
Effects of Sampling on Twitter Trend Detection

Andrew Yates1, Alek Kolcz2, Nazli Goharian1, Ophir Frieder1
1Information Retrieval Lab, Department of Computer Science, Georgetown University

2Twitter, Inc.
{andrew,nazli,ophir}@ir.cs.georgetown.edu

Abstract
Much research has focused on detecting trends on Twitter, including health-related trends such as mentions of Influenza-like illnesses
or their symptoms. The majority of this research has been conducted using Twitter’s public feed, which includes only about 1% of all
public tweets. It is unclear if, when, and how using Twitter’s 1% feed has affected the evaluation of trend detection methods. In this
work we use a larger feed to investigate the effects of sampling on Twitter trend detection. We focus on using health-related trends to
estimate the prevalence of Influenza-like illnesses based on tweets, and use ground truth obtained from the CDC and Google Flu Trends
to explore how the prevalence estimates degrade when moving from a 100% to a 1% sample. We find that using the public 1% sample is
unlikely to substantially harm ILI estimates made at the national level, but can cause poor performance when estimates are made at the
city level.

Keywords: LR Infrastructures and Architectures, Social Media, Trend Detection

1. Introduction
Much work has focused on detecting health-related Twit-
ter trends and, in particular, trends related to the prevalence
of Influenza-like illnesses (ILI). Such trends are useful be-
cause they can provide prevalence estimates more quickly
than formal reporting systems. The majority of this trend
detection research has been conducted on a 1% sample of
Twitter’s public feed, however, and it is unclear whether
this has biased evaluation results. In this work we use a
complete feed of all public tweets to investigate the effects
of using the 1% sample. We evaluate the performance of
a trend detection method using progressively larger sample
sizes to characterize how large the sample must be before
evaluation results begin to converge.
Influenza-like illnesses are unusual in that they follow a
seasonal pattern, affect a relatively large percentage of
the population, and are closely monitored by organizations
such as the ECDC (European Centre for Disease Preven-
tion and Control) and CDC (the United States’ Centers for
Disease Control and Prevention). Publicly available preva-
lence data has been widely used to evaluate how well trend
detection methods can estimate ILI prevalence, making ILI
prevalence estimation well-suited for evaluating the perfor-
mance of trend detection methods.
We use CDC and GFT (Google Flu Trends) (Ginsberg et
al., 2009) ILI prevalence data to evaluate how methods for
detecting health-related Twitter trends (Yates et al., 2014)
perform when used with varying sample sizes. Our contri-
butions are:

• an exploration of how sampling affects flu detection,
and health-trend detection in general, on Twitter;

• an analysis of the degree to which inaccuracies intro-
duced by sampling can be explained by the number of
tweets being analyzed; and

• suggestions for reducing the effects of sampling when
using a sampled Twitter feed.

2. Related Work
Several researchers have investigated how Twitter chooses
the tweets in its 1% sample. Joseph et al. (2014) investi-
gate whether different clients receive the same 1% samples.
They find that there is, on average, 96% overlap between
the samples received by different clients. Twitter’s docu-
mentation has since been updated to state that the “Tweets
returned by the default access level are the same, so if two
different clients connect to this endpoint, they will see the
same Tweets.”1. Kergl et al. (2014) reverse engineer the
tweet IDs returned by Twitter’s API, and discover that the
IDs contain a timestamp and information about the Twitter
infrastructure that processed the tweet. They determine that
tweets are chosen for the 1% sample based on their times-
tamp, with all tweets made in a specific 10ms interval of
each second appearing in the sample.
Ghosh et al. (2013) explore the utility of sampling users
rather than tweets. They identify 500,000 expert users, re-
trieve their tweets, and compare their tweets to Twitter’s 1%
sample. They find that the tweets from expert users contain
less spam, cover a wider range of topics, and report break-
ing news slightly faster than those tweets in the 1% sample.
They note that sampling users does not result in a represen-
tative sample, however, and is thus not a replacement for
sampling tweets directly.
Morstatter et al. (2013) compare data from Twitter’s
Streaming API, which returns tweets matching a query
(e.g., keywords and geographic area) but is capped at 1% of
all tweets, to Twitter’s Firehose API (i.e., all public tweets).
They find that the two APIs differ in terms of their hashtag
distribution, the topics detected in tweets, and the social
network structure. They also find that Twitter’s 1% sam-
ple is similar to the Firehose, however, indicating that most
of the bias they observed is introduced by the Streaming
API. While the Streaming API is a useful tool for collect-
ing all future tweets matching a query, it does not return
historical tweets and cannot be used as a substitute for the

1dev.twitter.com/streaming/reference/get/statuses/sample
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Sampling API in all scenarios, such as for the real-time de-
tection of new topics. Morstatter et al. (2014) further in-
vestigate the issue of bias in the Streaming API. They find
that the Sampling API can be used to identify periods dur-
ing which the Streaming API was biased, and they confirm
that the distribution of hashtags in the Sampling API is sim-
ilar to the hashtag distribution found in the Firehose. Given
that the Streaming API’s bias appears to be correlated with
the number of tweets it returns, Sampson et al. (2015) in-
vestigate methods for splitting the Streaming API’s query
into multiple disjoint queries. By reducing the number of
tweets returned by each Streaming API query, they are able
to reduce the API’s bias. We focus on randomly sampled
tweets (i.e., tweets from the Sampling API or from a ran-
dom sampling of the Firehose) rather than on tweets that
satisfy a query.
Many researchers have considered the problem of esti-
mating the flu’s real-world prevalence from Twitter data.
(Achrekar et al., 2011; Paul et al., 2014; Chew and Eysen-
bach, 2010; Gesualdo et al., 2013; Aramaki et al., 2011; Ji
et al., 2012; Culotta, 2010; Achrekar et al., 2012; Sadilek
et al., 2012; Lamb et al., 2013; Yates et al., 2014; Parker
et al., 2015; Nagel et al., 2013; de Quincey and Kostkova,
2010; Lampos and Cristianini, 2010; Szomszor et al., 2012;
Nagar et al., 2014; Chakraborty et al., 2014) Yates et al.
(2016a) model relationships between drug, symptom, and
medical condition Twitter mentions with the goal of im-
proving health-trend detection models. Most researchers
have focused on training supervised methods to estimate flu
prevalence, but some work has also considered the perfor-
mance of unsupervised methods (Yates et al., 2014; Parker
et al., 2015). Supervised methods generally perform well
when used to estimate ILI prevalence based on Twitter;
such methods can also be used to augment the performance
of existing prevalence estimation models, such as Google
Flu Trends, and can be trained using ILI prevalence data
provided by the CDC or Google Flu Trends as ground truth.
(Chakraborty et al., 2014; Paul et al., 2014)

3. Methodology
Many methods have been proposed for estimating the flu’s
prevalence based on Twitter activity. While supervised
models have performed best at this task (Lamb et al., 2013;
Aramaki et al., 2011; Achrekar et al., 2011), keyword-
based approaches have been shown to perform acceptably
(Aramaki et al., 2011) and have formed the basis for the
U.S. Department of Health and Human Services’ Now
Trending Challenge 2. To avoid biasing our results towards
a supervised model designed only for flu detection, we use a
keyword-based sliding window approach from a framework
for Twitter public health surveillance (Yates et al., 2014) to
match the ILI terms in the Now Trending Challenge’s Ill-
ness Term Taxonomy. In short, we count the number of
flu-related terms from the Illness Term Taxonomy in an n-
term sliding window, and normalize each daily count by the
total number of tweets posted on that day. We utilize a 2-
term sliding window since the majority of the Illness Terms
are single terms, but some may be tokenized into two con-
secutive terms.

2http://www.nowtrendingchallenge.com/
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Figure 1: Flu prevalence estimates from Twitter’s full feed
of public tweets using an unsupervised method. Even when
using an unsupervised method, the Twitter prevalence es-
timates are strongly correlated with CDC data and Google
Flu Trends estimates, with Spearman’s ρ = 0.79 for Google
Flu Trends and ρ = 0.73 for the CDC data.
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Figure 2: Correlation with Google Flu Trends for various
cities as the Twitter sample size increases from a 1% sample
to the full feed. Every city’s correlation sharply increases
until the sampling level reaches about 5%, at which point
the correlations begin to increase slowly.

We use CDC Influenza Surveillance3 and Google Flu
Trends (Ginsberg et al., 2009) flu prevalence data as ground
truth to investigate how the full Twitter feed compares to
more readily-available samples, such as the 1% of tweets
available from the Sampling API. To validate our keyword-
based flu detection methodology, we compute the corre-
lation between the full feed and each ground truth using
Spearman’s ρ, and find both correlations to be reasonable,
though lower than those generally obtained with supervised
methods designed for ILI prevalence estimation (Lamb et
al., 2013; Paul et al., 2014). Using an unsupervised model
avoids biasing our results towards a supervised model de-
signed only for this domain; our unsupervised approach is
not dependent on the flu detection domain, because we sim-
ply count relevant keywords rather than utilizing a super-

3http://www.cdc.gov/flu/weekly/overview.htm
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Fraction of tweets sampled
0.005 0.010 0.015 0.020 0.050 0.100 0.200 0.300 0.400 0.500 1.000

Mean 0.09 0.18 0.22 0.25 0.33 0.37 0.40 0.41 0.42 0.42 0.43
Median 0.09 0.17 0.22 0.24 0.33 0.36 0.40 0.40 0.41 0.42 0.42
Top 25% of cities 0.32 0.42 0.46 0.49 0.57 0.61 0.63 0.64 0.64 0.65 0.65
Top 10% of cities 0.42 0.54 0.59 0.62 0.68 0.71 0.72 0.73 0.73 0.73 0.74

Table 1: The Pearson correlation between Google Flu Trends and Twitter ILI prevalence estimates at different sampling
levels. The 0.01 level corresponds to Twitter’s public 1% API. The mean correlation, median correlation, correlation when
only the top 25% of cities are considered, and correlation when only the top 10% of cities are considered are shown.

Fraction of tweets sampled
0.005 0.010 0.015 0.020 0.050 0.100 0.200 0.300 0.400 0.500 1.000

Weekly mean (cities) 0.22 0.42 0.52 0.59 0.77 0.87 0.93 0.96 0.97 0.98 1.00
Monthly mean (cities) 0.51 0.64 0.72 0.77 0.88 0.94 0.97 0.98 0.99 0.99 1.00
Weekly mean (US) 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Monthly mean (US) 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: The fraction of the maximum correlation between Google Flu Trends and Twitter ILI prevalence estimates at
different sampling levels and at different aggregation levels (i.e., by week and by month). The 0.01 level corresponds to
Twitter’s public 1% API, which reaches 42% of its maximum correlation with weekly aggregation and 64% of its maximum
correlation with monthly aggregation. Regardless of the aggregation level, a 10% sample comes close to the correlation
obtained using the full Twitter feed (i.e., the 1.0 sampling level). The correlation comes to within 98% of its maximum
value when only 50% of the tweets are used (i.e., the 0.5 sampling level).

vised model. Figure 1 shows the CDC data and estimated
prevalence based on all public tweets made in 2012 and ag-
gregated by week. Spearman’s ρ = 0.79 for Google Flu
Trends data (Pearson’s r = 0.52) and ρ = 0.73 for the
CDC data. We use this methodology to compare trend de-
tection results given different sampling levels (e.g., the 1%
sample vs. the full Twitter feed).

4. Experiments
We use our trend detection methodology and corpus of all
public tweets made in 20124 to evaluate:

• how sampling affects the correlation between Twitter
Influenza-like illness (ILI) prevalence estimates and
Google Flu Trends estimates,

• the impact of aggregating trends over different times-
pans (e.g., weekly vs. monthly) on prevalence estima-
tion performance, and

• the impact of the number of ILI-related tweets preva-
lence estimation performance.

4.1. Google Flu Trends
We investigate the effects of sampling on Twitter flu de-
tection by randomly sampling from our Twitter corpus and
computing correlations with Google Flu Trends using the
sampled data. That is, we randomly select n% of the tweets
from the full Twitter feed, use our methodology to estimate
the ILI prevalence based on these tweets, and compute the

4In the Tweet Count Correlation section we report the number
of ILI-related tweets associated with different geographic areas.
The exact number of tweets made in 2012 is proprietary informa-
tion, however, so we do not report it.

correlation between our prevalence estimate and Google
Flu Trends’ estimate. We evaluate each sampling level
from 0.002 to 1.00 in increments of 0.002. For each level,
we sample 5, 000 times and calculate the sampling level’s
mean correlation. We aggregate Twitter activity by week
to correspond with Google Flu Trends estimates, which are
released at the week level. We use only geolocated tweets
(i.e., tweets that have either a geotag or other location in-
formation associated with them) and compute prevalence
estimates over each geographic region. We consider only
the 70 cities that appear in both Google Flu Trends and our
Twitter data5.

4.1.1. Correlation
The Pearson correlations between Google Flu Trends and
our Twitter prevalence estimates at different sampling lev-
els are shown in Table 1. Correlations are computed across
all 70 cities. The mean correlation (i.e., 0.33) reaches 75%
of its maximum correlation (i.e., 0.42) when only 5% of the
Twitter data are used and 86% of its maximum when 10%
of the data are used. This is substantially more data than

5Albany, Albuquerque, Anchorage, Atlanta, Austin, Balti-
more, Baton Rouge, Birmingham, Boise, Boston, Buffalo, Char-
lotte, Chicago, Cleveland, Colorado Springs, Columbia, Colum-
bus, Dallas, Dayton, Denver, Des Moines, Eugene, Fresno,
Gainesville, Grand Rapids, Greensboro, Greenville, Honolulu,
Houston, Indianapolis, Jackson, Jacksonville, Kansas City,
Knoxville, Las Vegas, Lexington, Lincoln, Little Rock, Los
Angeles, Lubbock, Madison, Memphis, Miami, Milwaukee,
Nashville, New Orleans, Norfolk, Oklahoma City, Omaha, Or-
lando, Philadelphia, Phoenix, Pittsburgh, Portland, Providence,
Reno, Richmond, Rochester, Sacramento, Salt Lake City, San An-
tonio, San Diego, San Francisco, Seattle, Spokane, Springfield,
Tampa, Tucson, Tulsa, and Wichita
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Figure 3: Increases in each of the 70 cities’ correlations
with Google Flu Trends when moving from a 1% sample
to the full feed.
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Figure 4: Increases in each of the 70 cities’ correlations
with Google Flu Trends when moving from a 10% sample
to the full feed.

Fraction of tweets sampled
0.0075 0.01 0.015 0.02 0.05 0.10 0.20 0.30 0.40 0.50 1.0

Pearson correlation 0.27 0.25 0.22 0.20 0.15 0.12 0.09 0.08 0.08 0.08 0.07
Spearman correlation 0.70 0.69 0.68 0.66 0.54 0.45 0.39 0.36 0.35 0.34 0.30

Table 3: The correlation between the tweet count and GFT Pearson correlation at each sampling level. Both the Pearson
and Spearman correlation sharply decrease as the sampling level increases. At the 20% sampling level both correlations
are within 30% of their correlations at the 100% sampling level and within 15% at the 50% sampling level. This suggests
that poor ILI prevalence estimation performance is partially caused by a low number of tweets, but as the number of tweets
increases with the sampling level other factors become responsible for the prevalence estimation’s performance.
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Figure 5: Correlation with Google Flu Trends for various
cities when aggregating tweets at the month level. As with
week-level aggregation, each city’s correlation sharply in-
creases until the sampling level reaches approximately 5%.
The rate of increase is lower than that observed with week-
level aggregation, however.

Twitter’s 1% API provides, however, and when using a 1%
sample the mean correlation is only 40% of its maximum
value. Sampling disproportionately affects the cities that
perform poorly; when only the top 10% of the cities are
considered, the mean correlation reaches 73% of its maxi-
mum value at a 1% sampling level.
Figure 2 shows the correlation between Google Flu Trends
and our flu prevalence estimates for six cities as the sam-
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Figure 6: Correlation with Google Flu Trends as the frac-
tion of the city’s maximum correlation. While the corre-
lation sharply increases with both aggregation levels, the
increase is sharper with monthly aggregation. Monthly ag-
gregation reaches 90% of its maximum correlation once the
sampling level reaches about 6%, whereas weekly aggrega-
tion does not reach 90% of its maximum correlation until
the sampling level reaches about 13%.

ple size increases. While the maximum correlations vary,
the trend appears similar for each city. In each case, the
correlation increases substantially from the 1% sample to
the full feed. Flu detection performance increases much
more slowly once the sample size reaches approximately
5%, however, indicating that little is gained by adding the
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Figure 7: The relationship at the 1% sampling level be-
tween the number of flu tweets in a city and the Pearson
correlation between Twitter flu prevalence estimates and
Google Flu Trends’ estimates. The tweet count and GFT
correlation are fairly correlated, with Pearson’s r = 0.25
and Spearman’s ρ = 0.69, suggesting a strong monotonic
relationship and weak linear relationship.
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Figure 8: The relationship at the 10% sampling level be-
tween the number of flu tweets in a city and the Pear-
son correlation between Twitter flu prevalence estimates
and Google Flu Trends’ estimates. The tweet count and
GFT correlation are much less correlated than at the 1%
sampling level, with Pearson’s r = 0.12 and Spearman’s
ρ = 0.45.
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Figure 9: The relationship at the 1% sampling level be-
tween the number of flu tweets in a city and the Spearman
correlation between Twitter flu prevalence estimates and
Google Flu Trends’ estimates. The tweet count and GFT
correlation are relatively highly correlated, with Pearson’s
r = 0.37 and Spearman’s ρ = 0.86.
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Figure 10: The relationship at the 10% sampling level be-
tween the number of flu tweets in a city and the Spearman
correlation between Twitter flu prevalence estimates and
Google Flu Trends’ estimates. The tweet count and GFT
correlation are fairly correlated, with Pearson’s r = 0.26
and Spearman’s ρ = 0.69.

remaining 90% of data. This is significant because Twit-
ter’s Streaming API can return a sample containing more
than 1% of ILI tweets under some circumstances (i.e., the
Streaming API returns public tweets that match a query; it
returns up to 1% of all public tweets, which can be more
than 1% of tweets matching the query).

Figure 3 and Figure 4 show the distribution of the changes
in correlation when moving from a 1% sample to the full
feed and from a 10% sample to the full feed, respectively.
With a 10% sample the vast majority of cities receive a cor-
relation increase of 15% or less when the full feed is used,
whereas the majority of cities receive a correlation increase
of over 50% when the 1% sample is used. These results
further illustrate that moving from a 1% feed to a 10% sam-
ple can substantially improve results, but the difference be-
tween a 10% sample and the full feed is relatively small.

These results do not hold true for national ILI trends; when
all US tweets are considered, a 1% sample comes within
96% of the Google Flu Trends correlation obtained using
the full Twitter feed. In the Tweet Count Correlation sec-
tion we investigate the degree to which differences in tweet
counts explain this discrepancy.

4.1.2. Impact of Aggregation
We investigate how tweet aggregation interacts with sam-
pling. While Google Flu Trends does not provide the data
necessary to compare prevalence estimates at the daily-
level, we can aggregate both our Twitter ILI prevalence es-
timates and Google Flu Trends’ estimates at the monthly
level. Figure 5 shows the relationship between the GFT
correlation and the sampling level when tweets are aggre-
gated by month. The increase in correlation appears simi-
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Figure 11: The relationship between the number of flu
tweets in a city and the fraction of the maximum GFT
Pearson correlation achieved at the 1% sampling level (i.e.,
corr0.01/corr1.0). There is a weak Pearson correlation
(r = 0.23) and strong Spearman correlation (ρ = 0.75)
between the two.
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Figure 12: The correlation between the tweet count and
GFT Pearson correlation at each sampling level. The cor-
relation decreases sharply as the sampling level increases,
with Pearson’s r = 0.25 at the 1% sampling level decreas-
ing to r = 0.12 at the 10% sampling level before reaching
its final value of r = 0.07 at the 100% sampling level.

lar to that in Figure 2, which shows the relationship when
tweets are aggregated by week. The relative performance
of the six cities change, however, which suggests that the
aggregation is not only boosting the average correlation.
To determine whether monthly aggregation is changing the
rate at which prevalence estimates converage, for each sam-
pling level we compute how close an estimates’ correlation
with GFT is to the correlation’s maximum value. That is,
we compute corrs/corr1.0 where corrs is the correlation
with GFT at sampling level s. The results over all 70 cities
are shown in Figure 6. While estimates at both aggrega-
tion levels quickly approach their maximum correlations,
the monthly aggregation level results in a faster increase.
When using a 10% sample, the monthly aggregation level’s
correlation is 94% of its maximum, whereas the weekly ag-
gregation level’s correlation is 87% of its maximum. Sim-
ilarly, when using a 1% sample the monthly aggregation’s
correlation is 64% of its maximum, whereas the weekly ag-
gregation’s correlation is 42% of its maximum. Table 2
shows the results averaged over the 70 cities in our dataset
and the results when all US tweets are used. The correla-
tion quickly reaches its maximum correlation when all US
tweets are used, with a 99% weekly correlation and 100%
monthly correlation at the 1% sampling level.
Our analysis suggests that when researchers must utilize
Twitter’s 1% sample, they can reduce the effects of sam-
pling by increasing the aggregation level they use. While
monthly ILI prevalence estimates are much less useful than
weekly estimates, a monthly aggregation level can still be
helpful in assessing the quality of different trend detection
algorithms. Changing the aggregation level makes little dif-
ference for ILI prevalence estimation at the US national
level, however, since both weekly and monthly aggregation
perform well with a 1% sample.

4.2. Tweet Count Correlation
Our previous experiments have shown that city-level ILI
prevalence estimation performance increases as larger sam-

ples are used (e.g., the average Pearson correlation at the
1% sampling level is 42% of the maximum and 93% of
the maximum at the 20% level), but we did not observe
the same trend for estimates made over the entire United
States (e.g., the Pearson correlation at the 0.5% sampling
level is 98% of the maximum correlation). In this section
we investigate how well this performance increase corre-
lates with the total number of ILI tweets used in the anal-
ysis. That is, we investigate whether poor preformance at
low sampling levels is caused by a low number of tweets.
Figures 7 and 8 show the relationship between the ILI tweet
count and ILI prevalence estimation performance (i.e., the
ILI prevalence estimate’s Pearson correlation with Google
Flu Trends’ estimate) at the 1% and 10% sampling levels,
respectively. Tweet count and estimation performance have
a low Pearson correlation (r = 0.25) and high Spearman
correlation (ρ = 0.69) at the 1% sampling level, suggest-
ing that there is a monotonic relationship between the two
(i.e., more tweets result in better performance), but the re-
lationship is not linear (i.e., performance does not increase
linearly with the number of tweets). Both correlations de-
crease substantially at the 10% sampling level (i.e., Pear-
son’s r = 0.12 and Spearman’s ρ = 0.45), illustrating the
diminishing returns of increasing the sampling level. As
shown in figures 9 and 10, similar trends occur when we
consider the Spearman correlation rather than the Pearson
correlation between our Twitter prevalence estimates and
GFT’s estimates.

To correct for cities that always perform poorly, we can
measure each city’s fraction of its maximum GFT correla-
tion at the 1% sampling level rather than measuring its GFT
correlation at the 1% sampling level directly. That is, we
compare the tweet count to corr0.01/corr1.0, where corrs
is the Pearson correlation between Twitter and GFT at the
s sampling level. The comparison is shown in Figure 11.
As in the previous comparisons at the 1% sampling level,
there is a weak Pearson correlation and a strong Spearman
correlation between the two.
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To determine how strongly the sampling level is associated
with the correlation between tweet count and Twitter preva-
lence estimation performance (i.e., correlation with Google
Flu Trends), we plot their relationship in Figure 12 and
show several points in Table 3. The performance corre-
lation (i.e., the correlation between the tweet count and
prevalence estimation performance) quickly decreases as
the sampling level increases, further illustrating the dimin-
ishing returns of increasing the sampling level after about
10%. These results suggest that low numbers of tweets can
cause poor prevalence estimation performance, but the im-
pact of a low tweet count quickly diminishes as the sam-
pling level increases; poor performance at sampling levels
above approximately 10% is not highly correlated with the
tweet count, and may be influenced by other factors such
as the noise added by non-experiential tweets written in re-
sponse to prominent news articles (Yates et al., 2016b). We
observe that cities which had at least 104 ILI-related tweets
in 2012 tend to have better prevalence estimation perfor-
mance even at the 1% sampling level, so it may be helpful
to require a minimum number of relevant tweets when trend
detection is performed on a 1% sample. We note that this
does not apply to ILI prevalence estimation at the national
level, where even a 0.5% sample performs well.

5. Conclusion
We investigated the impact of sampling Twitter’s 100% API
stream on Influenza-like illness (ILI) prevalence estimation
by comparing prevalence estimates at different sampling
levels to the estimates provided by Google Flu Trends. Our
results show that sampling has little impact on ILI preva-
lence estimation when performed at the national level, but
sampling levels below 5-10% significantly degrade preva-
lence estimation performed at the city level. We examined
the correlation between the number of ILI-related tweets
associated with a city and the city’s ILI prevalence estima-
tion performance, and found that low number of tweets are
only correlated with poor estimation performance at low
sampling levels (i.e., sampling levels below 10%). Futher-
more, we found that aggregating tweets by month rather
than by week reduces the effects of sampling, and we ob-
served that cities which had at least 104 ILI-related tweets
were less likely to perform poorly at low sampling levels.
Based on these findings, we suggest that researchers excer-
cise caution when using Twitter’s public 1% sample to iden-
tify trends in small geographic areas at the daily or weekly
aggregation level; researchers may be able to reduce the
impact of using the sample API by aggregating tweets by
month or by performing their analysis over a larger geo-
graphic area.
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