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Abstract
Unsupervised learning of morphological segmentation of words in a language, based only on a large corpus of words, is a challenging
task. Evaluation of the learned segmentations is a challenge in itself, due to the inherent ambiguity of the segmentation task. There
is no way to posit unique “correct” segmentation for a set of data in an objective way. Two models may arrive at different ways of
segmenting the data, which may nonetheless both be valid. Several evaluation methods have been proposed to date, but they do not
insist on consistency of the evaluated model. We introduce a new evaluation methodology, which enforces correctness of segmentation
boundaries while also assuring consistency of segmentation decisions across the corpus.
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1. Introduction
Over the last 15 years, a number of algorithms have been
proposed for learning of the morphological structure of lan-
guages from raw data—large lists of words in the language
(the corpus). This paper addresses the problem of evaluat-
ing the performance of such algorithms. Morphology learn-
ing is especially interesting for morphologically rich lan-
guages, where words can consist of many morphs, which
are surface realizations of morphemes; a morpheme is a
minimal unit, which carries meaning or syntactic function.
Ultimately, the problem of morphological analysis includes
several aspects. One is identifying the structure of each
word—which segments it consists of, and the types of seg-
ments. In many languages segments can be stems and af-
fixes; affixes can be prefixes, suffixes, etc. Another aspect
is identifying allomorphy, which involves linking different
variants (allomorphs) of a given morpheme, which appear
in different words, and typically depend on phonological
context. For example, it is not trivial to discover that in
English try-ing and tri-ed have the same stem morpheme.
It is well understood how one can build morphological an-
alyzers for many languages. This is typically done by writ-
ing morphological grammars, based on dictionaries of mor-
phemes for stems and affixes, and writing rules for combin-
ing the morphemes into words, e.g., (Koskenniemi, 1983).
The morphological analyzer is then used to analyze any
word in text, and is an essential low-level component in
many tasks in natural language processing (NLP), such as
parsing, machine translation, etc.
Unsupervised learning of morphology is the inverse prob-
lem: to infer the morphology of all words in the language,
given only a large number of words—given no dictionar-
ies, rules, etc. A number of algorithms have been proposed
and their performance has been compared, e.g., in a series
of shared-task competitions, the Morpho-Challenges, (Ku-
rimo et al., 2010). The competitions provided annotated
data, and tools for evaluation of performance.
The majority of algorithms for unsupervised learning of
morphology (that we have reviewed), treat the segmenta-
tion of words into morphs either as the ultimate goal or
as a first step on the way toward learning the “deeper” as-
pects of morphology, viz., allomorphy. Allomorphy (when

it is treated) is seen by most as a second step, after a seg-
mentation has been obtained. At the same time, some pa-
pers observe the difficulty of evaluating segmentations di-
rectly(Virpioja et al., 2011); we review some of these prob-
lems in this paper.
We agree that the ultimate goal of unsupervised learning of
morphology is to learn everything about the morphologi-
cal system. Our view is that segmentation is an interesting
problem—whether as an end in itself, or as a first step to-
ward learning deeper morphology—and as such it should
be and can be evaluated directly.
The paper will present the details of new gold-standard an-
notation guidelines, and an algorithm to evaluate morpho-
logical segmentation of words based on this gold standard,
focusing on the consistency of the segmentation.1

The paper is organized as follows: in Section 2. we define
the problem of evaluation of morphological segmentation,
in Section 3. we review methods for evaluation of morphol-
ogy learning algorithms, in Section 4. the motivation for a
new evaluation method is presented, followed by our ap-
proach to the evaluation in Section 5.. Experimental results
are presented in Section 6. and we conclude in Section 7.
with discussions and possible improvements.

2. Problem Definition
Our goal is to define a quantitative measure of goodness of
a segmentation produced by a model, compared to a gold-
standard (reference) segmentation. Several methods have
been designed to evaluate segmentation algorithms, either
directly using the resulting segmentations, or indirectly—
by using the segmentation algorithm to perform another
NLP task, such as speech recognition or information re-
trieval (Virpioja et al., 2011). While using the algorithm
in a NLP task is useful for predicting the quality of the al-
gorithm as used inside that application, our goal here is to
devise a method to evaluate the segmentation directly.
It is important to mention that we address only the task of
unsupervised word segmentation, i.e., decomposing words
into their surface morphs, using a large corpus of words

1The evaluation software along with experimental data is
available from http://nlp.cs.helsinki.fi/morpho/.
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in the language; we do not address full morphological
analysis which would produce a list of morphemes and/or
morpheme classes for each word. The two problems are
related, but not identical. We focus on evaluating al-
gorithms that produce a segmentation for each word in
the corpus, e.g., (Bernhard, 2008), Morfessor Categories-
MAP (Creutz and Lagus, 2007), ParaMor (Monson et
al., 2009), RALI-ANA (Lavallée and Langlais, 2010),
MetaMorph (Tchoukalov et al., 2010), Morfessor Base-
line (Creutz and Lagus, 2005), and others. As a conse-
quence, we assume that if we concatenate the segmenta-
tions, the result is identical to the input word.
The problem can be viewed as evaluating how correctly
the morpheme boundaries are placed within the word—
compared to the gold-standard reference. For example, in
English, dogs must be segmented as dog+s where + de-
notes a morph boundary between stem and suffix. Note
that some languages (Arabic, German, etc.) use non-
concatenative (e.g., ablaut) processes for inflection and
derivation, which cannot be described by segmentation.
We deal primarily with languages for which segmentation
provides a good approximation to morphology—which in-
cludes many Indo-European languages, agglutinative lan-
guages from the Uralic family, Turkic, and many others.

3. Prior Work
We review methods for evaluating algorithms for automatic
learning of morphology. These methods can be categorized
as either direct approaches, which assign scores to models
by examining the output of the model; or indirect, which
evaluate the model as a component of the larger task. The
evaluation is then done based on how much better the larger
task performs when the model is used.
A review of evaluation methods for different morphological
tasks can be found in (Virpioja et al., 2011), which also in-
troduces several new variations of the existing algorithms.
Beyond morphological segmentation, these tasks include
clustering of word forms and full morphological analysis.
Direct evaluation methods are, in general, believed to bet-
ter reflect the characteristics of the algorithm, while indirect
methods complicate the evaluation task, since one needs to
minimize the effect of other factors in the larger task (Vir-
pioja et al., 2011).
Other evaluation methods, which evaluate more than
segmentations, or require more output from the model
than only morphological segmentations, are described
in (Spiegler and Monson, 2010; Virpioja et al., 2011).
A widely used approach (Kurimo et al., 2006; Snyder and
Barzilay, 2008; Poon et al., 2009) for evaluating segmen-
tation of words is the boundary precision, recall, and ac-
curacy (BPRA2), based on the number of reference bound-
aries found and missed. If a set of correct segmentation
points for the given words could be provided, the segmen-
tation task could be viewed as an information retrieval (IR)
task, where the items to be retrieved are the segmenta-
tion boundaries. Then the standard IR evaluation measures

2Most earlier works do not include accuracy as one of the mea-
sures, however we will include it in this paper along with preci-
sion, recall, and F-score since it is a related and relevant measure.

precision(P ), recall (R), and F-score (F ) can be defined as:

P =
|{gold standard boundaries} ∩ {retrieved boundaries}|

|{retrieved boundaries}|

R =
|{gold standard boundaries} ∩ {retrieved boundaries}|

|{gold standard boundaries}|

F = 2 · P ·R
P +R

(1)

Alternatively, using notation from binary classification,
precision, recall, F-score and accuracy (A) can be com-
puted as:

P =
tp

tp+ fp

R =
tp

tp+ fn

A =
tp+ tn

tp+ tn+ fp+ fn

(2)

where tp, tn, fp, fn denote number of true positives, true
negatives, false positives and false negatives, respectively.
Positive (negative) means that the model found (did not
find) a morph boundary annotated in the gold standard.
One evaluation scheme, based on the BPRA method and
related to our work, can be found in (Creutz and Lindén,
2004; Creutz et al., 2005). To allow the model to choose
one of several alternative reference segmentations, they
define fuzzy boundaries; instead of a strict segmentation
points in words, the model will receive credit if the segmen-
tation boundary is placed anywhere in the area permitted by
the reference set.

4. Motivation
The BPRA approach has been used in several studies (Vir-
pioja et al., 2011); however, it has several important short-
comings. In most languages that have concatenative (or ag-
glutinative) morphological processes, it is not always clear
where the correct boundaries should be placed, because of
the complexities in the morpho-phonology of the language.
For example, in Turkish, consider the morphology of
ekmeği, composed of ekmek (’bread’) + i (accusative
marker); k changes to ğ due to regular consonant mutation.
One model—i.e., one learning algorithm—might segment
this word as ekmeğ+i, considering ekmeğ an allomorph of
ekmek and i as the accusative marker, while another model
might segment it as ekme+ği, considering ekme as an allo-
morph of ekmek, and ği an allomorph of i. Similarly, the
plural in English: analyzing flies, one model could posit
that the plural marker is -s (as in dog+s) and the stem fly
has an allomorph flie-. Another model might posit an al-
lomorph for the stem fli- and an allomorph -es for the plu-
ral marker. Clearly, there is no way to insist that one of
the models is “better” or more correct than the other. This
makes specifying the gold-standard segmentation problem-
atic.
One option is to enumerate all acceptable segmentations for
a word and give credit to the model if the predicted seg-
mentation matches any of the reference segmentations. Al-
ternatively, fuzzy boundaries can be defined for words by
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marking an acceptable region where the boundary can be
placed. If the model predicts a boundary anywhere within
the region, it receives credit. Such an evaluation method is
suggested in (Creutz and Lindén, 2004; Creutz et al., 2005)
as part of the Hutmegs package, as an attempt to provide
gold-standard segmentations for Finnish. The main prob-
lem with this approach is that it is too permissive: it ignores
the question of consistency and allows the model to violate
its own decisions. A good evaluation scheme should penal-
ize the model for inconsistent behavior.
In our Turkish example, ekmeği: both of the models dis-
cussed are equally good, as long as they remain faithful to
the decision they make throughout the entire corpus, i.e.,
the model that prefers ekmeğ+i should do so for all words
where consonants mutate before vowels, such as ekmeğ+e,
eteğ+i, artığ+ı, etc.; if the model violates this (its own) de-
cision on some words, it should be penalized.

5. Gold Standard Annotation and
Evaluation Algorithm

A dilemma is a (language-specific) situation where more
than one segmentation may be acceptable according to
the gold-standard annotation. A particular decision that a
model makes in case of a dilemma, is called a theory that
the model supports. For example, in English, the words
dogs and flies may have gold-standard segmentations:

X X
d o g + s f l i . e . s

Segmentation of dogs is unproblematic, the placement of
the morph boundary is clear, marked with +. For flies, we
wish to mark two alternative segmentations as acceptable.
We do this by naming the dilemma, X, and specifying in the
(language-specific) configuration that it has two acceptable
theories, with boundary before or after e (not both). We
indicate this by:

a. placing dots before and after e, each dot labeled by X,

b. specifying (in the configuration) in the definition of X
that acceptable theories for X are 10 or 01.

This means that the word must be segmented as either fli+es
or flie+s, respectively; 1 indicates the presence of a bound-
ary, and 0 indicates absence of it.
The key point then is that if the evaluation corpus contains
many similar words—flies, tries, cries, supplies, etc.—and
they are all annotated similarly, then the model must seg-
ment all of these words according to theory 10 or according
to theory 01—consistently. If the model is not consistent, it
will be penalized. However, the penalty must be applied in
such a way as to give it maximal benefit of the doubt. For
instance, if the model segments above words as:

flie+ s
trie+ s
crie+ s

supplie+ s

it will get full credit for all four words (according to the-
ory 01). However if the model outputs the following as its
answer to the segmentation problem:

fli+ es
trie+ s
crie+ s

supplie+ s

although these segmentations are correct individually, the
model, as a whole is behaving inconsistently and should
not be given full credit. There are two possible scenarios
here. One is to assume that for this dilemma (X) the cor-
rect theory is 01, meaning that the accepted segmentation
pattern is “· · ·ie + s”, in which case 3

4 of the words will
yield full credit. The other case is to consider the theory 10
as correct, “· · ·i + es”, which will result in full credit for
1
4 of the words. Since these two theories are both valid ac-
cording to the configuration, at evaluation time, the evalua-
tion algorithm must find which theory results in the highest
score for the model. In this example the theory supported
by the majority of the words should be chosen as the refer-
ence.3. This is what we mean by assuring maximal benefit
of the doubt. By following this approach, the evaluation al-
gorithm does not discriminate against any model, since it
assures maximal possible score for every model. The the-
ory that yields the maximal score for a dilemma is referred
to as the “decision” that model makes, or the theory that it
supports.
Many other kinds of dilemmas and theories can be defined.
Each dilemma is marked with its own unique label in the
gold standard annotation, along with the theories it admits.
In our approach to evaluation of segmentations, given a
dilemma, the model receives credit for selecting one of the
theories that the gold standard accepts, in a consistent way.
It is crucial to note that these dilemmas are independent
from each other, i.e., supporting a theory in one dilemma
does not restrict or encourage a theory of another dilemma.
Given a gold-standard annotation, if we fix some theory
for each dilemma, we can generate the set of unambiguous
correct segmentations for these fixed theories. The evalu-
ation algorithm then computes the boundary precision, re-
call, and accuracy (BPRA) to score the model’s segmenta-
tion in the standard way.
The crucial feature of our method is that it identifies which
theories are preferred by the system, given the segmenta-
tions that are being evaluated. A theory is preferred, if
choosing it would yield the highest score for the system.
Since all theories are equally valid, the evaluation algorithm
must find the one that maximizes the overall score.
Computing this exhaustively would require listing all possi-
ble segmentation sets based on all possible theories for each
dilemma. This would make the problem intractable when
the number of dilemmas is large, since it will require going
through O(nk) potential reference segmentations, where n
is the number of dilemmas and k is the maximum number
of theories for a dilemma.
The overall score that we aim to maximize for the sys-
tem is accuracy, since maximizing precision or recall sep-
arately results in preferring under-segmentation or over-
segmentation, respectively. One could maximize the F-
score to balance recall and precision, but because of a com-

3Although this is true for this dilemma, we show in section 5.4.
that majority does not always give maximal benefit of the doubt.
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plicated and non-linear relation between F-score and the
number of segmentation points, it is not obvious how it
could help to perform the computations with reasonable
time complexity. We show how maximizing accuracy, un-
der the assumption of independence of the theories, allows
us to produce a consistent evaluation score.

5.1. Dilemmas and Labels
As mentioned above, our focus in this evaluation method
is on dilemmas that a human expert/annotator encoun-
ters while annotating the segmentations—alternative ways
to segment a word into morphs that are legitimate, and
only depend on the annotator’s decisions about allomor-
phy. These dilemmas can depend on what morphemes are
present in the word and in the context of what other mor-
phemes they appear.
Each dilemma is identified by a unique label. There are
labels of different arities, which will be explained briefly
using examples.

5.2. Two-Way Dilemmas
This is the simplest type of possible dilemma. It is used
when a human expert believes that placing a morph bound-
ary between two symbols is optional, meaning that it is not
absolutely necessary to segment it at that point. One exam-
ple would be in cases where for historical reasons one might
place a morph boundary between two potential morphs.4 In
other words, the morph pair is old enough (“ossified”) to be
legitimately considered as a single morph. One example in
Turkish is çıkmaz (meaning ’stalemate’, ’dead end’) which
is considered by many as a single morph, but could be seg-
mented as çık (from çıkmak; ’to exit’) and suffix -maz a
form of negation in Turkish).
Another example is Finnish arvo (meaning ’value’)5

Y
arv.o

This means that the system under evaluation can decide ei-
ther to segment at the points labeled Y or not to segment.
Segmenting (placing a morph boundary) at this point cor-
responds to theory 1 and no boundary corresponds to theory
0; the valid theories for dilemma Y are 0 and 1. The prac-
ticality of this notation will become clear later, with labels
of higher arity. This is declared in the gold-standard anno-
tation, in the configuration file:

(Y 2 0 1)

The first element of the list is the symbol (label) that iden-
tifies the dilemma; meaning, Y is a dilemma with two pos-
sible theories/choices, of which (both!) 0 and 1 are accept-
able theories.

5.3. Four-Way and Higher-arity Dilemmas
Sometimes in gold standard annotation we face dilemmas
in which more than one potential boundary is involved; for

4Or for any other reason.
5In this example, it is not quite clear how to deal with the “o”.

Although there exists a derivational suffix “-o” which is used to
form nouns out of verbs, not nouns.

example, flies, as above, will be annotated:

X X
fli.e.s

It is important to note that since label X will be used in
this type of dilemmas, it will always appear in pairs. Only
one theory (ideally) should be selected as a segmentation
decision by the system under evaluation, and for example
if it chooses to segment at both points or neither, it should
be penalized. To impose this kind of restriction, we use the
following line in the label definition file:

(X 4 1 2)

the number 4 states that the dilemma X is a “4-way”
dilemma, meaning that in total there are four possible
theories—ways to perform the segmentation—that the sys-
tem could follow; thus, there are log2 4 = 2 consecu-
tive occurrences of X expected in the gold-standard words
that contain this dilemma. The following numbers indi-
cate which of the 4 possible segmentation theories are the-
oretically valid and can be chosen by the system without
penalty. The numbers are decimal values of binary repre-
sentations of the possible segmentation configurations, des-
ignating the presence of a morph boundary by 1 and lack of
boundaries by 0. This is depicted in Table 1.

possible comparison numeric
segmentation to gold standard representation

fli.e.s
flie+s fli e+s (01)2 = 1

fli.e.s
fli+es fli+e s (10)2 = 2

Table 1: Valid segmentation configurations for label X and
word fli.e.s, with decimal representation. Segmenting
(placing a morph boundary) at a point corresponds to 1 and
not segmenting corresponds to 0.

Of course there can be such dilemmas where the annotator
decides it is also acceptable to segment at both locations, or
neither. In such a case, corresponding numbers 0 = (00)2
and 3 = (11)2 can be added to the list of allowable theories.
Finally, this notation can be extended to dilemmas of higher
order. For example the following configuration line would
define a label for an 8-way dilemma (corresponding to 3
possible segmentation locations, hence, 3 consecutive la-
bels in gold-standard annotation):

(C 8 3 5 6)

The list (3 5 6) indicates that the valid theories are those
which have exactly two (out of the three) segmentation
points selected.

5.4. Performance Measure of Segmentations
Given a set of our gold standard segmentations, comput-
ing the BPRA measures is straightforward. Using the an-
notation method described above, we can choose an arbi-
trary theory for each dilemma, and generate the fixed gold-
standard segmentations based on this set of theories. We
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want to give the model under evaluation the freedom to
choose any of the valid theories, but force it to be consistent
throughout the corpus and make the same decisions in sim-
ilar situations. The model will be penalized for breaking its
own decision.
As discussed above, we need a way to determine, for each
dilemma, which theory is preferred by the model. In the
“ideal” situation, where the model chooses one theory for
each dilemma and segments all examples according to the
chosen theory, it is clear that the preferred theory is the one
that the model is complying with, and there is no penaliza-
tion.
We next consider the case where for a given dilemma, D,
the model decides to segment instances according to one
of the theories, d1, but other instances according to another
theory, d2. Any of these theories could be chosen as the cor-
rect decision and the BPRA measures could be computed
for them, but our goal is to give the model maximum ben-
efit of the doubt. The theory that has been chosen most
often throughout the data-set might seem to be the theory
that should be preferred. Although this is true for one-way
dilemmas, it is not always the case. The next example clar-
ifies this:

Gold standard Model response
Z Z

1. abc.d.e abc d e

Z Z
2. fgh.i.j fgh i j

Z Z
3. klm.n.o klm n o

Z Z
4. pqr.s.t pqr s+t

Z Z
5. uvw.x.y uvw x+y

Z Z
6. zab.c.d zab+c+d

Z Z
7. efg.h.i efg+h+i

Figure 1: Left column: minimal example gold-standard an-
notation, with 7 instances of the 4-way dilemma Z. Right
column: actual segmentations produced by a model to be
evaluated using the gold standard; segmentation points are
shown with +; blanks mark potential relevant segmenta-
tion points that were not segmented by the model (shown
as blanks to help visualization).

The annotated gold standard for label (X 4 0 1 2 3)
along with an example of a model’s response is shown in
Figure 1. As easily seen, the first three cases are segmented
according to theory 00, the next two according to theory
01, and the last two according to theory 11; no word is
segmented according to theory 10. It might seem that the-

ory 00 is preferred by this particular model, but a closer
look will falsify this. Let us compute the scores for each
theory, assuming it is the preferred one. These score are
showed in Table 2.
There are 7 words of length 5, so each has 4 potential
segmentation boundaries. In total, there are 28 possible
boundaries; 14 of these boundaries, which are not related
to dilemma Z, are correctly left unsegmented by the model,
regardless of the chosen theory. Depending on the pre-
ferred theory, some of the other boundaries are correct or
incorrect. For instance if theory 00 is chosen, for each of
the first three words, both boundaries relevant to Z will be
counted as correct, so there will be 3 × 2 additional cor-
rect boundaries. For the next two words, only one of the
relevant boundaries (the first one) will be counted as cor-
rect, which will account for 2 (compare this to the num-
ber of bits in common between the preferred theory and
the one supported by words 4,5). The last two words have
been segmented incorrectly according to theory 00 of Z,
so they will not contribute anything to the final accuracy
score. Thus, the accuracy in case of preferring 00 will be
14+3×2+2×1+2×0

28 = 22
28 = 0.786. The same process is fol-

lowed for the second theory resulting in an accuracy score
of 0.821. Although 00 has more supporters than 01, it re-
sults in a lower accuracy.
The reason is that for 2-way and higher-order dilemmas,
when one theory is preferred, words that have been seg-
mented according to other theories—i.e., which support
other theories—may still contribute to the accuracy score.
This is because the theories are not disjoint, but have seg-
mentation points in common and choosing one theory,
might partially help other theories as well. Due to these
indirect contributions to the total score, sometimes a theory
with fewer supporters can surpass another theory with more
supporters.

Theory # Supporters P R F A
00 3 0 1 0 0.786
01 2 0.67 0.57 0.62 0.821
10 0 0.33 0.29 0.31 0.679
11 2 1.00 0.43 0.60 0.714

Table 2: Evaluation measures for the minimal example.

Thus, to give the model maximum benefit of the doubt, we
need to choose the theory that maximizes one of the evalua-
tion measures, not the number of supporters. Precision and
recall are not good choices for maximization, since maxi-
mizing one of them will trade off with the other, resulting
in under-segmentation or over-segmentation. F-score and
accuracy are the remaining options. In our method, we give
the models maximal benefit of the doubt in terms of accu-
racy since it is computationally easier, as shown below.
For this purpose, we need a score for dilemmas which max-
imizes accuracy. Let us denote the set of dilemmas as D
and a valuation—i.e., an assignment of theories t to dilem-
mas in D—as [D]t and the accuracy score under valua-
tion t with At. When computing accuracy, the denomina-
tor tp + tn + fp + fn is the number of possible bound-
aries in the gold-standard data, which is constant and in-
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dependent of the chosen theories. More precisely, it is ex-
actly

∑
w∈Wgs

(|w|− 1) where Wgs is the set of gold standard

words. Thus, we maximize the numerator and find:

argmax
[[D]]t

At = argmax
[[D]]t

tp+ tn

tp+ tn+ fp+ fn

= argmax
[[D]]t

(tp+ tn)

By definition, dilemmas are independent of each other, and
selecting one does not influence the others. Additionally,
the ambiguities in words do not overlap, and each boundary
in the gold-standard words can be marked with a maximum
of one label. Thus, we can maximize the sum of true pos-
itives and true negatives separately for each dilemma, and
solve the problem by finding the preferred theory for one
dilemma at a time.

Contribution to tp+ tn

Candidate

00 01 10 11

theory

00 2 1 1 0
01 1 2 0 1
10 1 0 2 1
11 0 1 1 2

Table 3: Contribution of each theory to tp + tn score for
all candidate theories, for every instance of the dilemma in
the data. Each cell shows how many correct segmentation
boundaries will be contributed to the accuracy score if the
theory corresponding to the row is preferred, and the theory
corresponding to the column is supported by the word.

To do this, for each dilemma, we create a “contribution”
table similar to Table 3. Each row corresponds to one can-
didate theory; given that the theory corresponding to the
row is the preferred one, the table shows how many correct
boundaries would be contributed by supporters of theories
in the columns. Since the dilemma in the Table is a 4-way
dilemma, for each instance two boundaries should be exam-
ined. For any instance, if the preferred theory is the same
as the supported theory, there are two correct boundaries.
If a different theory than the preferred one is selected, de-
pending on how many segmentation decisions they have in
common, it will contribute 1 point or none to the numerator.
The number of common segmentation decisions is given by
the number of bits the binary representations of the two the-
ories have in common.
If the number of supporters of each theory is counted (de-
noted by nt for theory t), the result can be tabulated simi-
larly to Table 4. The sum in each row shows what the con-
tribution to the numerator will be if the corresponding can-
didate theory the preferred one. The task is now straight-
forward: select the theory for which the sum is maximized.

Another potential measure to maximize benefit of the doubt
is the F-score. However, it is more complex than the accu-
racy, since the denominator is not constant with respect to
the chosen theories for dilemmas, thus it is not clear how
one should find the preferred theory sets for each dilemma
at a time without enumerating all possible valuations for
dilemmas.

Contribution to tp+ tn

Candidate

00 01 10 11

theory

00 2n0 + n1 + n2 + 0
01 n0 + 2n1 + 0 + n3

10 n0 + 0 + 2n2 + n3

11 0 + n1 + n2 + 2n3

Table 4: Contribution of theories to tp + tn for each can-
didate for the all occurrences of the dilemma. Each cell
shows how many correct boundaries will be contributed to
the accuracy score if the theory corresponding to the row is
preferred by the whole data set and the theory correspond-
ing to the column is supported by the word. nt is the num-
ber of supporters of theory t in the data set. Decimal values
representing theories are displayed for simplicity.

One potential problem with maximizing accuracy is the
so-called accuracy paradox, which arises when the set of
true positives is smaller than the set of false positives, and
the model decides to unconditionally predict negative (i.e.,
leave all words unsegmented). The same also can happen
when the true negative set is smaller than the true positive
set and the model decides to segment at every potential seg-
mentation point. In these two cases, the model can achieve
a higher accuracy, while the F-score will be lower. The
same principle of maximal benefit of the doubt can be ap-
plied to cases where it is important to avoid this paradox,
however the optimization technique presented here for ac-
curacy will not be useful, as is for that task and the task
might have a larger time complexity. We choose accuracy
for optimization in this paper, and will explore optimization
of F-score as part of our future work.

5.5. Evaluation Algorithm
Given a set of segmented words (output of a model) and a
gold standard annotation, as explained earlier, we take the
following steps to evaluate the model:

1. Determine the set of decisions that the model has
made, i.e., find the set of decisions that maximizes the
benefit of the doubt as illustrated in Table 4.

2. Generate the reference segmentations of gold standard
words based on the decisions.

3. Compare the response segmentations to the reference
segmentations and calculate the true positives (tp),
true negatives (tn), false positives (fp), and false neg-
atives (fn). As earlier, “positive” means segmenting
at a potential segmentation point (symbol boundaries).

4. Calculate the values of precision, recall, and F-score
based on the computed values.

Most of the above steps are straightforward; we explain the
details of step 1.
To achieve this, we first determine what decisions the model
has made for each word. This is done via an alignment
algorithm driven by Levenshtein distance.
An example of such an alignment is shown in Figure 2.
Thus, the overall schema of the evaluation algorithm can be
summarized as follows:
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Gold standard entry:

P P I J
tek.e.m.i.s+i+s+sä

Response:

teke+misi+ssä

Alignment:

tek.e.m.i.s+i+s+sä
tek e+m i s i+s sä

Figure 2: An example of a gold standard to response align-
ment. Alignment of “.e.” to “ e+” shows that this par-
ticular word prefers theory 01 for dilemma P. Similarly,
alignment of “.” to “ ” shows a preference of theory 0
for dilemmas I and J.

1. For each dilemma D:

(a) List all the words from the segmentation set that
are relevant to D.

(b) For each such word, find the supported theory us-
ing Levenshtein algorithm to align the word to
the gold standard entry.

(c) Count the number of supporters of each theory.

(d) Determine which choice of the valid theories
yields the maximum accuracy, similarly to Ta-
ble 4.

2. Once decisions for all dilemmas are made, generate
the final reference segmentations (one segmentation
per word) based on the decisions.

3. Use BPRA to compute the scores.

6. Experiments
Experiments with evaluating consistent and inconsistent
models using our method demonstrate the two key features:

1. If we have an inconsistent model, standard BPRA will
give it a higher score than our method.

2. If we have two competing models, our method will
give a higher score to the model that is more consis-
tent.

For the experiments, we generated two segmentation sets
from a gold standard annotated for a Finnish corpus, con-
sisting of about 1000 words. Both sets contain valid seg-
mentations for each word viewed separately, however one
of the sets is inconsistent in choosing the alternative seg-
mentation points. The consistent set is generated by fixing
one of the valid theories for each dilemma, and segmenting
the words according to the chosen theory. For generating
the inconsistent set, for each word and for each dilemma
relevant to that word, one of the valid theories is chosen at
random, and the word is segmented according to the deci-
sions. Other segmentation boundaries are left untouched.

By definition, both segmentation sets will get the full score
using the standard BPRA method, since all plausible seg-
mentations are listed as alternatives in the gold standard,
and any segmentation that is in that list will be accepted.
The evaluation results for the two segmentation sets with
our new method are tabulated in Table 5. In addition to pre-
cision, recall, F-score and accuracy, several other statistics
which are used to calculate the scores are also included.
As it can be seen the consistent model gets full credit in
all measures, whereas the penalization of the inconsistent
model is reflected in the scores of Table 5.

Consistent Inconsistent
|G| 2617 2635
|S| 2617 2600
|G ∩ S| 2617 2471
tp+ tn 8212 7919
tp+ tn+ fp+ fn 8212 8212
Precision 100% 95.04%
Recall 100% 93.78%
F-Score 100% 94.40%
Accuracy 100% 96.43%

Table 5: Evaluation results: consistent and inconsistent seg-
mentation sets. |G| is the number of segmentation points in
the final reference set (based on gold standard and model’s
decisions), |S| is the number of segmentation points in the
model’s response, tp+ tn denotes the number of matching
boundaries, and tp+tn+fp+fn is the number of potential
segmentation boundaries.

7. Conclusion and Future Work
The features discussed in the previous sections distinguish
our proposed evaluation method from methods used in prior
work—where a model could not be required to segment
data in a consistent fashion.
In conclusion, we note that “ambiguity” is inherent in mor-
phological segmentation: it is impossible to posit a sin-
gle segmentation that is “correct” in many cases in many
languages. Thus the gold standard must provide flexibility
to accommodate different theories of morphology. How-
ever, if two models—where one is consistent and one is
inconsistent—receive equal score, that means that the eval-
uation method being used is not informative.
In addition to the above crucial features, our evaluation
mark-up is easy to read and write by a human annotator,
which is convenient for developing evaluation suites.
Our evaluation method, while it resolves the matter of con-
sistency, still leaves certain problematic cases unresolved.
We briefly discuss them here.
One case is what we consider a true morphological am-
biguity: a word that can be legitimately segmented in
more than one way. For example, Turkish evini (ev:
’home/house’) can be analyzed as ev N+POSS2+ACC or
ev N+POSS3+ACC. Ambiguity arises because +in is the
2nd person singular possessive marker (POSS2) and +i is
3rd person singular possessive marker, but the morphology
requires an epenthetic +n after a POSS3 as a “buffer” con-
sonant before certain suffixes are added—in this case, the
accusative marker, which begins with a vowel.
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This applies to all similar word endings, such as +ını, +unu,
and +ünü; which one appears in an instance is determined
by the rules of Turkish vowel harmony; this also occurs
with other suffixes, such as dative, ablative, and other nom-
inal cases.
We distinguish regular ambiguity from sporadic ambiguity.
An ambiguity is regular if, as in the example above, there
are many words that follow the same pattern, and have the
same ambiguity. We plan to extend the current algorithm to
address true ambiguities in future work.
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