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Abstract
This papers describes a data collection setup and a newly recorded dataset. The main purpose of this dataset is to explore patterns in the
focus of visual attention of humans under three different conditions - two humans involved in task-based interaction with a robot; same
two humans involved in task-based interaction where the robot is replaced by a third human, and a free three-party human interaction.
The dataset contains two parts - 6 sessions with duration of approximately 3 hours and 9 sessions with duration of approximately 4.5
hours. Both parts of the dataset are rich in modalities and recorded data streams - they include the streams of three Kinect v2 devices
(color, depth, infrared, body and face data), three high quality audio streams, three high resolution GoPro video streams, touch data for
the task-based interactions and the system state of the robot. In addition, the second part of the dataset introduces the data streams from
three Tobii Pro Glasses 2 eye trackers. The language of all interactions is English and all data streams are spatially and temporally aligned.
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1. Introduction
During recent years, we have witnessed the start of a
revolution in personal robotics that is rapidly starting
to become part of our everyday lives. The promise and
potential of these systems is far-reaching; from general
purpose co-worker robots that operate and collaborate with
humans side-by-side, via household and service robots that
are able to carry out or assist in daily chores to robotic
tutors in schools that interact with humans in and around
a shared environment. All of these scenarios require
systems that are able to recognize and convey attention to
objects in the environment. Human face-to-face interaction
involves sophisticated mechanisms for conveying inten-
tions, establishing common ground and acknowledging
information transfer, often based on a combination of
spoken and visual (nonverbal) signals. In order to be able
to understand and model these processes and leverage their
power in human-robot interaction, we need comprehensive
multi-modal data collected in relevant settings. In this
paper, we present a highly multi-modal interaction dataset
that was recorded for this purpose. It involves multi-party
human-robot interaction based around objects (virtual cards
on a touch table), multi-party human-human interaction
based around the same objects, as well as free multi-party
human-human interaction without objects. The primary
purpose of the dataset is to serve as a source for modeling
visual attention patterns for robots interacting with hu-
mans, but the richness of the dataset also makes it useful
for other studies on the dynamics of multi-party interaction.

So why a new dataset when there is already a wealth of
multi-party interaction recordings that have been made?
There are three main reasons for this,

• We want data for interaction in multiple settings, in
particular with/without object manipulation;

• We want fully automated measurements (i.e. no need

for manual labeling) in order to enable large-scale
data-driven modeling, and to make it possible to ob-
tain corresponding input in real-life human-robot ap-
plications (e.g. using only Kinect v2 sensor);

• We want all measurements to be spatially aligned, i.e.
mapped to the same 3D space.

Of the datasets we are aware of, none of them satisfies all
of these requirements - Johansson et al. (Johansson et al.,
2013) describes a corpus of multi-party human-robot inter-
action (recorded with Kinect v1 device) involving object
manipulation similar to our setup, but the dataset does not
contain an all-human condition that would serve as a gold
standard/training data for the robot’s behavior. Oertel et al.
(Oertel et al., 2014) and (Oertel et al., 2013) both describe
multi-party human interaction corpora, but without object
manipulation. Hung et al. (Hung and Chittaranjan, 2010) is
a massively multi-party game corpus (8-12 participants) but
involves no object manipulation. Nguyen et al. (Nguyen
et al., 2014) has gaze data for dyadic interviews, but no
object manipulation, while Carletta et al. (Carletta et al.,
2006) features multi-party meetings with rich multi-modal
annotation and objects, but offers no way to automate the
measurements for real-life applications.

2. Dataset
2.1. Motivation
Nonverbal communication plays an important role in ev-
eryday face-to-face human interaction. Designing accurate
computational models for nonverbal behavior recognition
would be beneficial for a robot in order to carry out an in-
teraction in more intelligent manner. The focus of visual
attention is one such behavior and we wish to gain deeper
understanding of how it is effected and explore patterns it
exhibits under different interaction conditions. In particular
we wish to gather data from multi-party interactions where
a human is performing the same task as the robot would - in
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this case leading and taking part in simple knowledge-based
games, with and without objects. This data will allow data-
driven modeling of the robot’s visual attention behavior.
For comparison, we also want data from a corresponding
multi-party human-robot setting (where the robot’s behav-
ior is rule-based). In order to address this task, the dataset
is designed to contain three conditions,

• human-human-robot task-based interaction with a
touch surface. The task is a collaborative problem
solving scenario where two participants and a robot
play a game. The game is an adaptation of the “Time-
line” (Skantze et al., 2015) quiz game. The partici-
pants need to order a set of cards on the touch sur-
face with the help of the robot. The robot is Furhat
(Moubayed et al., 2013), back-projected human-like
robot head. Figure 1 presents one of the questions in
the game. In the rest of the text we will refer to this
scenario as Condition 1;

• human-human-human task-based interaction with
a touch surface. In this scenario the robot from
Condition 1 is replaced by a third human. In
the rest of the text we will refer to this scenario as
Condition 2;

• human-human-human task-based interaction with-
out a touch surface. In this scenario three humans
discuss a selected question in order to reach the cor-
rect answer. In the rest of the text we will refer to this
scenario as Condition 3.

In total fifteen, 30 minute sessions were recorded, where
approximately 10 minutes were spent on each of the three
conditions, resulting in approximately 7.5 hours of data
(approximately 2.5 hours per condition). Three humans
took part in each recording session; two of the participants
were new in every session, and one human taking the role
of the robot in Condition 2 and Condition 3 that
was the same in every session.

Figure 1: Example of one round of the quiz game. The
task is to “order the planets based on size, from smallest to
largest”.

2.2. Setup
All interactions occur around round table and the partici-
pants are seated. Although the chairs were not static, we
tried to implicitly limit the space where the participants can
place their chairs in order to form as close as possible an
equilateral triangular pattern. This in turn results in spatial
separation of the possible targets of visual attention. Fig-
ure 2 illustrates the spatial configuration of the setup. Ta-
ble 1 summarizes the sensors used based on the condition.

Figure 2: Spatial configuration of the setup and the location
of different sensors used.

Condition 1 Condition 2 Condition 3
2 microphone 3 microphone 3 microphone
2 Kinect 3 Kinect 3 Kinect
2 GoPro 3 GoPro 3 GoPro
2 Tobii 3 Tobii 3 Tobii
1 touch surface 1 touch surface
1 robot

Table 1: The sensors used based on the condition.

The following data streams are included in the dataset,

• High quality audio is recorded using Shure dynamic
headset microphones;

• High quality eye-gaze data1 is recorded using Tobii
Pro Glasses 2 eye trackers. High definition video from
the front camera (first person view) of the eye trackers
is also recorded;

• Color, depth, infrared, body (25 joints) and high def-
inition face (pivot point, orientation and animation
units) are recorded using Kinect v2 sensors;

• High resolution video is recorded using GoPro cam-
eras;

• Game state (touch events, currently active objects,
etc.) is recorded using Elo touch surface;

• Robot state (gaze targets, speech synthesis, speech
recognition, etc.) is recorded using Furhat and IrisTK
(Skantze and Al Moubayed, 2012).

2.3. Spatial and Temporal Alignment
We use frequency of 30 frames per second for temporal
alignment of all data streams. Temporal alignment is done
on several levels. First step is to synchronize all streams
(color, depth, infrared, body and face) within each of

1Data from Tobii Pro Glasses 2 eye trackers is recorded only
in the second part of the dataset.
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the Kinect sensors. This is achieved by timestamps that
are recorded for each frame in each of the streams. The
second step is to temporally align all Kinect devices with
each other. This is achieved by using visual information
of hand claps which occur at the beginning and the end
of each condition in each session. The hand claps visual
information is further used to cut and align the GoPro
video streams and the video streams from the front camera
of the eye trackers (resulting in temporal alignment of the
3D gaze data corresponding to each eye tracker’s video
streams). The hand clap is captured by all microphones and
this information is used to cut and align the audio streams.
Finally, visual information of the game state captured by
all Kinect sensors is used to align the game state stream
to the Kinect sensors’ streams and a speech synthesis
event time in the robot state is used to align the robot state
stream with one of the audio streams. The end result of
the procedure is all streams being cut based on the start
and end of the three conditions in each session and tem-
porally aligned with frequency of 30 data points per second.

Spatial alignment is done on several levels as well. First
each Kinect, GoPro and Tobii Glasses color stream is
calibrated with a calibration pattern to obtain the cor-
responding pinhole camera model intrinsic parameters.
The second step is session specific calibration which
occurred before the start of the recording of each of the
sessions. We placed the same calibration pattern on the
touch surface (where we defined the origin of the world
coordinate system). This procedure produces the relative
pose (extrinsic parameters) of all cameras (Kinect, GoPro
and Tobii Glasses) in the world coordinate frame (center of
the touch surface). The calculated transformation matrix
for each device is then applied to the spatial data generated
by that device resulting in all data streams transformed to
the same world coordinate frame. Finally, the position of
the robot head in Condition 1 is estimated from the
perspective of the Kinect that faces it and transformed to
the world coordinate frame with the appropriate transfor-
mation matrix. The end result of the procedure is that all
spatial data is transformed to one coordinate space which
we defined in the middle of the touch surface. Figure 3
illustrates recovery of the spatial data (face pivot point and
orientation) of one frame for all three Kinect devices after
spatial alignment.

Figure 4 illustrates 2D heat map and gaze plot of the esti-
mated eye-gaze for the human in the center in Condition
2 to a static image of the scene seen by the participant. The
length of the mapped data is approximately 3 minutes and
captures the gaze behavior during one round of the quiz
game which involves the touch surface.

3. Initial Analysis
The objective of the presented analysis is to test a
simple hypothesis - the touch surface in Condition
2 will attract the focus of visual attention of the partici-
pants for considerably longer time than in Condition 3.

We defined the possible targets in the scene as Human

Figure 3: Reconstruction of one frame of the Kinect sen-
sors’ spatial data. The touch surface (the plane) is the origin
of the world coordinate frame. The location and orientation
of the faces recorded by each Kinect are transformed to that
frame and drawn as cylinders and orientation vectors. The
relative pose of the Kinect sensors is also drawn.

Figure 4: Heat map (top) and gaze plot (bottom) of the eye-
gaze data for the human in the center in Condition 2.
During the actual interaction there were two participants
sitting in the chairs and playing a game on the touch sur-
face.

Center, Human Left, Human Right, Table, and
Other. Then, the target of visual attention of each partici-
pant is estimated on frame-by-frame basis by intersecting
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the face orientation vector with the defined targets in
the scene. In cases when the orientation vector was not
intersecting any target we picked the closest one based on
angular distance. Finally, if the angular distance to the
closest target was bigger than 25◦ we labeled this instance
as Other.

The results of this procedure for six sessions (approxi-
mately 33% of the total dataset) are illustrated in Figure 5.
The results suggest that indeed the table in Condition
2 attracts significantly more attention then in Condition
3. A paired-samples t-test was conducted to compare the
number of frames each participant looks at the touch sur-
face in Condition 2 and Condition 3. There was
a significant difference in the scores for Condition 2
(µ = 9713.4, σ = 3018.6) and Condition 3 (µ =
5127.8, σ = 5044.6); t(11) = 2.5796, p = 0.0256. It is
important to observe that the location of the touch surface
is where we would expect people to look when not engaged
in the interaction.

4. Conclusions and Future Work
We have presented a rich dataset of multi-party interactions
recorded using multiple depth sensors, eye trackers, high
resolution cameras, close talking microphones and touch
surface, all aligned temporally and in 3D space.

The data will be used to build models of visual attention
for task-based human-robot interaction. We have started
to investigate frame-based predictive models for the candi-
date visual attention target of the robot based on the data
generated by the two participants. This will be investigated
further and presented in forthcoming contributions. These
models will take advantage of the rich set of modalities
present in the dataset (all of which can be captured in real-
life human-robot interaction) - head, body and face motion
parameters, touch events and speech (we plan to automati-
cally transcribe the recorded speech), in order to predict re-
alistic and human-like visual attention behavior, which will
be implemented and evaluated on the Furhat robot. Future
work will also involve analysis of the data, for example into
the differences in interaction behavior of the participants
and correlation between different modalities/data streams.
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Figure 5: Targets distributions for the total length of six sessions; Condition 2 (top) versus Condition 3 (bottom).
For example, the top left bar illustrates “in Condition 2 the human in the center looks at each of the other four targets
certain fraction of the total length of all six interactions”.
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