Benchmarking Lexical Simplification Systems

Gustavo H. Paetzold, Lucia Specia
University of Sheffield
Western Bank, Sheffield
ghpaetzold1 @sheffield.ac.uk, l.specia@sheffield.ac.uk

Abstract
Lexical Simplification is the task of replacing complex words in a text with simpler alternatives. A variety of strategies have been devised
for this challenge, yet there has been little effort in comparing their performance. In this contribution, we present a benchmarking
of several Lexical Simplification systems. By combining resources created in previous work with automatic spelling and inflection
correction techniques, we introduce BenchLS: a new evaluation dataset for the task. Using BenchLS, we evaluate the performance of
solutions for various steps in the typical Lexical Simplification pipeline, both individually and jointly. This is the first time Lexical
Simplification systems are compared in such fashion on the same data, and the findings introduce many contributions to the field,

revealing several interesting properties of the systems evaluated.

Keywords: Lexical Simplification, Text Simplification, Evaluation Dataset

1. Introduction

The goal of a Lexical Simplification (LS) system is to re-
place the complex words in a text with simpler alternatives,
without compromising its meaning or grammaticality. The
LS task is often addressed as the series of steps in Figure 1,
as introduced by (Devlin and Tait, 1998). Their work has
inspired others to conceive new LS solutions for the aphasic
(Carroll et al., 1998), dyslexic (Bott et al., 2012), illiterate
(Watanabe et al., 2009), non-native English speakers (Paet-
zold, 2013; Paetzold and Specia, 2013), children (Kajiwara
et al., 2013) and others.

Complex Sentence Simplified Sentence

The cat perched on the mat. The cat sat on the mat.

Complex Word ldentification Substitution Ranking

The cat perchedon the mat. #1: sat, #2: rested

Substitution Generation Substitution Selection

perched: rested, sat, roosted perched: rested, sat, roosted

Figure 1: Lexical Simplification Pipeline

Although various LS systems can be found in the litera-
ture, very little effort has been made to compare their per-
formance. Apart from the work of (Shardlow, 2013) and
(Specia et al., 2012), which provide brief benchmarkings
of Complex Word Identification and Substitution Ranking,
respectively, no other comparisons have been reported.

To address this limitation, we present a systematic bench-
marking of LS systems. We innovate by comparing the per-
formance of not only systems in their entirety, but also of
system components individually, such as Substitution Gen-
eration, Selection and Ranking approaches. In addition, we
introduce BenchLS, a new dataset for the task. In the fol-
lowing Sections, we describe our dataset and present our
experiments.

2. BenchLS: A New Dataset

To create our dataset we combined two resources: the
LexMTurk (Horn et al., 2014) and LSeval (De Belder and
Moens, 2012) datasets. The instances in both datasets, 929
in total, contain a sentence, a target complex word, and sev-
eral candidate substitutions ranked according to their sim-
plicity. The candidates in both datasets were suggested and
ranked by English speakers from the U.S. To increase its
reliability, we applied the following corrections over each
instance of our dataset:

1. Spelling Filtering: We discard any misspelled can-
didates using Norvig’s algorithm'. We trained our
spelling model over the News Crawl? corpus.

2. Inflection Correction: We inflected all candidates to
the tense of the target word using the Text Adorning
module of LEXenstein (Paetzold and Specia, 2015;
Burns, 2013).

The resulting dataset — BenchLS — contains 929 instances,
with an average of 7.37 candidate substitutions per complex
word. We use it in all our experiments, as described in what
follows.

3. Substitution Generation

Substitution Generation (SG) aims to produce candidate
substitutions for complex words, which can be later ranked
or filtered according to different criteria.

This step does not take into account the ambiguity of words,
i.e. it generates candidate substitutions for a word in all
or any of its possible meanings. The most frequently used
SG solution consists in extracting synonyms from linguistic
databases, such as WordNet (Devlin and Tait, 1998; Car-
roll et al., 1999) or the UMLS database for medical content
(Ong et al., 2007; Leroy et al., 2013). Recently, however,

"http://orvig.com/spell-correct.html
Zhttp://www.statmt.org/wmt1 1/translation-task.html

3074

new resources have been used, such as aligned complex-to-
simple parallel corpora (Paetzold, 2013; Paetzold and Spe-
cia, 2013; Horn et al., 2014) and word embedding models
(Glavas and §tajner, 2015; Paetzold and Specia, 2016).

3.1. Systems

We re-implemented the following SG systems for evalua-
tion:

e Devlin (Devlin and Tait, 1998): Extracts synonyms of
complex words from WordNet 3.0 (Fellbaum, 1998).

e Biran (Biran et al., 2011): Creates the Cartesian prod-
uct between Wikipedia and Simple Wikipedia by sim-
ply pairing every word that appears in Wikipedia with
every word in Simple Wikipedia. It then discards any
pairs in which:

1. At least one of the words is a stop-word, numeral
or punctuation.

2. The words share the same lemma.

3. The words are not registered as synonyms or hy-
pernyms in WordNet.

¢ Yamamoto (Kajiwara et al., 2013): Given a complex
word, it retrieves its definition from a dictionary, an-
notates it using a POS tagger, and then extracts as can-
didates any words that have the same POS tag as the
complex word itself. This system queries the Mer-
riam Dictionary?, and tags definitions with the Stan-
ford Parser (Klein and Manning, 2003).

e Horn (Horn et al., 2014): Produces alignments for
complex-to-simple parallel corpora, then extracts any
(complex — simple) pairs of aligned words in which:

1. The complex word is not a stop-word.
2. The POS tag of both words are the same.
3. Neither word is a proper noun.

To produce alignments, we use GIZA++ (Och and
Ney, 2003). The words are then inflected to all their
morphological forms using Morph Adorner (Burns,
2013). For this system, we use the parallel Wikipedia
and Simple Wikipedia corpus (Horn et al., 2014) and
the Stanford Parser.

e Glavas (Glavas and §tajner, 2015): Produces candi-
dates using a word embeddings model. They retrieve
the 10 words for which the embeddings vector has the
highest cosine similarity with that of the target com-
plex word, except for its morphological variants. Their
model uses 200 vector dimensions and is trained with
the GloVe toolkit (Pennington et al., 2014). We train
their model over a corpus of 7 billion words which
combines combines the SubIMDB corpus (Paetzold,
2015), UMBC webbase*, News Crawl’>, SUBTLEX
(Brysbaert and New, 2009), Wikipedia and Simple
Wikipedia (Kauchak, 2013).

3http://www.merriam-webster.com/
“http://ebiquity.umbc.edu/resource/html/id/351
Shttp://www.statmt.org/wmt1 1 /translation-task html

e Paetzold (Paetzold and Specia, 2016): Produces
candidates using a context-aware word embeddings
model. 10 candidates for each target word are re-
trieved with a model trained using the word2vec
toolkit (Mikolov et al., 2013) over the same corpus
used for the Glavas generator, parsed with the Stan-
ford Parser. Word vectors are trained using the Bag-of-
Words (CBOW) architecture and 1300 vector dimen-
sions.

3.2. Datasets and Metrics

As a gold-standard, we use the candidate substitutions in
BenchLS. The evaluation metrics are:

e Potential: Proportion of instances in which at least
one of the candidates generated is in the gold-standard.

e Precision: Proportion of generated substitutions that
are in the gold-standard.

e Recall: The proportion of gold-standard substitutions
that are among the generated substitutions.

e F1: Harmonic mean between Precision & Recall.

3.3. Results

Generator Pot. Prec. Rec. F1

Devlin 0.647 0.133 0.153 0.143
Biran 0.610 0.130 0.144 0.136
Yamamoto | 0.360 0.032 0.087 0.047
Horn 0.569 0.235 0.131 0.168
Glavas 0.724 0.142 0.191 0.163
Paetzold 0.856 0.180 0.252 0.210

Table 1: SG benchmarking results

As illustrated in Table 1, the Paetzold generator outper-
forms all others, including the supervised Horn generator,
by a considerable margin in almost all metrics used, reveal-
ing the potential of context-aware embedding models for
SG. In order to further highlight the importance of using
context-aware as opposed to traditional embedding models,
we have trained a modified version of the Glavas generator.
Instead of using the model specified in (Glavag and Stajner,
2015), it uses a model trained with the same settings spec-
ified for the context-aware model of the Paetzold genera-
tor: the Bag-of-Words (CBOW) architecture of word2vec
and 1300 vector dimensions. The results depicted in Ta-
ble 2 confirm that the difference in performance between
the Glavas and Paetzold generator is indeed not due to
model configuration, but rather the inherent differences be-
tween traditional and context-aware embeddings.

Generator \ Pot. Prec. Rec. F1

Glavas (GloVe) | 0.724 0.142 0.191 0.163
Glavas (CBOW) | 0.708 0.142 0.193 0.164
Paetzold 0.856 0.180 0.252 0.210

Table 2: SG results for different embedding models

3075

Finally, the contrast between the high Precision and low Po-
tential and Recall obtained by the Horn generator suggests
that, while their technique is the most proficient in discard-
ing spurious candidates, the alignments between Wikipedia
and Simple Wikipedia offer considerably lower coverage
than the linguistic regularities captured by word embedding
models.

4. Substitution Selection

Substitution Selection (SS) consists in deciding which of
the generated substitutions fit the context of a target com-
plex word. It aims to discard candidates which could com-
promise the meaning and/or grammaticality of the text be-
ing simplified.

Some previous work treat SS as a disambiguation task (Sed-
ding and Kazakov, 2004; Nunes et al., 2013). They use
sense labeling tools to determine the sense of a target word,
and then discard any candidates which do not share said
sense. Modern approaches have had noticeable success
by using word co-occurrence models (Biran et al., 2011)
and by joint modeling Substitution Selection and Ranking
(Horn et al., 2014; Glavas and §tajner, 2015).

4.1. Systems

We re-implemented the following SS systems for evalua-
tion:

o Lesk (Lesk, 1986): Uses the Lesk algorithm to deter-
mine the sense of a target word, then selects only those
candidates listed as synonyms in WordNet 3.0.

e Aluisio (Aluisio and Gasperin, 2010): Selects only
candidates which can have the same POS tag as that of
the target word. To learn which POS tags can be asso-
ciated with each candidate, we first tag each sentence
in the News Crawl corpus with the Stanford Parser and
then collect word to POS tag counts. During Substitu-
tion Selection, we discard any candidate substitutions
that have not been tagged with the same tag as the tar-
get complex word at least once in News Crawl.

e Belder (De Belder and Moens, 2010): Intersects the
candidates generated for a target word with the words
in a cluster in which the target word is included, as
determined by a latent-variable language model. To
replicate their approach, we learn 2, 000 word clusters
using the Brown clustering algorithm (Brown et al.,
1992).

e Biran (Biran et al., 2011): Selects candidates using
a word co-occurrence model. It first discards any
candidates for which the cosine similarity between
its co-occurrence vector and the co-occurrence vec-
tor of the sentence in which the target was found is
smaller than a threshold value ¢;. In order to avoid
incoherent replacements, it then discards any candi-
dates for which the cosine similarity between its com-
mon co-occurrence vector with the target word and the
co-occurrence vector of the sentence is larger than a
threshold value ¢5. We train the co-occurrence model
over the same corpus used by the Paetzold generator.

We use the same values for ¢ and ¢, as in (Biran et
al., 2011), which are 0.1 and 0.01, respectively

e Paetzold (Paetzold and Specia, 2016): Treats Substi-
tution Selection as a ranking problem, and employs a
technique called Unsupervised Boundary Ranking to
address it. During training, it first generates 10 can-
didate substitutions for the target word for each in-
stance of BenchLS. It then exploits the assumption
that words are irreplaceable, and creates training in-
stances in unsupervised fashion by assigning label 1
to the target word itself and O to all the remaining can-
didates. After calculating feature values for each in-
stance in the training set, it then learns a linear model
through Stochastic Gradient Descent from it. During
Substitution Selection, it ranks the candidates accord-
ing to their distance from the boundary between pos-
itive and negative instances, then keeps the 50% of
candidates which are the furthest in the positive side.
For features, we use the same ones from (Paetzold and
Specia, 2016), which are:

1. Language model log-probabilities of the fol-
lowing five n-grams: s;_1¢, €Sit+1, Si—1CSi+1,
Si—28;—1c and cs;11S;+2, wWhere c is a candi-
date substitution, and ¢ the position of the tar-
get word in sentence s. We use a 5-gram lan-
guage model trained over SubIMDB (Paetzold
and Specia, 2016) with SRILM (Stolcke and oth-
ers, 2002).

2. The word embeddings cosine similarity between
the target complex word and a candidate. For this
feature, we employ the same context-aware em-
beddings model used by the Paetzold generator.

3. The conditional probability of a candidate given
the POS tag of the target word. To calculate
this feature, we learn the probability distribution
P (c|pt), described in Equation 1, of all words in
the News Crawl corpus.

Cle,pr)
ZpeP O(C7p) ’

Where c is a candidate, p, is the POS tag of the
target word, C'(c,p) the number of times c¢ re-
ceived tag p in the training corpus, and P the set
of all POS tags.

P (clp) = ey

We also include two baselines:

o First Sense: Selects only synonyms registered in the
first sense of the target word in WordNet.

e No Selection: Selects all generated candidates.

4.2. Datasets and Metrics

We use the same dataset and metrics as in the previous Sec-
tion. Since SS systems require pre-generated candidates, in
order to avoid any biases toward a given SG approach, we
use candidates produced by generators altogether.

3076

Selector Pot. Prec. Rec. F1

Lesk 0.337 0.0563 0.075 0.062
Aluisio 0.916 0.098 0.398 0.157
Belder 0.297 0.188 0.057 0.088
Biran 0.478 0.068 0.185 0.099
Paetzold 0.851 0.166 0.284 0.209
First Sense 0.207 0.052 0.036 0.042
No Selection | 0.940 0.062 0.438 0.109

Table 3: SS benchmarking results

4.3. Results

As illustrated in Table 3, only the Aluisio and Paetzold
selectors have managed to obtain higher F1 scores than
not performing selection at all. While the Aluisio selector
achieves better Recall, the Paetzold selector yields higher
precision and F1. Although the Precision obtained by the
Belder selector is the highest, it comes at noticeable losses
in Potential and Recall.

5. Substitution Ranking

Substitution Ranking (SR) is the task of ranking candidates
by their simplicity. The goal is to replace the complex word
by its simplest candidate substitute.

The most widely used SR strategy in the literature is metric-
based ranking, in which candidates are ranked according to
a manually crafted combination of features such as word
frequency and length (Devlin and Tait, 1998; Carroll et al.,
1998; Carroll et al., 1999; Biran et al., 2011; Bott and Sag-
gion, 2011). Recently, however, more sophisticated super-
vised approaches have been explored, such as SVM rankers
(Horn et al., 2014) and Boundary Ranking (Paetzold and
Specia, 2015).

5.1. Systems

We re-implemented the following SR systems for evalua-
tion:

e Devlin (Devlin and Tait, 1998): Ranks candidates ac-
cording to their frequency in the Brown corpus (Fran-
cis and Kucera, 1979).

e Biran (Biran et al.,, 2011): Employs the metric in
Equation 2, in which F'(¢, C) is the frequency of can-
didate ¢ in corpus C, and ||c|| its length.

F(c, Wikipedia)

F(c, Simple Wikipedia)

M(c) = Xlel @
e Bott (Bott et al., 2012): Employs a sum of the metrics
described in Equation 4 and 3.
seorens (¢) = {VIET =4 3 e > 5

0 otherwise

3

scorefreq (¢) = log (F (c, Simple Wikipedia)) (4)

e Yamamoto (Kajiwara et al., 2013): Ranks candidates
according to the sum of various metrics, such as n-
gram frequencies, word co-occurrence similarity and
semantic distance to the target word.

e Horn (Horn et al., 2014): Uses Support Vector Ma-
chines (Joachims, 2002) to learn a ranking model
from data with several word and n-gram frequency
features extracted from the Google 1T (Evert, 2010),
Wikipedia and Simple Wikipedia corpora.

e Glavas (Glavas and §tajner, 2015): Ranks candidates
according to several features, such as n-gram frequen-
cies and word vector similarity with the target word,
and then re-ranks them according to their average
rankings. The word embeddings model used is the
same one used by the Glavas generator, and n-gram
frequencies were extracted from the Google 1T cor-
pus (Glavas and Stajner, 2015).

e Paetzold (Paetzold and Specia, 2015): Uses a super-
vised Boundary Ranking approach. It learns a rank-
ing model from data using a binary classification setup
inferred from the ranking examples. This strategy
is the same one used by the Paetzold selector, but
instead of learning the ranking model from training
data obtained in unsupervised fashion, it learns the
model from manually annotated data. 10 morphologi-
cal, semantic and n-gram probability features selected
through univariate feature selection are used. N-gram
probabilities were extracted from a 5-gram language
model trained over the SubIMDB corpus (Paetzold
and Specia, 2016).

5.2. Datasets and Metrics

For this experiment, we randomly split the BenchLS dataset
in training and test sets containing 465 and 464 instances,
respectively. The metric used is TRank-at-n, which mea-
sures the proportion of times in which a candidate with a
gold-standard rank r <n was ranked first.

5.3. Results

Ranker n=1 n=2 n=3

Devlin 0.457 0.630 0.665
Biran 0.472 0.617 0.707
Bott 0.519 0.657 0.704
Yamamoto | 0.435 0.583 0.674
Horn 0.539 0.694 0.737
Glavas 0.526 0.674 0.746
Paetzold 0.547 0.701 0.743

Table 4: SR benchmarking results

As illustrated in Table 4, although the Glavas ranker proved
to be the most effective unsupervised system, the Paet-
zold ranker has outperformed all others, including the SVM
ranker of (Horn et al., 2014). These results highlight the ef-
fectiveness of Boundary Ranking in capturing simplicity.

6. Round-Trip Evaluation

In our final experiment, we compare the performance of six
complete LS systems.

3077

6.1. Systems

The systems included in our benchmarking are:

e Devlin (Devlin and Tait, 1998): Combines the Devlin
SG and SR systems.

e Biran (Biran et al., 2011): Combines the Biran SG,
SS and SR systems.

o Yamamoto (Kajiwara et al., 2013): Combines the Ya-
mamoto SG and SR systems.

e Horn (Horn et al., 2014): Combines the Horn SG and
SR systems.

e Glavas (Glavas and gtajner, 2015): Combines the
Glavas SG and SR systems.

e Paetzold (Paetzold and Specia, 2015): Combines the
Paetzold SG, SS and SR systems.

6.2. Datasets and Metrics

As a gold-standard, we use BenchL.S. The Horn and Bound-
ary ranker were trained on the LexMTurk dataset, which is
used in (Horn et al., 2014), in order to avoid a bias on the
results. The evaluation metrics used are the following:

e Precision: Ratio with which the highest ranking can-
didate is either the target word itself or is in the gold-
standard.

e Accuracy: Ratio with which the highest ranking can-
didate is not the target word itself and is in the gold-

standard.

e Changed Proportion: Ratio with which the highest
ranking candidate is not the target word itself.

6.3. Results

System Prec. Accu. Changed
Devlin 0.309 0.307 0.998
Biran 0.124 0.123 0.999
Yamamoto | 0.044 0.041 0.997
Horn 0.546 0.341 0.795
Glavas 0.480 0.252 0.772
Paetzold 0.416 0.416 1.000

Table 5: Round-trip benchmarking results

As illustrated in Table 5, the Paetzold system has been
shown the most accurate in practice, outperforming even
simplifiers that rely on linguistic databases. The results
also contrast with the ones reported in (Glavas and gtajner,
2015), in which it was found no statistically significant dif-
ference between the Horn and Glavas simplifiers: when
evaluated over the BenchLS dataset, the supervised strategy
of (Horn et al., 2014) is clearly more effective than that of
(Glavas and Stajner, 2015), offering an increase of almost
10% in Accuracy.

7. Discussion and Conclusions

We have presented a benchmarking of Lexical Simplifica-
tion systems based on BenchLS: a new dataset introduced
for the task, which combines improved versions of two re-
sources from previous work.

Through our benchmarks, we have discovered that exploit-
ing the linguistic regularities captured by context-aware
word embedding models is a more reliable alternative to
Substitution Generation than extracting complex-to-simple
word correspondences from manually created parallel cor-
pora. This finding is very important to the field because
context-aware embedding models require only for large
corpora of text and a POS tagger to be produced, and, un-
like complex-to-simple parallel corpora, these resources are
currently available for numerous languages.

Using these same resources, the Unsupervised Boundary
Ranking approach of (Paetzold and Specia, 2016) offers an
effective solution to Substitution Selection also. Because
of its inherent difficulty and the ineffectiveness of early so-
lutions, Substitution Selection has rarely been addressed in
literature, which has consequently led modern simplifiers
to simply ignore this step for the lack of a better alternative.
We hope that our benchmarking results will inspire future
authors to invest more time and resources in developing so-
lutions to this step, which, as discussed in (Paetzold, 2015),
can considerably increase the reliability of a simplifier.

In Substitution Ranking, supervised techniques seem to be
the most effective. The strategies used by (Horn et al.,
2014) and (Paetzold and Specia, 2015), which respectively
employ an SVM and a Boundary Ranker, have obtained no-
ticeably higher scores than the remaining unsupervised ap-
proaches. Unlike rank averaging and metric-based strate-
gies, supervised techniques are flexible, being able to au-
tomatically learn which features should be used in mea-
suring the simplicity of a candidate substitution. More
importantly, this advantage comes at very little cost: the
LexMTurk corpus, over which our supervised rankers were
trained, contains only 500 instances.

In summary, we have found that the Paetzold simplifier is
the most effective simplifier in practice. It generates can-
didates substitutions using context-aware embedding mod-
els, selects them through Unsupervised Boundary Ranking,
and ranks them using a supervised Boundary Ranker. This
approach has achieved the highest accuracy scores in our
round-trip evaluation, meaning that it was the most profi-
cient in correctly replacing complex words with simpler al-
ternatives. When it comes to precision, however, the Horn
simplifier was the one to achieve the highest score, mean-
ing that it is the least likely to compromise the integrity of
the sentence being simplified.

All systems were replicated to the best of our ability and
are included in LEXenstein, which can be found in http:
//ghpaetzold.github.io/LEXenstein/ so that
these experiments can be reproduced. The BenchLS
dataset is also freely available for download, and can be
found in http://ghpaetzold.github.io/data/
BenchLS.zip.

3078

8. Bibliographical References

Aluisio, S. and Gasperin, C., (2010). Proceedings of the
NAACL 2010 Young Investigators Workshop on Com-
putational Approaches to Languages of the Americas,
chapter Fostering Digital Inclusion and Accessibility:
The PorSimples project for Simplification of Portuguese
Texts, pages 46—53. Association for Computational Lin-
guistics.

Biran, O., Brody, S., and Elhadad, N. (2011). Putting it
simply: a context-aware approach to lexical simplifica-
tion. In Proceedings of the 49th ACL, pages 496-501.

Bott, S. and Saggion, H. (2011). An unsupervised align-
ment algorithm for text simplification corpus construc-
tion. pages 20-26.

Bott, S., Rello, L., Drndarevic, B., and Saggion, H. (2012).
Can spanish be simpler? lexsis: Lexical simplification
for spanish. In Proceedings of 2012 COLING, pages
357-374.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D.,
and Lai, J. C. (1992). Class-based n-gram models of nat-
ural language. Computational Linguistics, 18:467-479.

Brysbaert, M. and New, B. (2009). Moving beyond kucera
and francis: A critical evaluation of current word fre-
quency norms and the introduction of a new and im-
proved word frequency measure for american english.
Behavior research methods, 41:977-990.

Burns, P. R. (2013). MorphAdorner v2: A Java Library
for the Morphological Adornment of English Language
Texts.

Carroll, J., Minnen, G., Canning, Y., Devlin, S., and Tait,
J. (1998). Practical simplification of english newspaper
text to assist aphasic readers. In Proceedings of AAAI-
98 Workshop on Integrating Artificial Intelligence and
Assistive Technology, pages 7-10.

Carroll, J., Minnen, G., Pearce, D., Canning, Y., Devlin,
S., and Tait, J. (1999). Simplifying text for language-
impaired readers. In Proceedings of the 9th EACL, pages
269-270.

De Belder, J. and Moens, M.-F. (2010). Text simplification
for children. In Proceedings of the SIGIR Workshop on
Accessible Search Systems, pages 19-26.

De Belder, J. and Moens, M.-F. (2012). A dataset for the
evaluation of lexical simplification. In Computational
Linguistics and Intelligent Text Processing, pages 426—
437. Springer.

Devlin, S. and Tait, J. (1998). The use of a psycholinguistic
database in the simplification of text for aphasic readers.
Linguistic Databases, pages 161-173.

Evert, S. (2010). Google web 1t 5-grams made easy
(but not for the computer). In Proceedings of the 2010
NAACL, pages 32-40.

Fellbaum, C. (1998). WordNet: An Electronic Lexical
Database. Bradford Books.

Francis, W. N. and Kucera, H. (1979). Brown corpus man-
ual. Brown University.

Glavas, G. and Stajner, S. (2015). Simplifying lexical sim-
plification: Do we need simplified corpora? In Proceed-
ings of the 53rd ACL, page 63.

Horn, C., Manduca, C., and Kauchak, D. (2014). Learning

a Lexical Simplifier Using Wikipedia. In Proceedings of
the 52nd ACL, pages 458—463.

Joachims, T. (2002). Optimizing search engines using
clickthrough data. In Proceedings of the 8th ACM, pages
133-142.

Kajiwara, T., Matsumoto, H., and Yamamoto, K. (2013).
Selecting Proper Lexical Paraphrase for Children. Pro-
ceedings of the 25th Rocling, pages 59-73.

Kauchak, D. (2013). Improving text simplification lan-
guage modeling using unsimplified text data. In Pro-
ceedings of the 51st ACL, pages 1537-1546.

Klein, D. and Manning, C. D. (2003). Accurate unlexi-
calized parsing. In Proceedings of the 41st ACL, pages
423-430.

Leroy, G., Endicott, J. E., Kauchak, D., Mouradi, O., and
Just, M. (2013). User evaluation of the effects of a text
simplification algorithm using term familiarity on per-
ception, understanding, learning, and information reten-
tion. Journal of Medical Internet Research, 15.

Lesk, M. (1986). Automatic sense disambiguation using
machine readable dictionaries: how to tell a pine cone
from an ice cream cone. In Proceedings of the 5th Con-
ference on Systems Documentation, pages 24-26.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Nunes, B. P, Kawase, R., Siehndel, P., Casanova, M. a., and
Dietze, S. (2013). As Simple as It Gets - A Sentence
Simplifier for Different Learning Levels and Contexts.
pages 128—132.

Och, F. J. and Ney, H. (2003). A systematic comparison of
various statistical alignment models. Comput. Linguist.,
29(1):19-51, March.

Ong, E., Damay, J., Lojico, G., Lu, K., and Tarantan, D.
(2007). Simplifying text in medical literature. volume 4,
pages 37-47.

Paetzold, G. H. and Specia, L. (2013). Text simplification
as tree transduction. In Proceedings of the 9th STIL.

Paetzold, G. H. and Specia, L. (2015). Lexenstein: A
framework for lexical simplification. In Proceedings of
The 53rd ACL.

Paetzold, G. H. and Specia, L. (2016). Unsupervised lex-
ical simplification for non-native speakers. In Proceed-
ings of The 30th AAAL

Paetzold, G. H. (2013). Um Sistema de Simplificacdo
Automdtica de Textos escritos em Inglés por meio de
Transducao de Arvores. Western Parana State Univer-
sity.

Paetzold, G. H. (2015). Reliable lexical simplification for
non-native speakers. In Proceedings of the 2015 NAACL
Student Research Workshop.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. Proceed-
ings of the 2014 EMNLP, pages 1532—-1543.

Sedding, J. and Kazakov, D. (2004). Wordnet-based text
document clustering. In Proceedings of the 3rd Work-
shop on RObust Methods in Analysis of Natural Lan-
guage Data, ROMAND ’04, pages 104-113, Strouds-

3079

burg, PA, USA. Association for Computational Linguis-
tics.

Shardlow, M. (2013). A comparison of techniques to auto-
matically identify complex words. pages 103—109.

Specia, L., Jauhar, S. K., and Mihalcea, R. (2012).
Semeval-2012 task 1: English lexical simplification. In
Proceedings of the 1st SemEval, pages 347-355.

Stolcke, A. et al. (2002). Srilm - an extensible language
modeling toolkit. In Interspeech.

Watanabe, W. M., Junior, A. C., Uzéda, V. R., Fortes, R.
P.d. M., Pardo, T. A. S., and Aluisio, S. M. (2009). Fa-
cilita: reading assistance for low-literacy readers. pages
29-36.

3080

