross validation on 9,600 pairs, equally distributed among the three classes and involving several 

Parts-Of-Speech (i.e. adjectives, nouns and verbs). When all the classes are present, ROOT9 achieves an F1 score of 90.7%, against a 

baseline of 57.2% (vector cosine). When the classification is binary, ROOT9 achieves the following results against the baseline: 

hypernyms-co-hyponyms 95.7% vs. 69.8%, hypernyms-random 91.8% vs. 64.1% and co-hyponyms-random 97.8% vs. 79.4%. In 

order to compare the performance with the state-of-the-art, we have also evaluated ROOT9 in subsets of the Weeds et al. (2014) 

datasets, proving that it is in fact competitive. Finally, we investigated whether the system learns the semantic relation or it simply 

learns the prototypical hypernyms, as claimed by Levy et al. (2015). The second possibility seems to be the most likely, even though 

ROOT9 can be trained on negative examples (i.e., switched hypernyms) to drastically reduce this bias. 
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1. Introduction 

Distinguishing hypernyms from co-hyponyms and, in 

turn, discriminating them from semantically unrelated 

words (henceforth randoms) is a fundamental task in 

Natural Language Processing (NLP). Hypernymy in fact 

represents a key organization principle of semantic 

memory (Murphy, 2002), the backbone of taxonomies 

and ontologies, and one of the crucial semantic relations 

supporting lexical entailment (Geffet and Dagan, 2005). 

Co-hyponymy (or coordination) is instead the relation 

held by words sharing a close hypernym, which are 

therefore attributionally similar (Weeds et al., 2014). 

The ability of discriminating hypernymy, co-hyponymy 

and random words has potentially infinite applications, 

including Automatic Thesauri Creation, Paraphrasing, 

Textual Entailment, Sentiment Analysis and so on (Weeds 

et al., 2014; Tungthamthiti et al. 2015). For this reason, in 

the last decades, numerous methods, datasets and shared 

tasks have been proposed to improve computers’ ability in 

such discrimination, generally achieving promising 

results (Santus et al., 2016b; Roller et al., 2014, Weeds et 

al., 2014; Santus et al. 2014a; Rimmel, 2014; Lenci and 

Benotto, 2012; Kotlerman et al., 2010; Geffet and Dagan, 

2005; Weeds and Weir, 2003). Both supervised and 

unsupervised approaches have been investigated. The 

former have been shown to outperform the latter in Weeds 

et al. (2014), even though Levy et al. (2015) have claimed 

that these methods may learn whether a term y is a 

prototypical hypernym, regardless of its actual relation 

with a term x. 

In this paper we further investigate and revise ROOT13 

(Santus et al., 2016b), a supervised method based on a 

Random Forest algorithm and thirteen corpus-based 

features. The feature contribution is evaluated with an 

ablation test, using a 10-fold cross validation on 9,600 

pairs randomly extracted from EVALution (Santus et al., 

2015)
1

, Lenci/Benotto (Benotto, 2015) and BLESS 

(Baroni and Lenci, 2011). The ablation test has shown 

that four out of thirteen features were actually not 

contributing to the system’s performance, and they were 

therefore removed, turning ROOT13 into ROOT9. On the 

9,600 pairs, ROOT9 achieved an F1 score of 90.7% when 

the three classes were present, 95.7% when we had to 

discriminate hypernyms and co-hyponyms, 91.8% for 

hypernyms and randoms, and 97.8% for co-hyponyms 

and randoms. 

In order to compare ROOT9 with the state-of-the-art, we 

have also evaluated it in the Weeds et al. (2014) datasets. 

Unfortunately, ROOT9 was not able to cover the full 

datasets, as several words in their pairs were missing from 

our Distributional Semantic Model (DSM) because of 

their low frequency. Nevertheless, the authors kindly 

provided the results of their models on our subsets, so that 

the comparison can be considered reliable. Also in 

                                                           
1

 The 9,600 pairs are available at 
https://github.com/esantus/ROOT9 
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relation to the state of the art, ROOT9 is proved to be 

competitive, being slightly outperformed in all the 

datasets only by the svmCAT model (Weeds et al., 2014), 

which is a Support Vector Machine (SVM) classifier run 

on the concatenation of the distributional vectors of the 

words in the pairs. 

Finally, we carried out an extra test to verify whether the 

system was actually learning the semantic relation 

between two word pairs, or simply identifying 

prototypical hypernyms (Levy et al. 2015). The test 

consisted in providing to the trained model switched 

hypernyms (e.g. from “dog HYPER animal” to “dog 

RANDOM fruit”), and verify how they were classified. 

Our results show that most of the switched hypernyms 

were in fact misclassified as hypernyms (especially when 

the words in the switched hypernyms were the same used 

to train the model on the real hypernyms), and that the 

only way to overcome such problem is to explicitly 

provide the model with bad examples (i.e., switched 

hypernyms tagged as randoms) during the training. 

 

2. Related Work 

Since the pioneering work of Hearst (1992), who used a 

pattern based approach for the “automatic acquisition of 

hyponyms from large text corpora”, a large number of 

distributional methods were applied to the identification 

of hypernyms. These methods relied on interpretations of 

the Distributional Hypothesis (Harris, 1954), according to 

which the meaning of a linguistic expression can be 

inferred from its distribution in text corpora, so that 

linguistic expressions occurring in similar contexts are 

likely to be similar. These approaches, which can be either 

supervised or unsupervised, are generally implemented 

using Vector Space Models (VSMs; also called 

Distributional Semantic Models, DSMs), where vectors 

represent words, and their dimensions weight the 

association between the words and the contexts (Turney 

and Pantel, 2010). 

Among the unsupervised methods, Weeds and Weir 

(2003) proposed the Distributional Inclusion Hypothesis 

(DIH), according to which less general words tend to 

occur in a subset of the contexts of their hypernyms. Their 

measure identified the direction of hypernymy with 71% 

accuracy on word-pairs extracted from WordNet 

(Fellbaum, 1998). This result, however, was not 

significantly better than the frequency baseline, according 

to which more general words are more frequent. Clarke 

(2009) extended the DIH, suggesting that generality 

difference can be calculated as the degree to which the 

narrower term’s dimensions have lower values than the 

broader ones, across all the intersected dimensions. Lenci 

and Benotto (2012) adapted this measure to check not 

only to which extent the features of the narrower term are 

included in the features of the broader, but also how the 

features of the broader are not included in the features of 

the narrower. Kotlerman et al. (2010) combined Average 

Precision (AP) with the balancing approach of Szpektor 

and Dagan (2008), outperforming the above mentioned 

methods. Herbelot and Ganesalingam (2013) measured 

the Kullback-Leibler (KL) divergence between the 

probability distribution over context words for a term, and 

the background probability distribution, based on the idea 

that the smaller such KL was, the less informative the 

word was (and therefore more likely to be a hypernym). 

Rimmel (2014) considered the top features in a context 

vector as topics and used a Topic Coherence (TC) 

measure. Santus et al. (2014a) formulated the 

Distributional Informativeness Hypothesis (DInH), 

according to which the generality of a term can be inferred 

from the informativeness of its most typical linguistic 

contexts. In their evaluation, the authors have shown that 

hypernyms’ most typical contexts are in fact less 

informative than hyponyms’ ones. 

Among the supervised methods, Baroni et al. (2012) 

proposed to use an SVM classifier on the concatenation 

(after having tried also subtraction and division) of the 

vectors. Roller et al. (2014) used the vectors’ difference, 

while Weeds et al. (2014) implemented numerous 

combinations (difference, multiplication, sum, 

concatenation, etc.), comparing them against the most 

common unsupervised methods. The authors 

demonstrated that supervised methods generally perform 

better than unsupervised ones, but they acknowledge that 

these methods tend to learn ontological information, 

re-using it any time a word occur again in the dataset. For 

this reason, they suggest to adopt a new dataset, where 

words occur at most twice. Weeds et al. (2014)’s 

observation was further investigated by Levy et al. 

(2015), who claimed that supervised methods learn 

whether a term y is a prototypical hypernym, regardless of 

its actual relation with a term x. 

 

3. Method 

ROOT13 was firstly introduced in Santus et al. (2016b). It 

uses the Random Forest algorithm implemented in Weka 

(Breiman, 2001), with the default settings (i.e., 100 trees, 

1 seed, and maxDepth and numFeatures initialized to 0), 

and relies on thirteen features that are carefully described 

below. Each of them is automatically extracted from a 

window-based DSM, trained on a combination of ukWaC 

and WaCkypedia corpora (about 2.7 billion words), 

counting word co-occurrences within the 5 nearest 

content words to the left and right of each target. Only 

adjectives, nouns and verbs with frequency above 1,000 

are included in the DSM. As it will be shown in the 

evaluation, four out of thirteen features were redundant 

and were not contributing to the system performance. 

They were therefore dropped, turning ROOT13 into 

ROOT9. 

 

3.1 Features 
The feature set was designed to identify several 

distributional properties characterizing the terms in the 

pairs. On top of the standard distributional features (e.g., 

co-occurrence frequency and words frequencies), we 

have added several information that have been proved to 
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be effective to discriminate paradigmatic semantic 

relations in vector spaces (Santus et al., 2014a; Santus et 

al., 2016a). All the features were computed using the 

above-mentioned DSM and normalized in the range 0-1. 

 

3.1.1 Co-Occurrence 
Cooc is defined as the co-occurrence frequency between 

the two terms in the pair, within the DSM window. 

According to the Co-occurrence Hypothesis (Charles and 

Miller, 1989), this measure is discriminative for 

synonyms and antonyms: antonyms are in fact expected to 

occur in the same sentence more often than synonyms. 

Since co-hyponyms can be often seen as a specific kind of 

opposition (e.g. “Winter or summer?”; Murphy 2003), 

this measure should help in discriminating them from 

hypernyms and randoms (Santus et al., 2014b-c). 

 

3.1.2 Frequency 
Frequency is an important property of words and it is a 

very discriminative information. For what concerns our 

task, Weeds and Weir (2003) have shown that the 

frequency baseline was very competitive in identifying 

the directionality of hypernymy-related pairs. We can 

therefore expect that hypernyms have higher frequency 

than hyponyms. Frequency is incorporated in our model 

with three features, namely one for each word involved in 

the pair (Freq1,2), plus one saving the difference between 

the frequencies (Diff Freq). 

 

3.1.3 Entropy 
Entropy is generally used to measure informativeness: the 

lower the entropy of an event, the higher its 

informativeness. Words occurrence in a corpus has very 

low entropy, as every word needs to fulfil certain 

morphological, syntactic and semantic requirements in 

order to occur in specific positions (e.g. in “𝑥 barks”, it is 

very likely that 𝑥 is “dog”, because 𝑥 is expected to be a  

noun, and only dogs are known for barking). 

Nevertheless, words entropy varies according to several 

factors, such as the generality and prototypicality of the 

word. As claimed by Murphy (2002), the amount of 

informativeness in the taxonomies increases, when 

moving from the superordinate to the subordinate level. 

We use entropy as an index of word informativeness. It is 

calculated using the Shannon (1948)’s equation presented 

below: 

 

𝐻(𝑤) = −∑𝑝(𝑐𝑖|𝑤) ∙ 𝑙𝑜𝑔2(𝑝(𝑐𝑖|𝑤))

𝑛

𝑖=1

 

 

where 𝑝(𝑐𝑖|𝑤) is the probability of the context 𝑐𝑖  given 

the word 𝑤 , computed as  the ratio between the 

co-occurrence frequency of the pair <𝑤, 𝑐𝑖> and the total 

frequency of 𝑤.  

In our system, entropy corresponds to three features, 

namely one for each word in the pair (Entr1,2), plus one 

saving the difference between the entropies (Diff Entr). 

 

3.1.4 Shared and APSyn 
Shared and APSyn (Santus et al., 2016a-b) are two 

features that do not rely on the full distribution of the 

words, but on the top 𝑁 most related contexts to the words 

in a pair, where 𝑁 was empirically fixed at 1000. The 

value of this parameter was tested in other experiments, 

some of which reported in Santus et al. (2016a). 

Differently from Santus et al. (2016a-b), where the 

relation between contexts and words was measured with 

Local Mutual Information (LMI; Evert, 2005), in the 

current paper we used Positive Pointwise Mutual 

Information (PPMI; Levy et al., 2015), as it has shown 

some improvements: 

 

𝑃𝑃𝑀𝐼(𝑤, 𝑐) = max⁡(𝑃𝑀𝐼(𝑤, 𝑐), 0) 

 

𝑃𝑀𝐼(𝑤, 𝑐) = log2 (
𝑃(𝑤, 𝑐)

𝑃(𝑤) × 𝑃(𝑐)
) = ⁡ log2 (

|𝑤, 𝑐| × 𝐷

|𝑤| × |𝑐|
) 

 

were 𝑤 is the target word, 𝑐 is the given context, 𝑃(𝑤, 𝑐) 

is the probability of co-occurrence and 𝐷 is the collection 

of observed word-context pairs. 

Once the PPMI values are assigned to all contexts of the 

target words (i.e. the words in the pair), we rank these 

contexts in a decreasing order, and consider only the top 

𝑁, with 𝑁 = 1000. 

At this point, Shared is the cardinality of the intersection 

of the top 𝑁 contexts of the target words. APSyn, instead, 

is the weighted cardinality of the intersection, where the 

average ranking of the common features is used as a 

weight, as shown in the equation below: 

 

𝐴𝑃𝑆𝑦𝑛(𝑤1, 𝑤2) = ⁡ ∑
1

(𝑟𝑎𝑛𝑘1(𝑓) + 𝑟𝑎𝑛𝑘2(𝑓))/2⁡
𝑓∈𝑁(𝐹1)∩𝑁(𝐹2)

 

 

That is, for every feature 𝑓 included in the intersection 

between the top N features of 𝑤1, 𝑁(𝐹1), and 𝑤2, 𝑁(𝐹2), 

APSyn will add 1 divided by the average rank of the 

feature, among the top PPMI ranked features of 𝑤1 , 

𝑟𝑎𝑛𝑘1(𝑓1), and 𝑤2, 𝑟𝑎𝑛𝑘2(𝑓2). 

 

3.1.5 Contexts Frequency 
We have noticed that hypernyms tend to occur in more 

frequent contexts than co-hyponyms and randoms. Our 

system exploits two features, C-Freq1,2, capturing the 

frequency of the 𝑁 top contexts of the target words in the 

pair. 

 

3.1.6 Contexts Entropy 
Given what mentioned in 3.1.3 and the DIH and DInH 

(Weeds and Weir, 2003; Santus et al., 2014a), general 

words are likely to occur in a larger variety of contexts 
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(i.e. higher frequency) and in broader ones (i.e. less 

informative), compared to specific words. In fact, while 

hypernyms can certainly occur in narrower contexts, 

specific words are more likely to be chosen in these 

situations. Consider the following sentences: 

 

a) The X has barked the all night. 

b) The Y has arrested the thieves. 

 

Any reader would agree that X is likely to be dog and Y 

policeman. Of course, X could have also been animal and 

Y man, or – even – both X and Y could have been mammal, 

but we expect that such general words are less frequently 

used in these contexts, as their hyponyms are more 

appropriate. 

Adopting a similar approach to Santus et al. (2014a), we 

have measured the average entropy of the top N 

mostrelated contexts and used it as an index of generality. 

The higher the entropy, the less informative the word (i.e. 

it is more likely to be a hypernym). Our system uses one 

of these features for each target: C-Entr1,2. 

 

4. Evaluation 

4.1 Tasks 
We have performed three tasks: i) an ablation test to 

evaluate the contribution of the features on our dataset 

(henceforth, ROOT9 Dataset; see Section 4.2); ii) an 

evaluation against the state of the art, and – in particular – 

against the best performant models in Weeds et al. (2014); 

iii) an evaluation on switched pairs to verify whether the 

actual semantic relations or the prototypical hypernyms 

(Levy et al., 2015) were learnt. 

For what concerns the ablation test, we performed it on a 

tree-classes classification task (hypernyms, co-hyponyms 

and randoms), removing each feature at a time and 

measuring the loss/gain (F1 score is used for the 

evaluation on a 10-fold cross validation). Thanks to this 

task, we have found that four of our features were in fact 

redundant, and we have therefore removed them from the 

final model, turning ROOT13 into ROOT9. This is 

discussed in Section 5. Once the best model has been 

identified, we have performed three binary classification 

tasks, involving only two classes per time. F1 score on a 

10-fold cross validation was chosen as accuracy measure. 

The second task, which is described in Section 6, 

consisted in binary classification tasks on the four datasets 

proposed by Weeds et al. (2014). These datasets are 

described below, in Section 4.3. The task allowed us to 

compare ROOT9 against the state of the art models 

reported in Weeds et al. (2014). 

The last task is described in Section 7. It was performed 

on an extended ROOT9 Dataset, including also 3,200 

randomly switched hypernyms to verify whether they 

were classified as hypernyms or as randoms. 

 

 

 

4.2 ROOT9 Dataset 
We have used 9,600 pairs, randomly extracted from three 

datasets: EVALution (Santus et al., 2015), Lenci/Benotto 

(Benotto, 2015) and BLESS (Baroni and Lenci, 2011), 

which is freely available at 

https://github.com/esantus/ROOT9. The pairs are equally 

distributed among the three classes (i.e., hypernyms, 

co-hyponyms and random words) and involve several 

Parts-Of-Speech (i.e., adjectives, nouns and verbs). 

The class of hypernyms contains 2,447 noun pairs, 458 

verb pairs and 295 adjective pairs. The class of 

co-hyponyms has only 3,200 noun pairs, which were 

completely derived from BLESS, as this relation does not 

exist in the other two datasets. The class of randoms 

contains 1,100 noun pairs, 1,050 verb pairs and 1,050 

random pairs. 

The full dataset contains 4,263 terms (2,380 nouns, 958 

verbs and 927 adjectives), so that every term occurs on 

average 4.5 times. Considering only the first word in the 

pairs, we have 1,265 different terms (987 nouns, 186 

verbs and 92 adjectives). Considering instead only the 

second word, we have 3,665 terms (1,945 nouns, 860 

verbs and 862 adjectives). 

In the third task, we have extended this dataset randomly 

switching the 3,200 hypernymy pairs (e.g. from “car 

HYPER vehicle” to “car RANDOM mammal”) to verify 

whether ROOT9 was able to classify them as randoms. 

 

4.3 Weeds Dataset 
In order to compare ROOT9 to the state-of-the-art, we 

have evaluated it with the datasets created by Weeds et al. 

(2014).
2
 These are four datasets, containing respectively: 

i) hypernyms versus other relations (extracted from 

WordNet; henceforth WN Hyper); ii) co-hyponyms versus 

other relations (extracted from WordNet; henceforth WN 

Co-Hyp); iii) hypernyms versus other relations (extracted 

from BLESS; henceforth Bless Hyper); iv) co-hyponyms 

versus other relations (extracted from BLESS; henceforth 

Bless Co-Hyp). 

The WN dataset (Weeds et al., 2014) – meaning both WN 

Hyper and WN Co-Hyp – in particular, was built after 

noticing that supervised systems tended to perform well 

also on random vectors. This happens because they are 

able to learn ontological information and re-use it 

whenever the words re-appear in other pairs. For this 

reason, the authors have constructed a dataset where 

words occurred at most twice (once on the left and once 

on the right of the relation). In this dataset, ontological 

information cannot be learnt and re-used, and indeed the 

random vectors cannot perform well. 

Unfortunately our DSM did not cover the whole datasets, 

because of the chosen frequency threshold (in Table 1, we 

report the size of our subsets in comparison to the original 

datasets). However, Weeds et al. (2014) kindly provided 

                                                           
2
 The datasets are freely available at: 

https://github.com/SussexCompSem/learninghypernyms 
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the results of their models on our subsets, so that the 

comparison is representative
3
. 

 

 WN 

Hyper 

WN 

Co-Hyp 

Bless 

Hyper 

Bless 

Co-Hyp 

Weeds et al. 2514 4166 1668 5835 

Subset 1791 2936 1636 5389 

Coverage % 71.24 70.47 98.08 92.36 

Table 1. Coverage on Weeds et al. (2014)’s datasets. 

 

4.4 Baselines and Other Models 
For our internal tests, we have implemented two 

baselines, which can be used as reference for evaluating 

the performance of ROOT9: COSINE and RANDOM13. 

The first baseline simply uses the vector cosine (COSINE) 

with a Random Forest classifier in the default settings (i.e. 

100 trees, 1 seed, and maxDepth and numFeatures 

initialized to 0). This baseline is supposed to perform 

particularly well in discriminating similar words (i.e. 

hypernyms and co-hyponyms) from randoms. In fact, this 

measure has been extensively used to identify word 

similarity in vector spaces (Turney and Pantel, 2010) 

because it verifies the normalized correlation between the 

vectors of 𝑤1 and 𝑤2: 

 

cos(𝑤1, 𝑤2) = ⁡
∑ 𝑓1𝑖 ×
𝑛
𝑖=1 𝑓2𝑖

√∑(𝑓1𝑖)
2 × √∑(𝑓2𝑖)

2
 

 

where 𝑓𝑥𝑖 is the i-th dimension in the vector x.  

The second baseline (RANDOM13) relies on a default 

Random Forest classifier, but uses thirteen randomly 

initialized features, with values between 0 and 1. 

While the vector cosine achieves a reasonable accuracy, 

which is anyway far below the results obtained by our 

model, the random baseline performs much worst. The 

discrepancy with what found by Weeds et al. (2014) – 

namely that random vectors perform particularly well 

when words are re-used in the dataset – may depend on 

the small number of features, which does not allow the 

system to identify discriminative random dimensions. 

In the second task (see Section 6), we have used as 

baselines the most competitive models reported in Weeds 

et al. (2014), namely the SVM classifiers trained on the 

PPMI vector of the second word (svmSINGLE), or on the 

concatenated (svmCAT), summed (svmADD), multiplied 

(svmMULT) and subtracted (svmDIFF) PPMI vectors of 

the words in the pair. Such vectors contain as features all 

major grammatical dependency relations involving open 

class Parts Of Speech. Also, the performance of three 

main unsupervised methods is reported as a reference: 

cosine (see above in this section), balAPinc (Kotlerman et 

al., 2010) and invCL (Lenci and Benotto, 2012). A 

threshold p empirically found in a training set was used in 

these methods for the decision, 

                                                           
3
 The subsets of Weeds et al. (2014)’s datasets are also 

available at https://github.com/esantus/ROOT9. 

 

5. Task 1: Ablation Test and Binary 
Classification 

Table 2 describes the features’ contribution in the ablation 

test. Given the set of thirteen features of ROOT13 (Santus 

et al., 2016b), we have removed them one by one and 

measured the loss (negative) or the gain (positive). 

 

 

Hyper 

 Co-Hyp 

Random 

LOSS 

OR 

GAIN 

ROOT13 89.3 0.00% 

- C-Freq 1, 2 88.2 -1.23% 

- C-Entr 1, 2 87.1 -2.46% 

- APSyn 89.6 +0.34% 

- Shared 89.6 +0.34% 

- Shared + APSyn 87.7 -1.79% 

- Diff Entr 89.6 +0.34% 

- Diff Freq 89.7 +0.45% 

- Entr 1, 2 88.0 -1.46% 

- Freq 1, 2 88.3 -1.12% 

- Cooc 89.4 +0.11% 

ROOT9 90.7 +1.12% 

B A S E L I N E S 

ROOT9 using SMO 68.6 -23.18% 

ROOT9 using Logistic 73.0 -18.25% 

COSINE 57.2 -35.95% 

RANDOM13 33.4 -62.60% 

 

Table 2. Ablation test, F1 scores on a 10-fold cross 

validation and loss/gain values. Scores are in percent. 

 

As it can be easily seen from the table, most of features 

are contributing for an increment between 1.12% and 

2.46%. The highest contribution comes from the 

C-Entr1,2, which were inspired at SLQS (Santus et al., 

2014a), and the second highest contribute is given by 

APSyn, which was introduced in Santus et al. (2016a). 

Interestingly, four out of thirteen features were not 

contributing, penalizing the performance somewhere 

between 0.11% and 0.34%. These features are Diff Entr, 

Diff Freq, Co-Occurrence, and APSyn and Shared, when 

they are used together (so we kept only APSyn, removing 

Shared). The main reason why these features seem to 

affect negatively the results could be that they contain 

redundant information. If we remove both APSyn and 

Shared, for example, we have a loss of 1.79%, but when 

we remove only one of them we have a gain of 0.34%. In a 

similar way, Diff Entr and Diff Freq can be seen as 

redundant in respect to the features Entr1,2 and Freq1,2. 

Perhaps surprisingly, Cooc does not contribute to the final 

score, and instead penalizes it. 

Removing the four redundant features (we removed 

Shared but kept APSyn), ROOT13 turns into ROOT9. 

This system outperforms all the baselines (COSINE, 

RANDOM13) and ROOT13. For the sake of 

completeness, in Table 2 we also report the performance 

of ROOT9 using Logistic Regression (Cessie, 1992) and 

4561

https://github.com/esantus/ROOT9


SMO (Keerthi et al., 2001) classifiers. As it can be seen, 

the Random Forest version largely outperforms the other 

classifiers in this dataset. However, it is worth noticing 

here that such difference disappears with the WN datasets 

proposed by Weeds et al. (2014). See section 6, and – in 

particular – Table 4. 

 

 Hyper  

Co-Hyp 

Hyper 

Random 

Co-Hyp 

Random 

ROOT13 94.3 91.1 97.4 

ROOT9 95.7 91.8 97.8 

- using SMO 77.3 80.1 93.0 

- using Logistic 78.7 82.1 95.3 

COSINE 69.8 64.1 79.4 

RANDOM13 50.1 49.6 51.4 

 

Table 3. F1 scores on a 10-fold cross validation for 

binary classification tasks. Scores are in percent. 

 

Table 3 describes the results of ROOT9 and the baseline 

in the binary classification tasks. These results confirm 

the analysis suggested above. 

 

6. Task 2: ROOT9 vs. State of the Art 

In Table 4, we show ROOT9’s performance compared to 

the best systems reported by Weeds et al. (2014). The 

scores are all calculated on subsets of Weeds et al. 

(2014)’s datasets, as reported in Section 4.3. 

Considering all the datasets, ROOT9 is the second best 

performing system, after svmCAT (Weeds et al., 2014), 

which uses the SVM classifier on the concatenation of 

PPMI vectors, containing as features all major 

grammatical dependency relations involving open class 

Parts Of Speech. 

The SVM classifier on the sum (svmADD) and the 

multiplication (svmMULT) of the same PPMI vectors 

performs better in identifying co-hyponyms, but worst in 

identifying hypernyms. The SVM on the difference 

(svmDIFF) and on the second PPMI vector (svmSINGLE) 

is instead particularly good at identifying hypernyms, 

while it performs bad at identifying co-hyponyms. 

Among the unsupervised methods, we report the results 

for the cosine and the methods of Lenci and Benotto 

(2012; invCL) and Kotlerman et al. (2010; balAPinc). 

Such methods classify using the best threshold p observed 

in the training sets. In general, unsupervised methods are 

less competitive. 

Differently from what observed in Section 5, the 

performance of ROOT9 does not change by adopting a 

different classifier (i.e., Random Forest, SMO or Logistic 

Regression) on the WN Hyper and WN Co-Hyp datasets. 

However, it drastically changes again on the BLESS 

Hyper and BLESS Co-Hyp datasets. This may depend on 

the ability of the Random Forest classifier to learn more 

ontological information than SMO and Logistic 

Regression, also when the number of features is small. 

 

 

 WN 

Hyper 

WN 

Co-Hyp 

Bless 

Hyper 

Bless 

Co-Hyp 

ROOT9 69.8 60.8 94.6 87.7 

- using SMO 67.7 60.9 65.5 70.4 

- using Logistic 68.8 61.2 65.5 71.9 

STATE OF THE ART (Weeds et al., 2014) 

svmCAT 74.1 62.9 96.7 90.7 

svmADD 40.9 66.0 68.5 94.1 

svmMULT 40.3 63.2 75.1 96.4 

svmDIFF 74.1 40.7 86.5 56.7 

svmSINGLE 66.3 58.2 97.8 62.8 

cosine 58.7 52.8 64.7 78.5 

balAPinc 55.8 53.4 65.7 76.8 

invCL 60.7 61.7 72.5 63.2 

Table 4. F1 scores, in percent, on a 10-fold 

cross validation (state of the art models are 

evaluated on a 5-fold cross validation). 

{bold= best results vs. ROOT9; italics = other classifiers}. 

 

7. Task 3: Learning Prototypical 
Hypernyms? 

Finally, we have tried to test Levy et al. (2015)’s claim by 

evaluating the classifier on a dataset containing 3,200 

hypernyms and 3,200 switched hypernyms (e.g. apple 

RANDOM animal and dog RANDOM fruit). In this 

evaluation, we have noticed that a large number of the 

switched hypernyms were indeed misclassified as 

hypernyms (up to 100% of them, if the words in the 

testing switched pairs were exactly the same used as 

hypernyms in the training set). In the attempt of correcting 

the behavior of the classifier, we extended the original 

9,600 pairs dataset with other 3,200 switched hypernyms 

pairs labeled as randoms. It is relevant to notice that the 

switched hypernyms (tagged as randoms) contain the 

same words used in for the real hypernyms, and that in 

this new dataset, the size of the random class is double the 

others, including a total of 6,400 pairs. The new 10-fold 

cross validation test on the three classes registered a 

significant loss, passing from 90.7% to 84%. However, 

only 576 out of 6,400 randoms (most of which are likely 

to be the switched pairs) were misclassified as 

hypernyms. 

 

8. Conclusions 

In this paper, we have described ROOT9, a classifier for 

hypernyms, co-hyponyms and random words that is 

derived from an optimization of ROOT13 (Santus et al., 

2016b). The classifier, based on the Random Forest 

algorithm, uses only nine unsupervised corpus-based 

features, which have been described, and their 

contribution assessed. The impressive results in our 

dataset, developed by randomly extracting 9,600 pairs 

from EVALution (Santus et al., 2015), Lenci/Benotto 

(Benotto, 2015) and BLESS (Baroni and Lenci, 2011), 

were further tested against the state-of-the-art models 

presented in Weeds et al. (2014). The comparison has 
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shown that ROOT9 is in fact competitive with the state of 

the art, being outperformed on all the datasets only by an 

SVM trained on concatenated PPMI vectors. 

Interestingly, while on our dataset and on BLESS the 

chosen classifier is fundamental for the performance, on 

the WN Hyper and WN Co-Hyp datasets, Random Forest, 

SMO and Logistic Regression algorithm achieved a 

similar performance. 

Finally, we have noticed the Levy et al. (2015)’s effect. 

However, we reduced it by training the model also on 

negative examples, namely switched hypernyms labeled 

as randoms (e.g. apple RANDOM animal, dog 

RANDOM fruit). 

In future experiment, we plan to increase the number of 

features, investigating new distributional properties that 

may help in the classification without incurring in 

memorization effects such as those described by Levy et 

al. (2015). 
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