KorAP Architecture — Diving in the Deep Sea of Corpus Data

Nils Diewald', Michael Hanl', Eliza Margaretha', Joachim Bingel?,
Marc Kupietz', Piotr Banski', Andreas Witt!»3

! Institut fiir Deutsche Sprache, Mannheim
{diewald, hanl,margaretha, kupietz,banski,witt}@ids-mannheim.de
2 Centre for Language Technology, University of Copenhagen
bingel@hum.ku.dk
3 Universitit Heidelberg

Abstract
KorAP is a corpus search and analysis platform, developed at the Institute for the German Language (IDS). It supports very large
corpora with multiple annotation layers, multiple query languages, and complex licensing scenarios. KorAP’s design aims to be scalable,
flexible, and sustainable to serve the German Reference Corpus DEREKO for at least the next decade. To meet these requirements,
we have adopted a highly modular microservice-based architecture. This paper outlines our approach: An architecture consisting of
small components that are easy to extend, replace, and maintain. The components include a search backend, a user and corpus license
management system, and a web-based user frontend. We also describe a general corpus query protocol used by all microservices for

internal communications. KorAP is open source, licensed under BSD-2, and available on GitHub.

Keywords: KorAP, microservices, large corpus data

1. Introduction

With DEREKO, the largest linguistically motivated corpus
of contemporary German, growing beyond 25 billion words
(Kupietz and Liingen, 2014), new challenges for corpus
management have arisen at the Institute for the German
Language (IDS),' especially as the textual data is enriched
by several layers of annotations, multiplying the quantity
of data immensely. A platform capable of handling such
large amounts of data, while providing a wide variety of
features for searching, analysing, and legally protecting the
corpus, needs an architecture focussing on scalability, flex-
ibility, and sustainability.

In this paper, we present our approach to meet these re-
quirements: a microservice-based architecture.

KorAP? (“Korpusanalyseplattform der nichsten Genera-
tion”; Bariski et al., 2013) is a web-based corpus analysis
platform, consisting of small independent components that
are easy to extend, to replace, and to maintain.

All components communicate through KoralQuery, a gen-
eral corpus query protocol. As we design the communica-
tion protocol to be easily extensible as well as backward
compatible, our approach also addresses the fact that soft-
ware may change or needs to be replaced over time. In this
manner, we strive to ensure sustainability and flexibility in
the maintenance of the system for the next 15-20 years, thus
targeting the life span of COSMAS II (Bodmer, 1996), the
corpus analysis platform that KorAP is designed to replace.
The present contribution outlines the architecture of KorAP,
describes the necessary building blocks, and discusses the
capabilities and caveats of searching, analysing and legally
protecting corpus data against the requirements of a large
annotated text corpus such as DEREKO.

"http://ids-mannheim.de/
Mttp://korap.ids-mannheim.de/

2. KorAP Infrastructure

Requirements typically associated with scalable, flexible,
and sustainable systems were the most important crite-
ria for architectural decisions in KorAP. These priorities
led to a microservice-based design, “an approach to de-
veloping a single application as a suite of small services,
each running in its own process and communicating with
lightweight mechanisms” (Lewis and Fowler, 2014), possi-
bly distributed to multiple machines. The opposite of such
a design is a single monolithic system. Newman (2015, ch.
1) lists key benefits for microservice-based architectures,
including:

“scaling”: As DEREKO grows, the capacity of KorAP has
to enhance as well. However, scalability requirements
differ depending on the component. While the search
backend Krill (Sec. 2.3.) needs to scale whenever the
corpus grows, the user management service Kustvakt
(Sec. 2.2.) needs to scale whenever new users are reg-
istered. Multiple small services can be added on de-
mand.

“optimizing for replaceability’’: It is impossible to pro-
vide a sustainable research platform and to foresee all
necessary features for research questions from the be-
ginning. In the scenario of publicly funded research
projects such as KorAP, a microservice-based archi-
tecture makes it possible to replace parts of the system
once new requirements emerge, without the need to re-
place a monolithic system as a whole. New advances
in corpus technology can therefore easily be adopted.
As a proof-of-concept, KorAP has developed two in-
dependent search backends (s. Sec. 2.3.1.), optimised
for different research questions.

3586

7

P X R R

Kalamar ¢
—3| + Koral
User-Interface Query-
é— : - ry S
« Serialiser

Secoccccccccss

API Requests 3 Kustvakt
_

LY

‘.--.

User and Corpus License Management D

Kanalito
Search Aggregator

Krill

Search Engine

Middleware

Frontend

Backend

Figure 1: Interactions of KorAP components as microservices

“technology heterogeneity”’: KorAP is implemented us-
ing several programming languages (Java, JavaScript,
Perl, and Python), and different data storages (includ-
ing Lucene, MariaDB, Neo4j, and PostgreSQL). A mi-
croservice architecture makes it possible to choose the
best technology for each task with flexibility, instead
of one single software stack to fit all requirements.

“organizational alignment”: Small components make it
easier to develop in small teams, which can help to
improve development speed. A small codebase is
easier to adopt by new developers as well, as they
need not have knowledge about the whole system.
KorAP’s components are open source, available from
GitHub,?and will hopefully attract a community of de-
velopers for further improvements and sustainable de-
velopment.

Although the listed benefits are not exclusive to microser-
vices individually, they meet our requirements in total. Mi-
croservices, however, also have some drawbacks opposed
to monolithic systems, including:

e more complex testing scenarios;

e an occasional slowdown of development and deploy-
ment speed, when new features require modifications
of multiple interfaces or extensions to the communi-
cation protocol;

e overhead of remote API calls opposed to in-memory
function calls.

For these reasons, KorAP’s approach to microservices is
not rigid: The decision whether a component will be
implemented as a microservice or as an embedded li-
brary is based on the aforementioned advantages and dis-
advantages, and may change over time (i.e. any library
may evolve to a microservice at a later stage of devel-
opment or a microservice may become an embedded li-
brary). For example, the query serialisation component Ko-
ral (s. Sec. 2.1.) is implemented as a library rather than as
a microservice, because it is used by only one component
(Kustvakt) and would be negatively affected by the over-
head of remote API calls.

*https://github.com/KorAP; licensed under BSD-2.
Components not yet published are in preparation.

To compensate for the slowdown of development and to
speed up the evaluation of new features (especially regard-
ing the user interface Kalamar; s. Sec. 2.4.), a rapid ap-
plication development environment was created (Rabbid,
Mell and Diewald, 2016).

Figure 1 outlines the interactions of KorAP components as
microservices, from the application’s frontend to the back-
end services. In the following sections, we describe the
different components and their communication protocol.

2.1. KoralQuery

As the main access point to DEREKO, KorAP has to pro-
vide all search and analysis features common to more
than 38 thousand registered users of COSMAS II.* This
is achieved mainly through supporting its familiar query
language. In an effort to accommodate a great number
of additional search and analysis features without modify-
ing this query language, Bingel and Diewald (2015) intro-
duced the KoralQuery protocol, a JSON-LD (Sporny et al.,
2014) based pivot format for corpus queries and the central
webservice communication protocol of KorAP (see Fig. 2).
The protocol distinguishes several types of query objects,
pertaining to the search in arbitrary annotation layers (see
Sec. 1 in Fig. 2) or the creation of virtual corpora (see Sec. 2
in Fig. 2), among others (for the specification draft, see
Diewald and Bingel, 2015).

Its abstract and modular representation of queries strongly
benefits the sustainability of KorAP in regard to the follow-
ing aspects:

Stability. In using a common protocol, the components in
KorAP live up to the same demands and specifica-
tions, which is crucial for the design of KorAP as a
microservice-based system.

Backward compatibility. In abstracting away from con-
crete query languages, KoralQuery safeguards the sup-
port for existing languages. While this is of particular
importance when a query engine is designed to replace
an existing one (as in the case of KorAP and COS-
MAS T1I), it strongly simplifies development whenever
additional query languages need to be supported by
the system.

Forward compatibility. Additional search and analysis
features can be integrated into KoralQuery through

*nttp://www.ids-mannheim.de/cosmas2/

3587

({)
"@context" : "http://korap.ids-mannheim.de/
ns/koral/0.3/context.jsonld",
"query": {
"@type": "koral:group",
"operation": "operation:sequence",

.~ "operands": [{
"@type": "koral:token",

"wrap": {
"@type": "koral:termGroup"
"relation": "relation:and",
-~ "operands": [{
"@type": "koral:term",
"layer": "m",
"value": "pl",
"match": "match:eq",
"foundry": "mate",
"key": "number"
oA
"@type": "koral:term",
"layer": "p",
"match": "match:eq",
"foundry": "mate",
| "key": "ART"
3}
}
A
"operation": "operation:class",
"@type": "koral:group",

"classOut": 1,
.+ "operands": [{
"operation": "operation:sequence",
"@type": "koral:group",
. "operands": [{
"@type": "koral:group"
"operation": "operation:repetition",
. "operands": [{
"@type": "koral:token",

"wrap": {
"@type": "koral:term",
"layer": "p",
"match": "match:eq",
"foundry": "cnx",
"key": "A"
i }
~ }1,
"boundary": {
"min": O,
"max": 1,
"@type": "koral:boundary"
}
A
"@type": "koral:token",
"wrap": {
"@type": "koral:term",
"layer": "1",
"match": "match:eq",
"foundry": "tt",
"key": "Baum"
L }
L3
3

+
"collection": {
"@type": "koral:docGroup",
"operation": "operation:or"
. "operands": [{
"@type": "koral:doc",
"match": "match:contains",
"key": "author",
"value": "goethe"
A
"@type": "koral:doc",

"match": "match:contains",
"key": "author",
; "value": "schiller"
.. 2
3
},
"meta" { }
\J J
Figure 2: The query [mate/m=number:pl &

mate/p=ART] {1l:[cnx/p=A]l? [tt/1l=Baum]}
(Poligarp+) serialised as KoralQuery, with a virtual corpus
defining all documents of the authors “Schiller” and
“Goethe”

the definition of corresponding query object types (see
below), thus extending the protocol to meet new de-
mands when they arise. The protocol also reserves the
possibility for components to transmit warnings or er-
ror messages upon being confronted with, for instance,
novel constructs that cannot yet be processed by the
respective component.

At its core, KoralQuery defines a set of linguistic types,
for instance denoting tokens, syntactic constituents, or se-
quences of tokens. These types are defined as abstract
structures that can flexibly address different annotation lay-
ers and sources at the same time, which ensures a high de-
gree of independence from specific linguistic theories or an-
notation schemes. Theoretical insights into the desired set
of supported features, as well as the scheme-independent
design, initially came from a study of query language ex-
pressivity by Frick et al. (2012).

In addition to the serialisation of user-formulated queries,
the protocol supports query rewrites. These may, for exam-
ple, restrict the search space to specific documents that the
user has permission to access (see Banski et al., 2014, and
Sec. 2.2.). To make the user aware of any rewrites, the pro-
tocol provides a mechanism to report these modifications.
KoralQuery representations are generated from queries for-
mulated in any of the supported query languages by the
translation component Koral (Bingel, 2015), the refer-
ence implementation of KoralQuery’s serialisation mecha-
nism. Currently, these languages include COSMAS 1II QL,
Poligarp QL (a CQP variant; Przepiérkowski et al., 2004)
ANNIS QL (Rosenfeld, 2010), and a subset of CQL, which
is used in CLARIN Federated Content Search (CLARIN-
FCS)>. Koral is used as a library by Kustvakt (see following
Section) to translate queries to KoralQuery and use it as a
common representation for different query languages.

2.2. Kustvakt

The scope of retrieval of individual texts is often restricted
by intellectual property laws of various nature. Kustvakt’s
primary role, as the central user and corpus license man-
agement component, is to address this issue by examin-
ing queries and, if necessary, modifying the requested vir-
tual corpus according to the permissions that the user has
been granted, before the queries are passed on to the search
backend (cf. Banski et al., 2014). An additional role that
Kustvakt plays is to inject user-specific default values into
queries (e.g. the preferred annotation sources for Part-Of-
Speech). In cases where Kustvakt rewrites a query, the user
gets notified about the nature of the rewrite and the reason
for it.

Kustvakt provides a REST-like API and integrates with
standardised authentication and authorisation schemes to
allow multiple user clients to access KorAP.

Shttps://www.clarin.eu/content/federated-
content-search-clarin-fcs; currently implementing
the latest FCS 1.0 specification supporting basic CQL search such
as term and phrase queries, accessible through the SRU/CQL pro-
tocol (http://clarin.ids-mannheim.de/korapsru)
and the FCS Aggregator (http://weblicht.sfs.uni-
tuebingen.de/Aggregator/).

3588

2.3. Kirill

Krill is the primary search and analysis backend for Kor-
AP and the reference implementation for KoralQuery con-
sumption. It is based on Apache Lucene® and provides
support for efficient search on metadata, primary data, and
multiple layers of annotation data.

To narrow down searches to documents that are part of vir-
tual corpora, Lucene-based filters are applied, for instance
to bundle documents by a certain author or from a certain
range of time.

In view of the wide variety of query constructs supported by
KoralQuery, Lucene’s SpanQuery collection was vastly
extended. Enhancing Lucene’s native positional search,
Krill supports distance search based on various distance
units (e.g. word, sentence) and other complex constraints
(e.g. minimum and maximum distance, occurrence order),
for instance to find all adjectives within the distance of
maximum 3 words from a certain noun. Besides, it can
search for constituents embedded in larger phrase structures
by position (e.g. find the preposition “out” at the end of a
verb phrase). Both hierarchical and relational queries are
applicable in Kirill, for instance using the dominance and
relation operators in ANNIS QL to specify hierarchy and
dependency relations. All supported queries can be com-
bined forming a complex nested query (e.g. find a plural
pronoun within a verb phrase modifying a noun phrase).

2.3.1. Kanalito

Kirill can be used either as a library or as a stand-alone mi-
croservice providing access to the search index via Koral-
Query and a REST-like APIL. In the latter scenario, a Krill
service can take part in a cluster of independent nodes,
managed by a central service. In KorAP, the central man-
agement service for distributed Krill nodes is called Kanal-
ito.

Kanalito accepts KoralQuery requests and passes them to
registered Krill nodes in parallel. Each Krill node is respon-
sible for just a subset of the corpus (a so-called “shard”; see
Stonebraker, 2010). That makes the KorAP search backend
scalable horizontally. Query results are afterwards aggre-
gated, sorted and returned (see Fig. 3, top).

Kanalito is able to sort results by several criteria such as
the frequency of matches in a document. It is also possi-
ble to retrieve statistical information on metadata, like how
many matches were found in a certain range of time or in
a certain genre. Long-running processes, such as conver-
sion and indexation of new documents, are scheduled using
a Job Queue and performed by Kanalito worker nodes (see
Fig. 3, bottom). In the future, long-running processes may
include complex analysis with non-realtime results as well.
Kanalito is designed to be a thin orchestration tool for Krill
nodes and will steadily adopt advances in Krill’s capabili-
ties. Tasks currently handled by Kanalito will be delegated
to Krill nodes in case parallelisation is beneficial. Well-
established distribution solutions for Lucene, like Apache
Solr,” were investigated and may become part of Kanalito
in the future.

6https://lucene.apache.org/
"nttps://lucene.apache.org/solr/

author contains goethe
‘author contains schiller

In one Collection~ with Poligarp +

PRES
PREP DT A N v ADV_ | PRON N PRON N Al
@MAIN | @ADVL| G@PREMOD | ©@NH | @PREMOD | @NH | @Al
ART VAFIN | ADV. I NE PPOSAT [AL
ssssss - Immergrun Baum haben | _noch| el +-chen F

ihr
_ste/inr

APPR ART

APPR ART ADIA NN VAN | ADV PIAT NN PPOSAT NE Al

ihr Laub a
DET NoUN | Ad

Figure 4: Screenshot of the Kalamar User Interface, with
KWIC-, snippet-, table- and tree-views of search results

Following the concept of replaceability of microservices,
KorAP supports multiple search backends. Karang, for ex-
ample, is an alternative search and analysis backend based
on the Neo4j® graph database, focussing on complex de-
pendency queries and collocation extraction.

2.4. Kalamar

With Kustvakt providing a central Web API for all Kor-
AP functionalities, a user interface component for search
and result visualisation can be implemented as a simple
microservice, too. One such user interface for KorAP is
Kalamar.

Kalamar has a focus on usability, trying to represent the
simplest frontend possible while providing full access to
the functionalities of KorAP. Tools were implemented to
assist the user in formulating research questions, like an
annotation helper suggesting possible annotations to search
for (e.g. by providing lists of Part-of-Speech tags associated
to a certain annotation layer) and a virtual corpus helper
assisting the user in creating complex virtual corpora (by
means of nested combinations of metadata criteria).

After issuing a search request, results are presented in sim-
ple KWIC (Keywords in Context) views. Afterwards re-
sults can be expanded with a larger context and enriched
by retrieving metadata, showing token-based annotations in
a table view, and relational annotations in tree views (see

$http://neodq.com/

3589

Short-running Processes

Long-running Processes

,
- A

Metadata

Figure 3: Short- and long-running processes in the Kanalito workflow

Fig. 4). These requests directly correspond to Kustvakt
Web API calls, granting transparent access to the underly-
ing corpus data.

3. Related Work

In the beginning of the project, various corpus analysis sys-
tems were evaluated for their aptitude to succeed COS-
MAS II (Banski et al., 2012). The IMS Corpus Workbench
(CWB; Christ, 1994; Evert and Hardie, 2011) was consid-
ered as being a mature solution for most requirements, but
was discarded due to its limitation of 2.1 billion tokens per
corpus at that time (Evert and Hardie, 2011). Since then,
corpus technologies have evolved: The next generation of
CWB, for example, will not have the aforementioned lim-
itation of corpus size (Evert and Hardie, 2015), and there-
fore can be considered a valid alternative to KorAP’s search
and analysis backend.

BlackLab,’ actively developed at the Institute for Dutch
Lexicology, is a corpus query engine that provides a sim-
ilar set of features as Krill and uses the same underlying
search engine. It handles multiple query languages and sup-
ports similar query constructs. Although it uses Lucene as
well, it applies different indexing strategies. Thus, it can
be a good candidate for performance comparison in the fu-
ture and may serve as an alternative search backend. The
same is true for MTAS, a similar search engine developed at
the Nederlab,'? focusing on a tight integration with Apache
Solr.

Corpus query technologies based on relational databases
(RDBMS) like ANNIS (Zeldes et al., 2009) focus on
large sets of query features, but are rarely considered
for large corpora, although recent evaluations have shown
parallelisation to be a promising approach for reasonable
performance using RDBMS for corpus analysis (Schnei-
der, 2012). The design of KorAP architecture allows for
straightforward adaptation of future corpus technologies.
For several years, transnational infrastructures have been
implemented — in Europe this process is facilitated through
the so-called ESFRI-roadmap. An infrastructure designed
for dealing with language resources is CLARIN (Varadi

http://inl.github.io/BlackLab/
Yhttps://www.nederlab.nl/

et al.,, 2008). Following its API-first development ap-
proach, KorAP allows for an unobstructed integration
into CLARIN. Kustvakt supports authentication mecha-
nisms favored by CLARIN (i.e. Shibboleth) and provides
OAuth-2.0-based authorization flows to grant access to the
language resources of DEREKO (cf. Diewald and Kupi-
etz, 2016). KorAP already participates in CLARIN-FCS
and further support is in preparation (e.g. integration of
CLARIN-Virtual-Collection-Registry and FCS 2.0).

4. Conclusion

KorAP is a corpus search and analysis platform for large
corpora focussing on scalability, flexibility, and sustain-
ability. A microservice-based architecture is a promising
approach to fulfill these requirements, as described in this
paper. The system consists of small components that are
easy to extend, replace, and maintain. While KorAP is still
under development, it is already in use for special corpora
(cf. Fischer et al., 2016) and part of ongoing collaborations
(Cosma et al., 2016). Being free and open source software,
KorAP welcomes contributions from everyone.

Acknowledgements

KorAP is developed at the Institute for the German Lan-
guage (IDS), member of the Leibniz-Community'' and
supported by the KobRA!? project, funded by the Federal
Ministry of Education and Research (BMBF).!* The au-
thors would like to thank Elena Frick, Peter Harders, Pi-
otr Pezik, and Carsten Schnober for their contributions to
KorAP, and the anonymous reviewers for their constructive
comments.

Bibliographical References
Banski, P., Fischer, P. M., Frick, E., Ketzan, E., Kupi-
etz, M., Schnober, C., Schonefeld, O., and Witt, A.
(2012). The new IDS corpus analysis platform: Chal-
lenges and prospects. In Proceedings of the Eighth Inter-

national Conference on Language Resources and Evalu-
ation (LREC 2012), pages 2905-2911.

llhttp ://www.leibniz-gemeinschaft.de/en/
about-us/leibniz-competition/projekte-
2011/2011-funding-1line-2/

Phttp://www.kobra.tu-dortmund.de

Bhttp://www.bmbf.de/en/

3590

Banski, P., Bingel, J., Diewald, N., Frick, E., Hanl, M.,
Kupietz, M., Pezik, P, Schnober, C., and Witt, A.
(2013). KorAP: the new corpus analysis platform at IDS
Mannheim. In Zygmunt Vetulani et al., editors, Human
Language Technologies as a Challenge for Computer
Science and Linguistics. Proceedings of the 6th Lan-
guage and Technology Conference, Poznai. Fundacja
Uniwersytetu im. A. Mickiewicza.

Banski, P., Diewald, N., Hanl, M., Kupietz, M., and Witt,
A. (2014). Access Control by Query Rewriting: the
Case of KorAP. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC 2014), Reykjavik, Iceland, May.

Bingel, J. and Diewald, N. (2015). KoralQuery — a General
Corpus Query Protocol. In Proceedings of the Workshop
on Innovative Corpus Query and Visualization Tools at
NODALIDA 2015, Vilnius, Lithuania, May.

Bingel, J. (2015). Instantiation and Implementation of a
Corpus Query Lingua Franca. Master’s thesis, Univer-
sity of Heidelberg, Germany.

Bodmer, F. (1996). Aspekte der Abfragekomponente von
COSMAS 1II. LDV-INFO, 8:142-155.

Christ, O. (1994). A modular and flexible architecture
for an integrated corpus query system. In Proceed-
ings of COMPLEX ’94, pages 23-32, Budapest.
http://cwb.sourceforge.net/files/
Christ1994.pdf.

Cosma, R., Cristea, D., Kupietz, M., Tufis, D., and Witt,
A. (2016). DRuKoLA - towards contrastive german-
romanian research based on comparable corpora. In Pro-
ceedings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC 2016), Por-
toroz, Slovenia, May. Accepted.

Diewald, N. and Bingel, J. (2015). KoralQuery 0.3. Tech-
nical report, Institut fiir Deutsche Sprache, Mannheim,
Germany. http://korap.github.io/Koral/;
Working Draft.

Diewald, N. and Kupietz, M. (2016). Integration der
KobRA-Verfahren in die IDS-Infrastrukturen. Technical
report, IDS Mannheim. http://www.kobra.tu-
dortmund.de/mediawiki/images/1/
17/KobRA_Technischer Bericht_ IDS_
Meilenstein_4c.pdf; last accessed on March 3,
2016.

Evert, S. and Hardie, A. (2011). Twenty-first century cor-
pus workbench: Updating a query architecture for the
new millennium. In Proceedings of the Corpus Linguis-
tics 2011 Conference, Birmingham, UK.

Evert, S. and Hardie, A. (2015). Ziggurat: A new data
model and indexing format for large annotated text cor-
pora. In Piotr Banski, et al., editors, Proceedings of
the 3rd Workshop on Challenges in the Management of
Large Corpora (CMLC-3), pages 21-27, Mannheim. In-
stitut fiir Deutsche Sprache.

Fischer, P. M., Diewald, N., Kupietz, M., and Witt,
A. (2016). Aufbau einer Korpusinfrastruktur fiir die
Beobachtung des Schreibgebrauchs. In Modellierung —
Vernetzung — Visualisierung: Die Digital Humanities
als fidcheriibergreifendes Forschungsparadigma. Digital

Humanities im deutschsprachigen Raum (DHd 2016),
Leipzig, Germany, March.

Frick, E., Schnober, C., and Barski, P. (2012). Evaluating
query languages for a corpus processing system. In Pro-
ceedings of the Eighth International Conference on Lan-
guage Resources and Evaluation (LREC 2012), Istanbul,
Turkey, May.

Kupietz, M. and Liingen, H. (2014). Recent Develop-
ments in DeReKo. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC 2014), Reykjavik, Iceland, May.

Lewis, J. and Fowler, M. (2014). Microservices. Blog
Post; http://martinfowler.com/articles/
microservices.html; last accessed on October 12,
2015.

Mell, R. M. and Diewald, N. (2016). Korpusbasierte
Diskurs-Recherche mit Rabbid. Talk. Accepted for Ger-
manistentag 2016 as part of the panel “Erzihlen in dig-
italen Diskursen: Die narrative Dimension der Neuen
Medien”.

Newman, S. (2015). Building Microservices. Designing
Fine-Grained Systems. O’Reilly Media.

Przepidrkowski, A., Krynicki, Z., Debowski, L., Wolinski,
M., Janus, D., and Banski, P. (2004). A search tool for
corpora with positional tagsets and ambiguities. In Pro-
ceedings of the Fourth International Conference on Lan-
guage Resources and Evaluation (LREC 2004), pages
1235-1238.

Rosenfeld, V. (2010). An implementation of the Annis 2
query language. Technical report, Humboldt-Universitit
zu Berlin.

Schneider, R. (2012). Evaluating DBMS-based Access
Strategies to Very Large Multi-layer Annotated Corpora.
In Proceedings of the Workshop on Challenges in the
management of large corpora (CMLC-1) at the seventh
International Conference on Language Resources and
Evaluation (LREC 2012), Istanbul, Turkey, May.

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., and
Lindstrom, N. (2014). JSON-LD 1.0 — A JSON-based
Serialization for Linked Data. Technical report, W3C.
W3C Recommendation, http://www.w3.0org/TR/
json-1d/.

Stonebraker, M. (2010). SQL Databases v. NoSQL
Databases. Communications of the ACM, 53(4):10-11.
Viradi, T., Wittenburg, P., Krauwer, S., Wynne, M., and
Koskenniemi, K. (2008). CLARIN: Common Language
Resources and Technology Infrastructure. In Proceed-
ings of the Sixth International Conference on Language
Resources and Evaluation (LREC 2008), pages 1244—

1248, Marrakech, Morocco, May.

Zeldes, A., Ritz, J., Liideling, A., and Chiarcos, C. (2009).
ANNIS: A Search Tool for Multi-Layer Annotated Cor-
pora. In Proceedings of Corpus Linguistics 2009, Liver-
pool, UK.

3591

