
BAS Speech Science Web Services – an Update on Current Developments

Thomas Kisler∗, Uwe D. Reichel†, Florian Schiel∗, Christoph Draxler∗,
Bernhard Jackl∗, Nina Pörner∗

∗Bavarian Archive for Speech Signals, Ludwig-Maximilians-Universität München
Schellingstr. 3, 80799 München, Germany

{kisler,schiel,draxler,jackl,poerner}@bas.uni-muenchen.de

†Research Institute for Linguistics, Hungarian Academy of Sciences
Benczúr u. 33, 1068 Budapest, Hungary

uwe.reichel@nytud.mta.hu

Abstract
In 2012 the Bavarian Archive for Speech Signals started providing some of its tools from the field of spoken language in the form of
Software as a Service (SaaS). This means users access the processing functionality over a web browser and therefore do not have to
install complex software packages on a local computer. Amongst others, these tools include segmentation & labeling, grapheme-to-pho-
neme conversion, text alignment, syllabification and metadata generation, where all but the last are available for a variety of languages.
Since its creation the number of available services and the web interface have changed considerably. We give an overview and a detailed
description of the system architecture, the available web services and their functionality. Furthermore, we show how the number of files
processed over the system developed in the last four years.
Keywords: automatic segmentation, grapheme-to-phoneme, syllabification, forced alignment, RESTful web service, web interface

1. Introduction
With the emergence of standards for modern web technolo-
gies and, at least equally important, browsers that support
them, it is possible to implement even complex software as
web applications that run in a browser. Since most users
already have a modern browser installed on their computer,
there is no need for additional software. In late 2014 the
new HTML5 standard has been approved and is now sup-
ported acceptably by most modern browsers (Hickson et
al., 2014; Leenheer, 2015). Software-as-a-service (SaaS)
means that software is no longer purchased once by the cus-
tomer, but rather payed for when accessed. In the academic
world the core concept stays the same, even if software is
often offered for free. This means that the user accesses a
software resource on-demand running on the infrastructure
of the software provider, without the need to install spe-
cialized software on her computer (Buxmann et al., 2008).
Some examples for SaaS, next to ours, are the EmuLabeller,
a tool for online labeling of speech signals (Winkelmann
and Raess, 2014), WebLicht, an engine that enables the
user to construct linguistic chains to automatically anno-
tate text corpora (Hinrichs et al., 2010) and WebAnno, a
tool for doing manual text annotation in the browser (de
Castilho et al., 2014). For other available resources within
the CLARIN infrastructure, please check CLARIN (2015).
The new HTML5 standard, as Anthes (2012) states, does
not only have advantages for users, but also for develop-
ers. With modern browsers supporting many of the spec-
ified technologies and state-of-the-art debuggers, develop-
ing software for the web has become much easier.
In the last four years, the Bavarian Archive for Speech
Signals (BAS) transformed a few of its most used appli-
cations to services. As these tools have historically been
Linux command line tools, the number of users reached
was quite limited. By making the core functionality of these

tools accessible over the web the potential user audience is
much larger. No complex software packages need to be in-
stalled, meaning that no technical background knowledge is
required of the user. An additional advantage of SaaS is that
the user does not have to take care himself to get and install
updates of new versions and always immediately benefits
from bug-fixes.
Services and front-ends that are readily available at BAS
(all free for academic use):
• WebMAUS (language dependent): automatic phonetic

segmentation & labeling using pronunciation predic-
tion based on the canonic phonemic or orthographic
transcription for 17 languages and language variants
(Schiel, 1999)

• WebMAUS (language independent): automatic pho-
netic segmentation & labeling using forced-alignment
based on the canonic phonemic transcription in a
language-independent SAM-PA mode (for small and
endangered languages) (Schiel, 1999)

• G2P: automatic grapheme-to-phoneme conversion for
18 languages and language variants (Reichel, 2012)

• WebMINNI: automatic phone recognition & segmen-
tation for 7 languages and language variants

• Pho2Syl: automatic phonetic syllabification for 18
languages and language variants

• ChunkPreparation: preprocessing of chunk-segmen-
ted and transcribed large video recordings for a more
efficient WebMAUS segmentation

• TextAlign: Automatic alignment of text sequence
pairs by minimizing their edit distance. Probabilistic
cost functions are intrinsically calculated or can be im-
ported.

• COALA: automatic generation of CMDI-based meta-
data files to simplify the integration of speech and
multimedia corpora into CLARIN repositories.

3880



• MaryTTS: a free German synthesis with 4 voices
based on the MARY TTS system (Schröder and Trou-
vain, 2001)

Earlier versions of these services have been described in
Kisler et al. (2012) and Kisler et al. (2015), here we give a
summary of recent updates and extensions.

2. Architecture
2.1. Architectural Overview
The BAS web services are wrappers around already exist-
ing tools. They are usually Linux command line tools with-
out graphical user interface (GUI). These web services, in-
cluding a few helper services, can then be accessed using
the web front-end or other programs and tools, allowing
access to the above-mentioned core functionalities. By us-
ing a traditional client-server architecture that separates the
GUI (client) and the data storing and processing back-end
(server) through a web service interface, we achieve high
decoupling of system components. Exchanging the front-
end could therefore be done without the need of changing
the back-end services, which has been done recently to ac-
commodate for better extensibility (as described in section
2.3.). A depiction of the system architecture can be found
in Figure 1.

Figure 1: Architectural overview of the BAS speech science
web services.

2.2. Web Services
The back-end services wrap the underlying functionality
provided by the Linux command line tools. This is achieved
using Java and JAX-RS based web services, running in a
Tomcat Servlet container. To hide the Tomcat server loca-
tion, we are using an Apache HTTP server as a proxy. We
implemented our services in a RESTful way, but as we have
a process-oriented view, our services are best described as

RESTful remote procedure calls (RPC), where we use the
HTTP methods GET and POST as envelopes for our RPCs.
The web service response is then returned within an XML
envelope. This complicates the handling of the server re-
sponse to some extent, especially if called from the com-
mand line, but was necessary to successfully communicate
warnings that occurred in the back-end to both the front-end
and the user.
The back-end web services can be used much like tradi-
tional Linux command line tools if needed. Through tools
like curl1 these services can easily be called from within
a script or a program. To enable users and developers
to do so successfully, the web services are described in
two metadata formats. These are the Web Application De-
scription Language (WADL) and the Component Metadata
Infrastructure (CMDI). For the latter we use the CMDI
CLARIN core data model for web services (Windhouwer et
al., 2012). In our case the WADL description is used to de-
termine the necessary envelope to call the services and the
CMDI description describes the necessary parameters and
their meaning (links to both descriptions can be found in
section 6.). For automatic service invocation it is necessary
to look at both files. For example, a special helper service
(a link can be found in section 6.) that shows information
about all the available services uses them to generate exam-
ple curl calls.
This metadata description allows for automatic checks
whether the passed parameters are valid. Many options
have a clear parameter range like closed vocabularies (only
a set of fixed strings that is accepted as input, e.g. lan-
guages) or specific types that can be checked, e.g. numbers
or Booleans. In case the user is calling the web services
with wrong parameters, it is possible to notify him about the
wrong parameter and suggest possible options that would
be valid.
An example for the successful integration of one of our
services to an application is ELAN (Wittenburg et al.,
2006). Using ELANs plug-in mechanism, WebMAUS can
be called directly within the application. The user has
to select the correct signal file, the tier containing the or-
thographic transcript and the correct language, and ELAN
sends it to the WebMAUS service. After successful service
execution, the result is directly integrated as a new tran-
scription layer. This saves the user the trouble of exporting
the files and later re-importing them (Kisler et al., 2012).
Two further advantages of services for users are the installa-
tion/updating and processing power. As mentioned before
users access the software that is installed on the server and
therefore they do not have to install software locally to their
computer (assuming they already have a recent browser in-
stalled). This does not only save time, but also ensures
using the latest version (regarding new features and bug-
fixes), without even checking if there is an update available.

2.3. Web Interface
As it became obvious that adding services to the web in-
terface was a reoccurring task, but was too complicated in
the old interface, described in Kisler et al. (2012), it was
replaced by a new one. The new interface was designed

1
https://curl.haxx.se/

3881

https://curl.haxx.se/


with extensibility in mind and we tried to incorporate the
experiences of implementing the old interface. The new
interface is written using the JavaScript framework Angu-
larJS2, which is based on a modified Model View Controller
(MVC) pattern for separating display and logic (speaking
about display and logic in the front-end) (Google, 2015).
Unlike the name suggests, we are using the scripting lan-
guage TypeScript, which is a typed programming language
that translates to JavaScript files.
AngularJS provides a good basis for our web interfaces, as
it allows for the creation of custom HTML tags (called di-
rectives in AngularJS), which ensure encapsulation of com-
mon functionality and therefore easier creation of new in-
terfaces. This means that certain parts, like uploading files
to the server, displaying a preview, etc. are implemented as
a directive and a final service page is then created by using
those basic building blocks.
Through the CMDI metadata description of the back-end,
some parts of the front-end that were subject to regular
changes are automatically generated from that description.
One example of this are the options that are available for
each interface. The CMDI XML description is parsed and
added to the front-end on-the-fly. This means for adding or
changing options (like adding languages), the web applica-
tion does not have to be modified in the source code, only
the metadata description has to be adapted. This has the
benefit that only one place has to be modified and people
without programming skills can perform the task.

2.4. Processing Power
The actual processing of the files is done on the server. This
has the advantage that processing speed is independent of
the client computer’s performance. At the moment (March
2016) we are running the web services on a computer with
two Intel R©3 Xeon R© (X5650) processors, which means a
total of 12 cores and up to 24 simultaneous threads (via
Intel R© Hyper Threading). This allows access for multiple
users at the same time without slowing down the process-
ing for other users. All web interfaces that allow to upload
multiple files per drag and drop make use of this feature and
process, for one user, multiple files at the same time.

3. Web Services in Detail
3.1. WebMAUS – automatic segmentation
The service is based on MAUS, which produces a segmen-
tation and labeling of a recorded speech signal based on
the orthographic or phonological transcript (Schiel, 1999).
It combines an HMM-based acoustic model of phone seg-
ments with a stochastic predictor model of pronunciation,
both being language dependent. Phonetic transcriptions
created by MAUS have been evaluated against human tran-
scriptions on a German benchmark derived from the Verb-
mobil corpus. When comparing inter-labeler transcription
agreements among three human labelers with the pairwise
transcription agreements of MAUS against the human tran-
scribers, it turns out that MAUS transcriptions on average
reach about 97% transcription accuracy of that of human la-
belers (Kipp et al., 1997). The time performance of MAUS

2
https://www.angularjs.org

3
www.intel.com

depends on language, length of signal file and other factors,
but in general MAUS segments and labels a signal faster
than its playback time. In our experience human labelers
performing a similar task need a factor of between 1:50 to
1:150 (playback time:time needed for segmentation and la-
beling). Recent advances of the MAUS development are
the extension to now 17 languages, the handling of a hi-
erarchical annotation format based on the Emu Database
system (Winkelmann and Raess, 2014), the modeling of
four different varieties of English (British, American, Aus-
tralian and New Zealand), new output encodings in IPA,
phonetic place of articulation and manner of articulation,
and the modeling of Swiss German based on the Dieth en-
coding standard. Web applications based on the MAUS
web service allow the instant display of segmentation re-
sults in the browser using the JavaScript-based Emu labeler
EMU-webApp4. For the future we plan to allow the upload
of customized stochastic pronunciation models, the exten-
sion to Spanish, Czech, Japanese and Cantonese, and an
improved embedding into the Emu Database framework.

3.2. WebMINNI – automatic phone recognition
A new web application called ‘WebMINNI’ has been
launched recently to the BAS web services page. Web-
MINNI – as the small girlfriend of WebMAUS – allows the
phonetic transcription and segmentation of a speech signal
into IPA or SAMPA, or broader classes such as manner or
place of articulation. In contrast to WebMAUS this service
does not require any orthographic or phonological tran-
script. The basic idea behind WebMINNI is to replace the
pronunciation model of MAUS by a phonotactic bi-gram
model of the chosen language. Currently the following lan-
guages are supported: German, Swiss German, Estonian,
American English, Australian English, Hungarian and Ital-
ian.
The precision of WebMINNI is of course below that of
MAUS, but nevertheless the tool can be very useful to ob-
tain a rough segmentation of non-transcribed signals into
phonetic or broader phonetic classes (e.g. voiced vs. un-
voiced etc.).

3.3. G2P – automatic text-to-phoneme
conversion

Our G2P service provides an automatic phonetic transcrip-
tion for 18 languages and language variants including syl-
labification and word stress assignment. Transcription and
syllabification are carried out by means of decision trees,
and word stress assignment by a Bayes classifier within a
learning by analogy framework. Details of the underlying
algorithms can be found in Reichel (2012) and Reichel and
Kisler (2014). The G2P service supports five input and nine
output formats, among them the BAS partitur format (BPF)
(Schiel et al., 1998) and Praat TextGrids (Boersma, 2001).
For all languages and variants a basic text normalization
in terms of tokenization and cardinal number expansion is
provided. For English and German the text normalization
additionally covers the classification and expansion of 22
non-standard word classes by means of pattern matching
and local grammars, among them different number types

4
https://github.com/IPS-LMU/EMU-webApp

3882

https://www.angularjs.org
www.intel.com
https://github.com/IPS-LMU/EMU-webApp


(e.g. ordinal, phone number, postal code), acronyms, ab-
breviations, and URLs. The non-standard word taxonomy
was adopted from Sproat et al. (2001).

3.4. Pho2Syl – phonetic syllabification
Our Pho2Syl service provides an automatic syllabification
of phonetic transcriptions in 18 languages and language
variants. As in combination with grapheme-phoneme con-
version the standalone version of syllabification is also
based on decision trees and a sonority-based fallback. The
service supports the BAS partitur format as input and addi-
tionally the Praat TextGrid format as output. The user can
choose between a word-synchronous syllabification and a
syllabification irrespective of word boundaries. The former
is of use when processing canonic transcriptions, the latter
for connected speech transcriptions.

3.5. TextAlign – automatic text alignment
This service aligns text sequence pairs by minimizing their
edit distance. Edit operations are substitution, insertion,
and deletion. Next to a naive cost function penalizing any
edit operation but null substitution by 1, cost functions can
be imported, or estimated probabilistically from the input
data, or can be chosen from prestored examples. The cost
function estimation is described in detail in Reichel (2012).
Typical use cases are the alignment of letters and phonemes
in pronunciation dictionaries, and the alignment of canonic
and spontaneous speech transcriptions in order to infer or
verify phonological rules. The service takes a CSV file with
each row containing a string pair to be aligned. It outputs
a two-column CSV file with the aligned result. If the cost
function is estimated from the input data this function is ad-
ditionally returned as a CSV file. It can then be re-used for
further applications of the aligner.

3.6. ChunkPreparation – preprocessing of
chunk-segmented recordings

The ChunkPreparation service enables the segmentation of
certain parts of the signal. One use case would be a sce-
nario where an interviewer and an informant are recorded,
but only the informant’s speech is of interest. Similarly,
ChunkPreparation is useful when only a short stretch of a
long recording has been transcribed for analysis.
As input we take a specification of these chunks in ei-
ther TextGrid, ELAN or CSV format (containing the three
columns time on-, offset and the text). The service in-
ternally executes the G2P service to generate the neces-
sary canonic information of the specified parts and returns
a BAS Partitur File. This file in turn enables the user to
feed the chunk segmentation information into WebMAUS,
to generate the final segmentation & labeling.

3.7. COALA – automatic generation of
CMDI-based metadata

In contrast to the other services in this paper, COALA does
not analyze primary or secondary data but deals with meta-
data. It facilitates the creation of CMDI files for multi-
modal corpora, especially for large ones. As input files,
five regular CSV tables are needed, one for each metadata

category: media files, written resources (annotation to me-
dia files), bundles (grouping media files together that were
recorded in parallel, as well as their derived annotations),
actors (signers/speakers) and sessions, the collection of all
recordings (here bundles) done in a consecutive order and
with the same actor(s). COALA parses these tables and
transforms them into one CMDI file for every session and
additionally one file for the corpus itself. The session files
generated are already valid metadata files and ready for fur-
ther processing, whereas the corpus file is generated as a
template file and needs to be edited by hand. The resulting
files can then be easily integrated into a CLARIN reposi-
tory. Adding a corpus to a repository does not only make it
accessible and visible to a broader audience, but also en-
sures access to and persistence of the data and prevents
the data from being forgotten, long after the corresponding
project has finished.

4. Intended Users
The BAS is associated with the chair of Phonetics and
speech processing. Many of the tools behind the web ser-
vices were implemented to support research by assisting in
the preprocessing of speech databases. The tasks involved
are often tedious and repetitive and can be sped up greatly
by (semi-)automatic methods. The tools are traditionally
Linux command line tools which limited the possible num-
ber of users. This is because the installation of software
packages requires a certain level of familiarity with the pro-
cess and even if the software is available, in our experience
the command line rarely is the preferred way of accessing
a piece of software.
Within the CLARIN initiative (CLARIN, 2015) we imple-
mented the aforementioned web interfaces to allow access
to our services to a broader audience. Doing that, extending
the number of possible users of an existing tool, is one of
the aims of the CLARIN project, which should be achieved
by making them publicly available or online accessible. As
argued before, especially the latter is a promising way of
doing so, as many technical details are hidden from the end
user and, therefore, access to the software is made easier.
Our aim is to enable all researchers to use our tools, re-
gardless of their technical background. Since we started
providing the web interfaces we got feedback from re-
searchers from various technical and non-technical fields
and disciplines such as ethnology, anthropology, socio-
phonetics, historical linguistics, dialectology, speech tech-
nology, computer science, and computer assisted learning,
which all successfully used our tools.

5. Usage Statistics
During the last four years the usage of the web services
at the BAS shows a slight but steady increase over time.
The trend can be seen by the blue, dashed linear regres-
sion line in Fig. 2. Two months with extraordinary usage
have been October and November 2015 where combined
over 767 thousand files have been processed using various
services, both via front-end and back-end calls. These num-
bers seem very high and to be sure that they do not solely
influence the regression line towards a positive increase, the
red, dotted line shows the regression line where those two

3883



outliers are set to the average calls over the last four years
(the average was calculated by excluding the two months).
The increase in usage can still clearly be seen in Fig. 2.
This second line is shown to illustrate that the increase in
usage is not only accounted to those two months, though
they have, as expected, a big impact on the overall trend.
Nevertheless, we want to emphasize that these calls, despite
being outliers, did actually happen.

● ● ●
●

●
● ● ● ●

●

● ● ● ●

●
●

●

●

● ●

●
●

●
● ● ● ● ●

●
●

● ● ●
●

●
● ●

● ● ● ●
● ●

●

●

●

●

●

Date

N
um

be
r 

of
 c

al
ls

 (
N

oC
) 

(x
10

0.
00

0)

2012−03−01 2013−01−01 2014−01−01 2015−01−01 2016−01−01

0

1

2

3

4

● Calls per month
Linear regression of NoC
Linear regression of NoC without outliers

Figure 2: Number of calls to the web services per month
over the last four years.

6. URLs
• BAS web interface (all services): http://clarin.
phonetik.uni-muenchen.de/BASWebServices

• BAS web services metadata description (CMDI):
https://clarin.phonetik.uni-muenchen.
de/BASRepository/WebServices/BAS_
Webservices.cmdi.xml

• BAS web services WADL description http:
//clarin.phonetik.uni-muenchen.de/
BASWebServices/services/application.
wadl

• BAS web services help page:
http://clarin.phonetik.uni-muenchen.de/
BASWebServices/services/help

• CLARIN Component Metadata model (CMD):
http://www.clarin.eu/content/
component-metadata

• CLARIN ERIC: http://clarin.eu/

• CLARIN-D: http://de.clarin.eu/

7. Acknowledgements
We thank the European CLARIN ERIC and the German
CLARIN-D consortium funded by the German Ministry of
Science and Education for establishing the infrastructure,
as well as hundreds of users’ valuable feedback to improve
our services.

8. Call for Resources
We are always looking for language resources to extend our
services. Examples for those resources are

• MAUS: manually segmented and labeled speech cor-
pora of languages, that we do not provide yet. Neces-
sary are at least 50 speakers with combined around 2h
of phonetically rich material

• G2P: pronunciation lexica with orthographic tran-
script and some form of consistent phonemic tran-
scription

Furthermore, we are happy to receive proposals for new
services, if they lie within the scope of our work.

9. References
Anthes, G. (2012). HTML5 Leads a Web Revolution.

Commun. ACM, 55(7):16–17, July.
Boersma, P. (2001). Praat, a system for doing phonetics by

computer. Glot International, 5(9/10):341–345.
Buxmann, P., Hess, T., and Lehmann, S. (2008). Software

as a service. WIRTSCHAFTSINFORMATIK, 50(6):500–
503.

CLARIN. (2015). Overview of available clarin web
services. http://clarin.eu/content/web-services, last ac-
cessed: 2016-03-09.

de Castilho, R. E., Biemann, C., Gurevych, I., and Yimam,
S. M. (2014). Webanno: a flexible, web-based anno-
tation tool for clarin. In Proceedings of the CLARIN
Annual Conference (CAC) 2014, page online, Utrecht,
Netherlands, October. CLARIN ERIC. Extended ab-
stract.

Google. (2015). AngularJS. last accessed: 2016-03-09.
Hickson, I., Berjon, R., Faulkner, S., Leithead, T.,

Navara, E. D., O’Connor, E., and Pfeiffer, S. (2014).
HTML5. W3C recommendation, W3C, October.
http://www.w3.org/TR/2014/REC-html5-20141028/,
last accessed: 2016-03-10.

Hinrichs, E., Hinrichs, M., and Zastrow, T. (2010). We-
blicht: Web-based LRT services for german. In Proceed-
ings of the ACL 2010 System Demonstrations, ACLDe-
mos ’10, pages 25–29, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Kipp, A., Wesenick, B., and Schiel, F. (1997). Pro-
nunciation Modeling Applied to Automatic Segmenta-
tion of Spontaneous Speech. In Proceedings of the EU-
ROSPEECH, pages 1023–1026, Rhodos, Greece.

Kisler, T., Schiel, F., and Sloetjes, H. (2012). Signal pro-
cessing via web services: the use case webmaus. In Pro-
ceedings Digital Humanities 2012, pages 30–34, Ham-
burg.

Kisler, T., Schiel, F., Reichel, U. D., and Draxler, C.
(2015). Phonetic/linguistic web services at BAS. In
Proc. Interspeech, page paper 2609, Dresden, Germany.

Leenheer, N. (2015). HTML5TEST – how well does your
browser support html5? https://html5test.com/, last ac-
cessed: 2016-03-09.

Reichel, U. and Kisler, T. (2014). Language-independent
grapheme-phoneme conversion and word stress assign-
ment as a web service. In R. Hoffmann, editor, Elek-
tronische Sprachverarbeitung 2014, volume 71 of Studi-
entexte zur Sprachkommunikation, pages 42–49. TUD-
press, Dresden, Germany.

3884

http://clarin.phonetik.uni-muenchen.de/BASWebServices
http://clarin.phonetik.uni-muenchen.de/BASWebServices
https://clarin.phonetik.uni-muenchen.de/BASRepository/WebServices/BAS_Webservices.cmdi.xml
https://clarin.phonetik.uni-muenchen.de/BASRepository/WebServices/BAS_Webservices.cmdi.xml
https://clarin.phonetik.uni-muenchen.de/BASRepository/WebServices/BAS_Webservices.cmdi.xml
http://clarin.phonetik.uni-muenchen.de/BASWebServices/services/application.wadl
http://clarin.phonetik.uni-muenchen.de/BASWebServices/services/application.wadl
http://clarin.phonetik.uni-muenchen.de/BASWebServices/services/application.wadl
http://clarin.phonetik.uni-muenchen.de/BASWebServices/services/application.wadl
http://clarin.phonetik.uni-muenchen.de/BASWebServices/services/help
http://clarin.phonetik.uni-muenchen.de/BASWebServices/services/help
http://www.clarin.eu/content/component-metadata
http://www.clarin.eu/content/component-metadata
http://clarin.eu/
http://de.clarin.eu/


Reichel, U. (2012). PermA and Balloon: Tools for string
alignment and text processing. In Proc. Interspeech,
page paper no. 346, Portland, Oregon, USA.

Schiel, F., Burger, S., Geumann, A., and Weilhammer, K.
(1998). The Partitur Format at BAS. In Proc. of the 1st
Int. Conf. on Language Resources and Evaluation, pages
1295–1301, Granada, Spain.

Schiel, F. (1999). Automatic Phonetic Transcription of
Non-Prompted Speech. In Proc. of the ICPhS, pages
607–610, San Francisco, August.

Schröder, M. and Trouvain, J. (2001). The German text-to-
speech synthesis system MARY: A tool for research, de-
velopment and teaching. In Proceedings of the 4th ISCA
Tutorial and Research Workshop on Speech Synthe-
sis, August 29–September 1, pages 131–136, Perthshire,
Scotland.

Sproat, R., Black, A., Chen, S., Kumar, S., Ostendorf, M.,
and Richards, C. (2001). Normalization of non-standard
words. Computer Speech & Language, 15(3):287–333.

Windhouwer, M., Broeder, D., and Van Uytvanck, D.
(2012). A CMD core model for CLARIN web services.
In Proceedings of LREC 2012: 8th International Con-
ference on Language Resources and Evaluation, pages
41–48.

Winkelmann, R. and Raess, G. (2014). Introducing a web
application for labeling, visualizing speech and correct-
ing derived speech signals. In Proceedings of the Ninth
International Conference on Language Resources and
Evaluation (LREC’14), Reykjavik, Iceland.

Wittenburg, P., Brugman, H., Russel, A., Klassmann, A.,
and Sloetjes, H. (2006). Elan: a professional framework
for multimodality research. In Proceedings of Language
Resources and Evaluation Conference (LREC).

3885


	Introduction
	Architecture
	Architectural Overview
	Web Services
	Web Interface
	Processing Power

	Web Services in Detail
	WebMAUS – automatic segmentation
	WebMINNI – automatic phone recognition
	G2P – automatic text-to-phoneme conversion
	Pho2Syl – phonetic syllabification
	TextAlign – automatic text alignment
	ChunkPreparation – preprocessing of chunk-segmented recordings
	COALA – automatic generation of CMDI-based metadata

	Intended Users
	Usage Statistics
	URLs
	Acknowledgements
	Call for Resources
	References

