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Abstract
Vocal User Interfaces in domestic environments recently gained interest in the speech processing community. This interest is due to the
opportunity of using it in the framework of Ambient Assisted Living both for home automation (vocal command) and for call for help in
case of distress situations, i.e. after a fall. CIRDOX, which is a modular software, is able to analyse online the audio environment in a
home, to extract the uttered sentences and then to process them thanks to an ASR module. Moreover, this system perfoms non-speech
audio event classification; in this case, specific models must be trained. The software is designed to be modular and to process on-line
the audio multichannel stream. Some exemples of studies in which CIRDOX was involved are described. They were operated in real
environment, namely a Living lab environment.

Keywords: audio and speech processing, natural language and multimodal interactions, Ambient Assisted Living (AAL).

1. Introduction
Voice User Interfaces (VUI) are becoming more and more
popular in ambient intelligence environments whether it is
for smartphones or for smart homes (e.g., S.A.H.R.A.1).
For instance, in domestic environments, VUI recently
gained interest in the speech processing community as ex-
emplified by the rising number of smart home projects that
consider Automatic Speech Recognition (ASR) in their de-
sign (Istrate et al., 2008; Badii and Boudy, 2009; Hamill
et al., 2009; Filho and Moir, 2010; Gemmeke et al., 2013;
Christensen et al., 2013; Cristoforetti et al., 2014; Vacher et
al., 2015b).
However, the speech technology, though mature is still dif-
ficult to master for non-expert and to tune for a particular
usage (Vacher et al., 2015a). Although many good qual-
ity commercial systems were made available during this
decade, these are neither open source nor customisable by
the user. Moreover, for some of them, respect to user
privacy may be questioned. Hence, it becomes important
for research in natural language interaction to access open-
source and highly configurable real-time VUI software.
Many toolboxes and libraries exist for audio processing
such as Planet CCRMA at Home (CCRMA, 2016), ChucK
(ChucK, 2016), etc. But these are dedicated for music pro-
cessing and not for speech interaction. General purpose
recorder and editor such as SoX (Sox, 2016) and Audacity
(Audacity, 2016) make it possible to acquire audio signals
in real-time and edit them, but these tools are mainly de-
signed to perform off-line processing. Regarding speech
interaction, there are a high number of ASR (Automatic
Speech Recognition) systems2 but again, using them in an
on-line hand free setting requires a high expertise in signal
and speech processing.
Ideally, a complete hand free VUI system would be com-
posed of five main components:

1. an multisource acquisition stage;

2. a signal enhancement stage;

1http://sarah.encausse.net
2https://en.wikipedia.org/wiki/List_of_

speech_recognition_software

3. a Voice Activity Detection (VAD) stage;

4. an Automatic Speech Recognition (ASR) stage;

5. a Natural Language Understanding (NLU) stage,
when required;

6. a decision stage;

7. and, a communication stage.

A few tools have been built to perform some of these
stages such as AuditHIS (Vacher et al., 2010) or more re-
cently PATSH (Vacher et al., 2013). They were built to
be used in continuous sensing uncontrolled ambient system
using a pipeline architecture of audio acquisition, sound
detection, classification and ASR. However, these systems
are not open-source and difficult to access. In this pa-
per, we present an open-source VUI software, called CIR-
DOX which performs multisource audio analysis to ex-
tract speech occurrences and handle the speech recognition.
Moreover, the system performs non-speech audio event
recognition (cough, shock, etc.) so that interaction can also
be performed using sound. The software is designed to be
modular and to process on-line the audio stream (as soon as
audio sample chunks arrive). In this way, inclusion of new
modules is designed to be easy.

2. CirdoX: an Open Source Audio Analysis
Software

The architecture of the presented system is depicted
Figure 1. It has been entirely developed in C and
it is currently running on Unix-like POSIX systems
only. We plan to diffuse the software under the GNU
GPL license. The source code will be available on
https://forge.imag.fr/projects/cirdox/.
The backbone of CIRDOX is its decomposition into three
processes running in parallel:

1. The Acquisition and Detection Process which han-
dles the continuous audio sensing and the extraction
of audio events of sufficient energy from multichannel
microphone or record (1 to 8 channels);
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Figure 1: Architecture of the CirdoX software.

2. The Classification Process, which performs first the
speech/non-speech discrimination and secondly the
identification of each non-speech event. Thirdly, for
speech events, a call to an external ASR system is
made by sending speech signal and receiving hypoth-
esis;

3. and, the Communication Process, which performs
subsequent processing and formatting to communi-
cate, the interpreted audio events to external devices
(home automation system, logger, alarm system, etc.).

The CIRDOX application is designed to be modular and
configurable, with independent modules so that each mod-
ule can be chosen from among several plugins correspond-

ing to different ways of achieving a task (for instance, clas-
sification using either Gaussian Mixture Model or decision
trees). The plugins are loaded using dynamic library link-
ing so that any user can build her own plugins to perform
some of the module tasks. Table 1 shows the different plu-
gins implemented and that we plan to implement.

The information exchange is mainly performed using a
sound object data structure which contains the full infor-
mation necessary to characterize a detected audio event
(time of begin/end, signal to noise ratio) and whose fields
are filled in along the processing chain (type of sound:
speech or non-speech, ASR hypothesis, every day sound
class, etc.). These sound objects are exchanged between
processes using IPC (Inter-Process Communication) sig-
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Process Functionality & modules Implemented Library & model
Acquisition & Detection

Acquisition: NI on-line Not yet NI-DAQmx driver
Acquisition: NI off-line Not yet NI-DAQmx driver
Acquisition: Portaudio on-line Yes libportaudio2 v19

portaudio19dev v19
Acquisition: Portaudio off-line Yes libportaudio2 v19

portaudio19dev v19
Acquisition: Kinect on-line Yes libfreenect v0.2
Acquisition: Kinect off-line Not yet –
Detection: DWT Yes (Vacher et al., 2004)

Classification

Speech/non-speech discrimination: GMM Yes LIA_RAL v3.0- to be adapted
to home audio environment

Speech/non-speech discrimination: GMM Yes ALIZE API v3.0 - to be adapted
to home audio environment

Non-speech classification: GMM Yes ALIZE API v3.0 - to be adapted
to home audio environment

Non-speech classification: DT Not yet –
ASR synchronisation: Sphinx3 Yes to be adapted to the application
ASR synchronisation: Google API Yes different languages supported
ASR synchronisation: KALDI python server Yes to be adapted to the application

Communication

Filtering: Levenshtein Distance Yes list of sentences to furnish
Formatting Yes to be adapted to the application

Table 1: Functionalities and Implementations of CIRDOX modules.

nals and a common local repository which contain the raw
audio data (written by the Acquisition and Detection pro-
cess and read by the Classification).
CIRDOX can be executed in two modes:

1. online, meaning the input sources are the different mi-
crophones,

2. off-line, meaning that the input is actually extracted
from audio files.

The second mode is useful for the development of new
modules in order to test them in reproducible conditions.
Moreover, the off-line mode can be executed either in real-
time (chunks of data are processed at the sampling fre-
quency of the audio record) or in stream mode (chunks of
data are processed as fast as possible).

2.1. Acquisition/Detection Process
In online mode, the audio stream is captured by a set of
microphones and recorded by the Acquisition module. At
this time of writing, this module can be executed through
the following plugins:

1. the PortAudio library3;

3www.portaudio.com is used by many open-source appli-
cations including Audacity to access the sound card

2. The Kinect API version 04 ;

3. the driver of a National Instrument card5.

The acquisition can also store the full recorded signal for
further analysis as well as simulate an acquisition from a
audio file for development and debugging purpose. Once
the acquisition has reached a certain amount of data, a call-
back function triggers the Detection module.
The Detection module detects the occurrences of audio
events (speech or non-speech). It keeps the state of the
previous detection between the successive calls by the ac-
quisition module. Rather than multi-threading the detec-
tion for each channel, the detection is performed succes-
sively on each channel. This is made possible by the syn-
chronous multichannel acquisition. At the time of writing
only one plugin as been written to perform the module task.
This plugin is based on the change of energy level of the
three highest frequency coefficients of the Discrete Wavelet
Transform (DWT) in a floating window frame (last 2048
samples without overlapping) (Vacher et al., 2004). Each
time the energy on a channel goes beyond a self-adaptive
threshold, an audio event is detected until the energy de-
creases below this level for at least an imposed duration.

4http://openkinect.org/
5http://www.ni.com/product-documentation/

11787/en/

1980



���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

Home Automation 

sensors

Actuators

&

special devices

Microphones

Acquisition interface

CIRDOX

Controller

Figure 2: Home Automation system using CirdoX.

Hence, this plugin adapts itself to changes in background
noise level.
The module also identifies simultaneous events using sim-
ple temporal overlapping6. This make it possible to per-
form multisource processing or data fusion. Too lengthy
audio events can also be discarded from the process7. Dur-
ing detection, the Signal to Noise Ratio (SNR) of the event
is calculated for each channel. Once a detection is com-
plete, event data are saved in an audio file in a local repos-
itory. In the case of simultaneous events, the saved data
are those from the event with the best SNR. A sound object
with a link to the audio file is created and sent by IPC to the
next process.

2.2. Classification Process
This process is in charge of interpreting the audio events.
A first module, called the Discrimination module, deter-
mines whether the audio event is a speech or non-speech
event. This module can be executed through plugins using
Gaussian Mixture Models (GMM) or Decision Tree (DT)
(the DT plugin is not yet implemented). Two plugins with
GMM are implemented and use the ALIZE library (Bonas-
tre et al., 2005): the first uses features in the SPRO3 format
and integrates ALIZE API functions, and the second uses
features in the SPRO4 format and calls LIA_RAL tools.
In both cases, signal discrimination is achieved through a
Gaussian Mixture Model (GMM) classifier, trained with a
everyday life sound corpus, and a speech corpus recorded in
the LIG laboratory (Istrate et al., 2006). Acoustical features
can be Linear-Frequency Cepstral Coefficients (LFCC) or
Mel-Frequency Cepstral Coefficients (MFCC). The classi-
fier uses 24 Gaussian models, on a logarithmic Mel scale.
In the case of non-speech events, the Classification mod-
ule attributes a sound class (e.g., cough, shock, etc.) to
the event. Again, some plugins based on GMMs, Decision
Tree (DT) are or will be available. For the moment, only
the GMM plugin, with a classifier using the ALIZE API
functions, is implemented. In the case of speech, the signal
can be sent to an external ASR (Automatic Speech Recog-
nition) system so that a transcription of the speech can be
obtained. For the ASR synchronisation task, several plug-
ins can be used, corresponding to different ASR systems:
Sphinx3, Google Speech API and KALDI.

6An event might be captured by several microphones, for in-
stance when they are set in the same room.

7Depending on the application, sound events might have a
minimum and maximum duration. This make it possible to fil-
ter out too short events and installed background noise.

Regarding the plugin connecting to Sphinx3, ASR is man-
aged with a Tcl/Tk script that calls Sphinx3 tools8 for signal
to MFCC conversion and decoding. The synchronization
between the Classification process and the Tcl/Tk script is
done by lock files. A text file with the hypothesis is gener-
ated by Sphinx3.
Regarding the plugin connecting to Google Speech API, the
wav file is converted into the FLAC format and sent to the
Google Speech API server9 through a POST request. The
Google server return a JSON response with the hypothesis.
Thanks to the plugin connecting to KALDI, the wav file is
sent to an ASR server, based on the Kaldi toolkit (Povey et
al., 2011) and the GStreamer framework, and implemented
in Python10. Like the Google Speech API plugin, a JSON
response with the hypothesis is returned.
Sound classification results or ASR hypothesis are included
in the sound object for processing by the next module.

2.3. Communication Process
The communication process handles the interaction with
the exterior. It also logs all the sound events. This part is
highly dependant on the application to communicate with.
To take this dependence into account a filter module can be
activated to communicate only the event to communicate
to the exterior (e.g., only speech of a certain kind) and/or
to perform more processing on the event. The formatting
module takes care only of the communication protocol.

3. CirdoX in Ambient intelligence Setting
CIRDOX has been used at different occasions to capture and
analyse audio events in different smart spaces including the
smart class room of the MSTIC Fab-Lab and the Domus
smart home of the LIG. We present below the results of a
setting for voice command recognition.

3.1. Voice command recognition for Home
Automation

Figure 2 shows the connections of CIRDOX with the input
(wireless microphones set in rooms of a home) and the out-
put (home automation system) that has be employed both
in the CIRDO project (Bouakaz et al., 2014) and the sweet-
Home project (Vacher et al., 2015b). The aim is to con-
stantly capture the audio signal to seek for specific voice

8http ://cmusphinx.sourceforge.net
9http://www.google.com/speech-api/v1/recognize

10https://github.com/alumae/kaldi-gstreamer-server
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commands and send them to the controller of the home au-
tomation system in order to perform the commands when
applicable. In the case of a generic smart home equipped
with a home automation system, actuators are used to acti-
vate lighting, stores, multimedia devices, etc. In the partic-
ular case of calls for help, the only action is alarm sending
to a specialized service or to a relative. In all cases, the
speaker is distant from the microphone (i.e., no worn mi-
crophone) and the interaction is hand-free (no push button
to start the recording).
To address voice command recognition realistically, 3 kinds
of speech were considered:

• vocal command (e.g., “home turn on the light”),

• distress calls (e.g., “home call for help”)

• or colloquial speech (e.g., “I ate spinach at lunch”).

In this last case, no action must be operated and the au-
dio event must be discarded. Therefore, it is necessary to
check if a speech audio event corresponds to a voice com-
mand or a distress call. To do so, the exhaustive list of all
possible voice commands and distress calls was generated
wrt a predefined grammar. Since a word-by-word compar-
ison would be too crude, each speech transcription hypoth-
esis was first phonetized and then a distance was computed
against the list of phonetized voice commands. Formally,
for each phonetized ASR output T , every voice commands
H is aligned to T using Levenshtein distance (Levenshtein,
1966). The deletion, insertion and substitution costs were
computed empirically while the cumulative distance γ(i, j)
between Hj and Ti is given by Equation 1.

γ(i, j) = d(Ti, Hj)+

min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} (1)

The sentence with the aligned symbols score is then se-
lected for decision according a detection threshold. This
approach takes into account some recognition errors such
as word endings or light variations. Moreover, in a lot of
cases, a miss-decoded word is phonetically close to the true
one (due to the close pronunciation). At the end of the pro-
cess, the sound object is received by the Data Formatting
module that sends a socket containing all the relevant data
to the controller system.

3.2. Experiment in Living lab
CIRDOX has been used in the framework of the
CIRDO project with participants who played scenarios in
the Living lab DOMUS, including falls down on the floor
and calls for help uttered in French. Since it is difficult
to find elderly people capable and accepting to play such
scenarios, some recruited people were under 60. Over-
all 17 French participants were recruited (9 men and 8
women) and 4 were elderly people (Vacher et al., 2016).
The younger participants were instructed to wear an equip-
ment i.e. old age simulator. Old age simulator hampered
mobility, reduced vision and hearing. Figure 3 shows a
young participant during the training phase before playing a
fall scenario on the carpet. Scenarios included call for help
sentences. Table 2 gives some examples of these sentences.
The size of audio records is 645.54 seconds.

Distress Sentence AD80 Sentence
Aïe aïe aïe Aidez-moi
Oh là Au secours
Merde e-lio, appelle du secours
Je suis tombé e-lio appelle ma fille
Je peux pas me relever Appelle quelqu’un e-lio
Qu’est-ce qu’il m’arrive e-lio, appelle quelqu’un
Aïe ! J’ai mal e-lio appelle ma fille
Oh là ! Je saigne ! Je me suis blessé e-lio appelle le SAMU

Table 2: Some examples of French sentences identified for
inclusion in the scenarios

Figure 3: A participant during the training phase of a fall
scenario (Bouakaz et al., 2014).

3.3. CIRDOX Configuration
CIRDOX was used in order to process data and to extract
online the sentences uttered during the experiment.
GMM models were trained using the ALIZE software in
order to adapt the Speech/Non-speech Discrimination mod-
ule. Training data were made of distant speech records
from SWEET-HOME corpus (Vacher et al., 2014) recorded
in the Living lab DOMUS: 9,147 speech files (home au-
tomation orders or distress calls) were used to train the
speech model (i.e. 4 hours 53 minutes), 13,448 sound files
(i.e. 5 hours 10 minutes) were used to train the non-speech
model.
ASR was operated using Sphinx3 with an acoustic model
trained on the BREF120 corpus (Lamel et al., 1991) and
adapted to elderly voice, to distant speech and to expres-
sive speech conditions. BREF120 is a large corpus of oral
read texts, containing more than 100 hours of speech pro-
duced in French by 120 speakers (65 women and 55 men),
all recorded texts were extracted from the newspaper Le
Monde. The adaptation was obtained thanks to the MLLR
method with the “User Specific Interaction” subset of the
SWEET-HOME corpus (Vacher et al., 2014) which is made
of 337 sentences in French (9min 30s of signal) uttered in
the DOMUS flat by elderly or visually impaired people (av-
erage age: 72 years), and with 742 expressive speech sen-
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Type of sound Classified Classified
as speech as non-speech

Speech 237 85
Non-speech 7 1621

Table 3: Discrimination between “Speech” and “Non-
speech”.

tences of the “Voix détresse” corpus recorded by the LIG
laboratory.
A language model specific to sentences to recognize was
estimated from distress sentences and calls to caregivers
of AD80 corpus (Vacher et al., 2015a). This is a trigram
model containing 88 unigrams, 193 bigrams and 223 tri-
grams. A general language model has been learned from
the French Gigaword corpus (Linguistic Data Consortium,
2011) which is a collection of newspaper articles that have
been acquired over several years by the Linguistic Data
Consortium (LDC) from the University of Pennsylvania.
This model is unigram and contains 11018 words. The fi-
nal model is the combination of the specific model with the
general model, giving more weight (90%) on the probabil-
ities of specific model.

3.4. Audio Analysis Results
The Detection module extracted 1,950 sound events. The
confusion matrix of the results of the Speech/Non-speech
Discrimination module are given in Table 3. This mod-
ule classified 244 of the events as speech, 237 were re-
ally speech, 7 were non-speech events classified as speech.
85 speech events were badly classified as sound. At the
output of the Speech/Non-speech Discrimination module,
the specificity is high, Sp = 0.996, this parameter repre-
sents the classification rate of non-speech events classified
as non-speech. However, the sensitivity is low, Se = 0.736,
this parameter represents the classification rate of speech
events as speech.
According to results of previous stages of CIRDOX, 244
audio events were decoded, 204 are distress calls, 33 collo-
quial sentences and 7 non-speech signal. Table 4 presents
the decoding results. WER is very high for colloquial sen-
tences, this is due to the language model which is non
adapted to this task and corresponds to a desired effect:
this kind of sentences is not to be well recognized for pri-
vacy reason. Regarding distress calls, the Word Error Rate
(WER) is quite high with 38.52%. This result is far from
perfect but they were obtained under harsh conditions. In-
deed, the participants played scenarios which included falls
on the floor: they generated a lot of noise sounds which
were often mixed with speech, and they were far from the
microphone.
At the output of the filtering stage, 29 colloquial sentences
and sounds were rejected (True Negative), 35 distress call
were rejected by mistake (False Negative), 11 colloquial
sentences and sounds were kept by mistake (False Posi-
tive), and 169 distress calls were recognized (True Posi-
tive). Among the 204 distress calls, 82.84% of the calls are
well detected. Table 5 summarize the performances of this
stage. The False Alarm Rate (FAR) is 6.11%.

Type WER (%)
Calls for help 38.52
Other 115.31
(colloquial and non-speech)

Table 4: WER for the DOMUS recorded data.

Performance measure Value (%)
Se 82.84%
Sp 72.50%
FAR 6.11%

Table 5: Sensitivity, specificity and false alarm rate of the
filtering stage from automatically detected speech

Results obtained by the Filtering stage and the previous
stages are summarized Figure 4. Among the 1950 audio
events, 277 are distress calls, 45 are colloquial sentences
and 1628 are non-speech. Considering the global perfor-
mances, i.e. all the steps (discrimination, ASR and filtering
modules), 61% of the distress calls uttered by the speak-
ers lead to send an alert to the concerned service. This
value is still relatively too low to consider a real use in real-
world applications. One explanation could be the presence
of noise in the speech. Thus 95 speech events were noisy,
in most cases due to the superposition of the noise made
by the person during the fall to the speech. Only 43.2% of
speech events were classified as speech by the Discrimina-
tion module when they were noisy versus 86.3% for clean
speech. It is also not surprising, all depend on the propor-
tion of noise related to speech in term of energy or time.
Moreover, for clean speech classified as speech, WER is
33.28%, versus 77.91% for noisy speech.
The presented ASR results were obtained using Sphinx3.
We obtained better results using a more sophisticated ASR
approach by modellling acoustic using SGMM and on
manually annotated data from the same corpus. Acoustic
models were based on subspace GMM (sGMM) with the
KALDI toolkit (Vacher et al., 2015c).
In the experiments, the acoustic models were context-
dependent classical three-state left-right HMMs. Acoustic
features were based on Mel-frequency cepstral coefficients,
13 MFCC-features coefficients were first extracted and then
expanded with delta and double delta features and energy
(40 features). Acoustic models were composed of 11,000
context-dependent states and 150,000 Gaussians. The state
tying is performed using a decision tree based on a tree-
clustering of the phones.
In addition, off-line fMLLR linear transformation acous-
tic adaptation was performed. The acoustic models were
trained on 500 hours of transcribed French speech com-
posed of the ESTER 1&2 (broadcast news and conversa-
tional speech recorded on the radio) and REPERE (TV
news and talk-shows) challenges as well as from 7 hours
of transcribed French speech of the SWEET-HOME cor-
pus (Vacher et al., 2015b) which consists of records of 60
speakers interacting in the smart home and from 28 minutes
of the Voix-détresse corpus recorded by the LIG laboratory
(Aman et al., 2013) which is made of records of speakers
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Audio: 1950 events

Speech: 244 Non-speech: 1706

D: 277, C: 45, NS: 1628

D: 204, C: 33, NS: 7 D: 73, C: 12, NS: 1621

True Positive False Positive False Negative True Negative

1621 + 1229169

11 35

73

Speech/Non-speech discrimination Classified as?

Filter: n(M1)/n(M2)

Figure 4: Global view of result experimentation in the DOMUS Living lab (Distress calls: D, Colloquial sentence: C,
Non-Speech: NS).

eliciting a distress emotion. WER was 34% and 72% of the
calls were detected using Kaldi and SGMM instead of 61%
using Sphinx3 .

4. Conclusion
Audioprocessing in the Smart Homes, despite recent devel-
opments, have led to few experimentations in daily living
conditions as far as audio analysis is concerned. This paper
presents a modular audio analysis software able to analyse
online the audio environment from multichannel, to extract
the uttered sentences and then to process them thanks to an
ASR stage. Moreover this system perfoms non-speech au-
dio event identification; in this case, specific models must
be trained. The software is designed to be modular and to
process on-line the audio stream.
This software was used for call for help recognition in a
smart home. The records were made in distant speech con-
ditions, moreover the conditions were very harsh because
the scenarios included falls of the person on the carpet.
Audio events were correctly processed along the different
stages. Results must be improved by using new models.
We plan to diffuse the software under the GNU GPL li-
cense.
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