Tools and Guidelines for Principled Machine Translation Development

Nora Aranberri,* Eleftherios Avramidis,’ Aljoscha Burchardt,’
Ondrej Klejch,! Martin Popel* and Maja Popovi¢Y
*University of the Basque Country (UPV/EHU), IXA Group — nora.aranberri @ehu.eus
TDFKI Berlin — {eleftherios.avramidis, aljoscha.burchardt} @dfki.de
fCharles University in Prague, Faculty of Mathematics and Physics, UFAL — {klejch, popel} @ufal. mff.cuni.cz
VHumboldt University of Berlin — maja.popovic @hu-berlin.de

Abstract
This work addresses the need to aid Machine Translation (MT) development cycles with a complete workflow of MT evaluation
methods. Our aim is to assess, compare and improve MT system variants. We hereby report on novel tools and practices that support
various measures, developed in order to support a principled and informed approach of MT development. Our toolkit for automatic
evaluation showcases quick and detailed comparison of MT system variants through automatic metrics and n-gram feedback, along with
manual evaluation via edit-distance, error annotation and task-based feedback.

Keywords: evaluation methodologies; machine translation; tools, systems, applications

1. Introduction

Machine Translation (MT) development cycles depend on
suitable MT evaluation tools and methods that help to as-
sess, compare, and improve system variants. Yet, MT eval-
uation is a notoriously difficult topic due to the variability
of the language that makes it impossible to anticipate one
or more “correct” translations in advance. Therefore, a full
MT development process often relies on a mix of automatic
measures and human rating. Automatic measures are com-
puted against human reference translations in order to set
up baselines, building corpora, quick comparisons etc. Hu-
man rating, such as comparison of MT output, is used at
certain milestones for comparing the most prominent sys-
tems. More recently, human post-editing and explicit error
mark-up have been used to bridge the gap towards the use of
MT in language industry, where the post-editing effort and
the (absence of major) errors are decisive factors for deter-
mining the usability of MT engines for a given task. In this
work, we report on novel tools — one for automatic evalu-
ation and one for human evaluation — and report on prac-
tices that we have developed in the context of the QTLeap
project! in order to support a principled and informed ap-
proach to MT development.

The structure of this paper is as follows: Section 2. outlines
the main functionality of MT-COMPAREVAL,? an open-
source tool for MT development that has been developed
within the project and is used to “automatically” monitor
MT improvements. Section 3. describes the manual evalu-
ation being performed in the project on a regular basis for
gaining insights based on qualitative inspection. Finally,
Section 4. concludes this paper.

2. Developer’s Workbench:
MT-COMPAREVAL
MT-CoMPAREVAL is an open-source tool that has been

designed to help MT developers to compare and evaluate
various MT engines/experiments and settings using several

"http://gtleap.eu
https://github.com/choko/MT-ComparEval

measures that represent the current best practices. The sys-
tem helps to tie the development cycles together by linking
three ingredients:

e An evaluation panel that provides a graphical inter-
face for comparing the performance of various sys-
tems on the same output, visualizing automatic scores
and various types of statistics and allowing easy man-
ual checking of translation quality on a sentence level.

o A back-end that monitors some pre-defined storage
locations for the addition of new translation outputs.
Whenever a new translation output is detected, a new
task is added in the background database.

e An evaluation mechanism that calculates MT evalua-
tion scores based on a set of automatic evaluation met-
rics and statistical tests. These results are associated
with the translation tasks in the database.

Demo server

In order to showcase the features of MT-COMPAREVAL,
we present a demonstration server.’ The interface in-
cludes pre-loaded system outputs from the WMT Shared
Task 2014 and 2015. A detailed description of MT-
COMPAREVAL including installation instructions can be
found in Klejch et al. (2015).

2.1. Quantitative Feedback: Automatic
Measures

MT-CoMPAREVAL provides the following automatic mea-
sures for each of the systems and tasks in the database, for
quick comparison of the output:

BLEU (Papineni et al., 2002) an n-gram based metric,
which uses the geometric mean of word 1-, 2-, 3- and
4-grams. The final score is calculated as the precision
of these average n-grams including a brevity penalty
(in contrast to the recall used by F-score below).

‘http://wmt.ufal.cz

1877



Statistics

Metric Pilot 0.01 Pilot 1.00
BLEU 0.402 0.3915
BLEU-cis 0.4296 0.4324
F-MEASURE 0.445 0.4359
F-MEASURE-cis 0.4732 0.4761
H-ADDITION 377 565
H-ADDITION-cis 377 565
H-FORM 178 172
H-FORM-cis 178 172
H-MISTRANSLATION 1652 1750
H-MISTRANSLATION-cis 1652 1750
H-OMISSION 556 415

U ALmeSIAL Ain cen

Figure 1: Screenshot of the automatic measures shown by
MT-COMPAREVAL (excerpt only). ‘“cis” means case in-
sensitive (metrics without this suffix are case sensitive).

F-Score (Popovi¢, 2012) used in our evaluation is based
on the arithmetic mean of word n-grams (n=1,..,4) (in-
stead of BLEU’s geometric mean, so as to avoid too
hard penalties for unseen word sequences, thus im-
proving sentence-level reliability). The final score is
calculated as the harmonic mean between precision
and recall.

Hjerson (Popovié, 2011) is a tool for automatic error clas-
sification based on Word Error Rate (i.e. edit dis-
tance), precision and recall. It allows for word-level
error categorization into five types: inflectional error,
word-order error, omission, addition and mistransla-
tion (i.e. lexical error).

Figure 1 shows a screenshot of MT-COMPAREVAL, where
the results of different metrics are displayed.* This infor-
mation allows for quick, repetitive and inexpensive compar-
isons of system versions during the development cycle to
measure the global impact of specific modifications against
areference. It provides information as to the contribution of
different techniques or resources and also allows to identify
considerable differences between system versions to catry
out more resource-expensive qualitative evaluations.

2.2. Feedback for Inspection by Developers:
Confirmed and Unconfirmed n-grams

MT-COMPAREVAL also calculates n-gram statistics (for
n=1,2,3,4), providing developers with a degree of qualita-
tive insight into system variants. By displaying differences
in n-grams, they can obtain a quick view of the specific
changes in the output of any two MT systems, sysA and
sysB (where one can be a newer version of the other, or
they can be two independent systems).

Each occurrence of a given n-gram in a given sentence falls
into exactly one of the 7 categories in Figure 2, depending
on its presence in sysA, sysB and the reference.’ For exam-
ple, n-grams present in sysA and the reference, but not in

“It is planned to normalize all metrics’ values to the range of
0-100 for a uniform display in a future update of the tool.

SFor simplicity of this description, we ignore the cases when
an n-gram is present multiple times in one sentence. These cases
are handled correctly by MT-COMPAREVAL.

worseB

SysA

confAB

imprA imprB

confNotinAB

referencé

Figure 2: Breakdown of n-grams into 7 categories

2-gram
Pilot 0.00 wins Pilot 2.00 wins

dass 234-126 = 108 Schénheit und 4-0=4

. die 208 -112=96 .in g-6=3
, sagte 68 -31=37 am Montag 5-2=-3
60 - 30 =30 ist 3-0-3

in der 68-42=26 Maria Calderon 3-0=3
in den 54-28=25 um die 3-0=3
. wenn 44-23=21 . indem 4-2=-2
was 36-15=21 die er 2-0=2
us - 18-0=18 aus , 2-0=2
. sagt 34-17 =17 Klager 2-0=2

Figure 3: Screenshot of the table of confirmed n-grams.
Only bigrams are shown here. The scores (e.g. 234 — 126
= 108) mean confA — confB = confDiff, see Section 2.2.

sysB, are called imprA because they are improving sysA’s
output relative to sysB. We sum the presence of a given n-
gram in the 7 categories over all sentences (so one n-gram
can have several categories with non-zero counts). We de-
fine confA = confAB + imprA. Thus confA is the num-
ber of times a given n-gram was confirmed in sysA (“con-
firmed” means occurring both in sysA and in the reference
for the same sentence). We compute confDiff = confA —
confB = (confAB + imprA) — (confAB + imprB) =imprA
— imprB. Similarly, we compute unconfDiff = unconfA —
unconfB = worseA — worseB.

Thus, confDiff measures whether a given confirmed (“cor-
rect”) n-gram is produced more often by sysA than sysB
(positive values) or vice versa (negative values). MT-
CoMPAREVAL computes confDiff for all n-grams and plots
top ten positive ones (marked “sysA wins”) and top ten neg-
ative ones (marked “sysB wins”, switched to positive val-
ues) in the table of Confirmed n-grams (see Figure 3). Sim-
ilarly, it plots the top ten unconfirmed n-grams (i.e. sorted
according to unconfDiff). These tables proved to be very
useful for the developers when searching for possible im-
provements of their systems. We are considering to merge
these two tables (confirmed and unconfirmed n-grams) into
one, where we would report confDiff — unconfDiff.

This short-phrase-ranged perspective already allows devel-
opers to check for local agreements and ordering, as well
as vocabulary coverage, to mention a few aspects. With
this information, a more guided development can continue
until a more robust system is ready for another iteration of
qualitative inspection.

1878



‘Segment lst and editor
Editormodes » | Hietags [ Shorttagview | Fulltagview | Reset sotingfitering QM Subsegment Satistcs
~ Source toxt rewrked  Torget text reweorked

e

systems
g Lighttpd 1.4 on Unix Lighttpd 1.4 on Unix
systems systems
9 Sun, iPlanet and Netscape Sun, iPlanet and Netscape
servers on Sun Solaris servers on Sun Solaris
10 CGI and command line  CGI and command line
setups setups n targt:
11 HP-UX specific installation HP-UX specific installation
notes notes

40 nen : : nen

Figure 4: MQM error annotation in TRANSLATES.

3. Manual Evaluation

Whereas the automatic evaluation presented above can be
repeated often during the development phase, manual qual-
itative evaluation can only be performed following a fixed
timeline. In our use case, the development effort has been
organized in development phases with specific duration.
Each development phase results into an MT system, re-
ferred to as a “pilot”, that collects system improvements
that are expected to have a positive effect on its perfor-
mance.

For the qualitative evaluation of our pilots, we focused on
three qualitative evaluation methods, namely, post-editing,
error annotation and a task-based evaluation. Each of
these tasks provides complementary information, answer-
ing three different questions about MT quality. Post-editing
is used as a measure of how far the output is from having
an acceptable quality for the intended purpose of the trans-
lation. Comparing MT output with the post-edited version
rather than a random reference translation provides a more
precise answer about its usefulness for professional trans-
lators. Error annotation, together with the frequency and
impact level, provides information for establishing priori-
ties and selecting development techniques and resources.
Also, it helps decide whether the MT quality is sufficient
for a particular purpose. The task-based evaluation con-
siders the usability of the system output quality for a given
task. It establishes whether the quality, regardless of the
level and error types, is sufficient for users to benefit from
its use.

For the first two human evaluation tasks, post-editing
and error annotation, we have used the open-source tool
TRANSLATES® (see Figure 4 for a screenshot), a database-
driven tool with a graphical user interface. Source texts,
translations and annotations are organized in a relational
database. The tool, originally implemented as a proofread-
ing and post-editing environment for the translation indus-
try, has been recently extended’ to support Multidimen-
sional Quality Metrics (MQM) error annotation (Lommel
etal., 2014). The current implementation includes APIs for
automatic processing steps, data import and export, as well
as queuing, management and load-balancing of external
and internal processes and handling of their dependencies.
It also features reporting functions, user administration and

Simplemented by MittagQIL; http://translate5.net
"The extensions for MQM were supported by the EC-funded
project QTLaunchPad http://www.qt21.eu/launchpad.

facilities for simple workflow specification and client man-
agement. The annotation types supported are post-editing,
MQM error tagging, and simple ranking, whereas its cur-
rently being developed to provide additional functionality.®

3.1. Post-editing Distance

Manual post-editing was done on 200 answers sampled
from a test set (batch 2 of the QTLeap corpus’), for each
one of our 7 language pairs (from English to Basque, Bul-
garian, Czech, Dutch, German, Spanish and Portuguese).
The instruction to the annotators was to perform minimal
post-editing, i.e., to produce a correct translation that is
close to the MT output, but to refrain from re-formulations
even if the latter would have been stylistically preferred.
The Word Error Rate between the system outputs and the
reference indicates how far a system is from producing the
correct translation.

’ WER \ true case \ lowercase ‘
en-bg 333 29.7
en-cs 24.7 24.3
en-de 28.4 28.1
en-es 56.1 54.3
en-eu 72.5 68.9
en-nl 23.8 23.5
en-ptl 52.4 50.2
en-pt2 57.5 55.8

Table 1: Edit distance (Word Error Rate — WER) between
translation outputs and their post-edits.

Table 1 shows the edit distance between translation out-
puts of the first “deeper” MT Pilots in QTLeap (inter-
nally called Pilot 1) and their post-edits. The results
show that the English-Dutch, English-Czech and English-
German systems are closer to an acceptable output than the
English-Portuguese and English-Spanish systems, and that
the English-Basque clearly lags behind with a considerable
need for changes. Although the results are not compara-
ble across the language pairs, given the different nature of
the languages involved, they are indicative of the amount of
work to be done.

3.2. Error Annotation

While error annotation is a common practice in industry
for quality assurance of human and computer-aided transla-
tions, this type evaluation has rarely been applied in the de-
velopment of MT systems. Error annotation allows for both
qualitative analysis of the annotated examples and quanti-
tative analysis of the error distribution.

Here we present our first piloting steps in this direction, by
performing an — admittedly small-scale — error annotation
exercise.

In this task, volunteers from within the project were asked
to annotate sentences from two pilot systems created in the
project (Pilot 1 and Pilot 2) using a selection of issue types

8Current extensions are supported by the CRACKER project
http://cracker—-project.eu.

‘http://metashare.metanetdu.eu/go2/
gtleapcorpus

1879



Accuracy (general)
0.0%

Accuracy

48.3%

Omission
6.8%

Accuracy vs. Fluency

Accuracy errors

Unintelligible Fluency (general)
Mistranslation 1.6% 0.0%
5.1%

Typography
0.0%
Spelling
15.8%

Terminology
36.4%
Grammar
82.6%

Fluency errors

Figure 5: Sample MQM error distribution for English—Spanish.

“Density” of MQM issues (occurrences per 100 segments)

200

10¢

8

o

BG1  BG2 cs1 cs2 DE1 DE2 ES1 ES2

NN TRRn L“T_

 Accuracy
 Fluency
Locale convention

 Terminology

EUa  EU2  NL1 NL2 PT1

Figure 6: Density of high-level MQM issues for segments annotated from Pilot 1 and Pilot 2 for all languages.

taken from the MQM framework. It was decided to per-
form single annotation to save resources. That is, one an-
notator per language pair performed the error classification
task to identify the most salient problems of the systems.
The annotators were trained in a webinar and they received
detailed annotation guidelines.

Annotators annotated the results from both Pilot 1 and Pi-
lot 2, which appeared in separate columns. To prevent any
bias that might come if the annotators knew which segment
was from which pilot, we randomized the column the re-
sults appeared in, so that each column had roughly equal
numbers of results from each pilot.

The annotators were instructed to skip sentences that were
too difficult to annotate or that required no annotation, and
to indicate their reason for skipping using the Notes feature
of TRANSLATES. Based on feedback from the annotators,
in most cases the skipped sentences were simply too diffi-
cult to annotate because of the poor translation quality.

As the option of skipping segments has been used fre-
quently, the annotation results provide information about
the relative occurrence of errors in translations from Pilot 1
and Pilot 2 on segments that belong to the better segments.
This information is relevant, e.g., if one thinks of the usage
of MT in a production setting (possibly with post-editing
options as performed by experts like the operators of HF
company) where only the better MT segments can be used
while the absence of certain errors, the overall number of
errors, etc. must be tightly controlled. In our development
setting, this information provides insights into the qualita-

tive nature of errors and provides starting points for system
improvements.

As an example, Figure 5 shows a breakdown of the anno-
tated errors for translations from English into Spanish for
Pilot 1. The numbers of Accuracy and Fluency errors are
quite similar, with slightly more Fluency than Accuracy er-
rors. The system was particularly likely to leave content un-
translated and issues related to Mistranslation were partic-
ularly likely to be Terminology errors, rather than general
Mistranslation errors. Terminology errors include issues
with specialized vocabulary as well as product names and
user interface strings. Within Fluency, Grammar was by
far the most common error category, with significant num-
bers of Spelling errors and all other error types being rela-
tively negligible. A considerable amount of Spelling errors
concern irregular word formations. Verbs whose lemma is
slightly altered when conjugated are a good example.

In order to do a comparison between the pilots we focused
on the “density” of each error type rather than their total
number (which would vary with the number of segments
annotated). To calculate this number we counted the total
number of instances of each MQM issue type, multiplied
it by 100 and divided by the total number of segments an-
notated. This calculation does not provide the percentage
of segments exhibiting a given error (since a segment can
have multiple instances of an error), but rather gives us an
approximation of how many instances of the error would
occur in 100 segments. It is thus only superficially similar
to a percentage.

1880



3 (DE) | Gehen Sie zu Tools und wéhlen Sie dann Browsingchronik Léschen.., kénnen Sie dann vorziehen, lhre Internet-Cookies zu I6schen.

deA [[1] Gehen Sie zu] [[2] Tools] und wahlen Sie dann [[3] Browsingchronik]
Internet-Cookies zu l6schen.

.., [[5] kénnen] Sie dann [[6] vorziehen), lhre 6 1. Mistranslation [Gehen Sie zu]

2. Untranslated [Tools]

3. Mistranslation [Browsingchronik]
4. [Loschen]

5. Word order [kénnen]

6. Mistranslation [vorziehen]

3 (DE) | Sprung zu Extras und wéhlen Sie dann Browserverlauf Idschen,.., Sie kdnnen dann lhre Internet-Cookies lI6schen.

deA [[1] Sprung zu] Extras und wahlen Sie dann Browserverlauf |6schen,..[[2] ,] Sie kénnen dann[[3] JIhre Internet-Cookies l6schen. 3

1. Mistranslation [Sprung zu]
2. Typography []]
3. Omission []

Figure 7: MQM annotated output of Pilot 1 (top) and Pilot 2 (bottom).

The density figures for each language for the top-level
MQM categories are presented in Figure 6. In this case
a lower number for a given column between Pilot 1 and Pi-
lot 2 represents an improvement in this particular category
(i.e., fewer instances of an issue type were found in Pilot 2);
conversely a higher number can represent a decrease in per-
formance.

It is critical to note that numbers cannot be compared across
languages. For example, it might appear that Portuguese
has many more errors than the other languages, but differ-
ences in annotation style such as when to skip segments
and other factors render any such comparison pointless: the
only valid comparison is between Pilot 1 and Pilot 2 within
a given language.

As annotators were allowed to skip sentences and because
most issues appeared only in very small numbers, statisti-
cal significance cannot be demonstrated and small changes
generally cannot be interpreted as significant in any way.
The results are thus only indicative in nature. Yet, there
seem to be tendencies of error reduction from pilot to pilot.
When inspecting the annotations qualitatively, it becomes
obvious that sometimes improvements of certain issues are
relativized by a certain loss of performance at other places,
e.g., when comparing the German Pilot 2 and Pilot 1 (see
Figure 7 on the following example:

Source Go to Tools and then choose *Delete browsing his-
tory.., you can then choose to delete your Internet
cookies.

Reference Gehen Sie zu Extras und wihlen Sie dann

’Loschen der Browser Geschichte .. ’, dann konnen
Sie wihlen, ob Sie Ihre Internet-Cookies 16schen
mochten.

One can see that Pilot2 gets the term “Tools” right (“Ex-
tras””) while at the same time failing on the imperative Go fo
and omitting the information that one can choose to delete
cookies. Ideally, improvements in outbound high-quality
MT would lead to the absolute reduction of the number of
errors for each sentence, especially for the “better” ones
that allow for post-editing or direct use without human edit-
ing.

To conclude this section on error annotations, we can say
that the actual annotation and qualitative analysis was ex-
perienced as providing valuable insights into the issues oc-
curring in the output by the translation pilots. It has also
become clear that for future projects, resources for profes-
sional human annotators (i.e., translators) need to be fore-

40
4o ®Human: P2_better(%) - PO_better(%)
m Automatic: BLEU(P2) - BLEU(PO)
20
i l
o I_

EU BG NL DE cs PT ES

Figure 8: Comparison of user evaluation results and BLEU
scores for Pilot 2 and Pilot 0.

seen. These should allow to follow a more systematic an-
notation policy, where the relevant segments to be used are
“filtered” out before annotation and then used throughout
the project on all future improvements of the given MT
system. In the same line of thinking, informed sampling
strategies are a highly relevant topic for future research.
Actually, the insights gained in QTLeap have informed
the annotation planning and strategy adopted in the QT21
project.

3.3. Task-based Evaluation

In the task-based evaluation we engaged human evaluators
in order to estimate the usefulness of MT and to test if im-
provements of MT technology lead to better performance
in a real usage scenario. In our particular case, the evalua-
tion is based on the integration of MT services in a helpdesk
application developed by the company Higher Functions as
part of its business. Given a user query in a language, the
application translates it into English, searches the database
for a relevant answer and translates it back to the user’s lan-
guage. A question and a machine translated answer were
presented to evaluators and they were asked to estimate to
what extent the translation would help them address the
question. Below, we shortly present the main results. More
detailed information on the user evaluation can be found in
Gaudio et al. (2015).

The task-based evaluation has been so far performed for
three systems, Pilot O (the baseline), Pilot 1 and Pilot 2.
Figures 8 and 9 present the BLEU difference (dark red bars)
in relation to the difference between Pilots according to the
human task-based evaluation (violet bars).

The task-based results (Figure 8) show that the Spanish,
Portuguese, Czech and German Pilot 2 outperforms the re-

1881



60

B Human: P2_better(%) — P1_better(%)
50

W Automatic: BLEU(P2) — BLEU(P1)
40 +
30
20
"l L l
0 I-

BG DE cs NL PT EU ES

Figure 9: Comparison of user evaluation results and BLEU
scores for Pilot 2 and Pilot 1.

spective Pilot 0 baseline system, whereas the Basque, Bul-
garian and Dutch systems don’t. Figure 9 shows that except
for Bulgarian, all Pilot 2 systems outperform the respective
Pilot 1.

It is interesting to observe that BLEU differences almost
always agree with the user ratings on the comparison of two
systems. There are just three exceptions: German Pilot 2
vs. Pilot O (see Figure 8), and German and Bulgarian Pilot 2
vs. Pilot 1 (see Figure 9). For German, the user ratings are
generally more in favor of Pilot 2 (unlike BLEU).

4. Conclusion

As the main project goal of the QTLeap project is the im-
provement of MT engines, we have thoroughly focused on
evaluation and have developed evaluation tools and prac-
tices such as the regular inspection of n-grams in the de-
velopment cycle and human evaluation steps at milestones
(comparing different pilot engines). In this work, we have
shortly reported on the different aspects of evaluation and
on the main tools we used. In particular, we have reported
on automatic measures and n-gram information provided
by the MT-COMPAREVAL tool to obtain quick insights into
system quality during development. The automatic mea-
sures provide global quantitative feedback, whereas the n-
gram information already provides some degree of qualita-
tive insight. For more exhaustive checks in-between de-
velopment cycles, we have reported on error annotation
to guide further development, post-editing to check on the
professional value of the output, and task-based evaluation
to estimate the usability of the systems on real-life scenar-
i0os. Needless to say, all tasks serve to compare perfor-
mance across system versions. We believe that this battery
of evaluation techniques is necessary for a principled ma-
chine translation development and to understand the nature
of the output.

One of the open research questions is if and how much the
various measures eventually correlate. First experiments
based on the (admittedly fairly small set of manual annota-
tions) did not show any consistent correlation with the au-
tomatic measures. Still, some expected tendencies can be
observed, e.g., user-preferred sentences often exhibit fewer
errors than dis-preferred ones.

We hope that this inclusion of evaluation into the research

and development strategy will inspire other colleagues to
take steps towards a more principled approach to MT eval-
uation.

Acknowledgments

This work has received support by the EC (FP7/2007-2013)
under grant agreement number 610516: “QTLeap: Quality
Translation by Deep Language Engineering Approaches”
and by the Czech Science Foundation (GACR) grant no.
GA15-10472S. This work has been using language re-
sources distributed by the LINDAT/CLARIN project of the
Ministry of Education, Youth and Sports of the Czech Re-
public (project LM2015071).

References

Gaudio, R. D., Burchardt, A., and Lommel, A. R. (2015).
Evaluating a machine translation system in a technical
support scenario. In Jan Hajic¢ et al., editors, Proceedings
of the Ist Deep Machine Translation Workshop. Deep
Machine Translation Workshop (DMTW-2015), pages
39-47. Charles University in Prague, Faculty of Mathe-
matics and Physics, Institute of Formal and Applied Lin-
guistics.

Klejch, O., Avramidis, E., Burchardt, A., and Popel, M.
(2015). MT-ComparEval: Graphical evaluation interface
for machine translation development. The Prague Bul-
letin of Mathematical Linguistics, 104:63-74.

Lommel, A. R., Burchardt, A., and Uszkoreit, H. (2014).
Multidimensional quality metrics (MQM): A framework
for declaring and describing translation quality metrics.
Tradumatica: tecnologies de la traduccio, 0(12):455—
463, 12.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
BLEU: a method for automatic evaluation of machine
translation. In ACL 2002, pages 311-318, Philadelphia,
PA, July.

Popovié¢, M. (2011). Hjerson: An Open Source Tool for
Automatic Error Classification of Machine Translation
Output. The Prague Bulletin of Mathematical Linguis-
tics, 96:59-68, October.

Popovié¢, M. (2012). rgbF: An Open Source Tool for n-
gram Based Automatic Evaluation of Machine Transla-
tion Output. The Prague Bulletin of Mathematical Lin-
guistics, 98:99-108, October.

1882



