Searching in the Penn Discourse Treebank
Using the PML-Tree Query

Ji¥i Mirovsky, Lucie Polikova, Jan St&panek
Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
(mirovsky|polakova|stepanek)@ufal.mff.cuni.cz

Abstract
The PML-Tree Query is a general, powerful and user-friendly system for querying richly linguistically annotated
treebanks. The present paper shows how the PML-Tree Query can be used for searching for discourse relations in the
Penn Discourse Treebank 2.0 mapped onto the syntactic annotation of the Penn Treebank.

Keywords: PML-Tree Query, Penn Discourse Treebank, searching in treebanks

1. Introduction

With increasing complexity of annotated treebanks,
query tools and query languages also need to become
more elaborate, in order to allow searching for and
studying all phenomena annotated in the treebanks.
At the same time, it is important that the tools are
user-friendly and the query languages, despite their in-
evitable complexity, remain easy to use.

The present paper shows a combination of leading rep-
resentatives in two areas of NLP — discourse annotated
treebanks on one side and query tools on the other,
namely the Penn Discourse Treebank 2.0 (PDTB-2.0)
and the PML-Tree Query (PML-TQ).

The PDTB-2.0, at the time of its publication in 2008,
came with two possibilities to search in the data. First,
there was the PDTB API describing in a hierarchy
of Java classes the structure of the PDTB-2.0 data
scheme and a skilled programmer could use it for
searching in the data; for simple queries, there was a
graphical interface as a part of the Java-based PDTB
browser. Second, there was a conversion script for
transforming the data from the native .pdtb format
into a column format,? which could be used even by
linguists without extensive programming skills to ex-
tract information about discourse relations using line-
based tools such as grep, or spreadsheet programs.
Yao et al. (2010) pointed out two shortcomings of the
PDTB API, namely the impossibility to query the syn-
tactic annotation of the Penn Treebank (PTB) and the
discourse annotation of the PDTB-2.0 simultaneously,
and the impossibility to incorporate and query addi-
tional annotation. They offered a solution based on

1 See e.g. a study on requirements that the complex an-
notation of the Prague Dependency Treebank (Hajic¢ et al.,
2006, Bejcek et al., 2013) poses on search tools (Mirovsky,
2009).

2 The script (convert.pl) is a part of the PDTB-2.0
distribution and contains an error — it fails to transform
second senses for AltLexes; the error can be fixed by chang-
ing the line 481 from “if (@senseArray > 2) {” to “if
(@senseArray > 1) {”.

their conversion of the PTB and the PDTB-2.0 data
into an integrated XML format, and used XQuery —
a general language for querying any XML data — for
searching in the transformed data.

In our approach, we also transform the data of the
PTB and the PDTB-2.0 into an XML format (PML,
see Section 4.1). Unlike the previous approaches,
for searching in the data we offer a powerful, yet
user-friendly and graphically oriented system of the
PML-Tree Query, a framework designed specifically
for searching in richly linguistically annotated tree-
banks. Sections 2 and 3 shortly introduce the PDTB-
2.0 and the PML-TQ, respectively. Section 4 describes
the data format and annotation scheme used for en-
coding the data of the PTB and the PDTB-2.0 in the
PML/PML-TQ. Section 5 demonstrates how to search
in the PTB/PDTB-2.0 data in the PML-TQ. The Ap-
pendix provides examples of queries that can be used
to generate summary tables from the appendices of the
PDTB-2.0 annotation manual (Prasad et al., 2007).

2. The Penn Discourse Treebank

The Penn Discourse Treebank (PDTB; Miltsakaki et
al., 2004) is one of the first and most influential corpus
projects with discourse annotation. Its second version
(PDTB-2.0; Prasad et al., 2008) comprises manual an-
notations of approx. 50 thousand English sentences
of the Wall Street Journal portion of the Penn Tree-
bank (PTB; Marcus et al., 1993). The (bottom-up)
project focuses on marking discourse relations by pri-
marily identifying their lexical cues — discourse connec-
tives (explicit relations), the two discourse segments
they connect (discourse arguments) and specifying a
semantic type (sense) of such a relation. Where no ex-
plicit connective was present between two arguments
(implicit relations), a connective best expressing the
meaning of the relation was inserted. Also, other cues
were marked: alternative lexicalizations of the connec-
tives (AltLex), entity-based relations (EntRel), and
places with no discourse relation at all (NoRel). An
important part of the annotation is marking of attri-

1762

bution (Prasad et al., 2006). The annotation was car-
ried out on raw texts and then automatically mapped
onto the constituency trees of the syntactic annotation
of the Penn Treebank.

3. The PML-Tree Query

The PML-Tree Query (PML-TQ) is a powerful client—
server system for searching in linguistically annotated
treebanks (Pajas and Stépanek, 2009). It was orig-
inally developed for searching in the Prague Depen-
dency Treebank (PDT 2.0: Haji¢ et al., 2006, PDT 3.0:
Bejcek et al., 2013) but it is a general tool that can be
used for any (both dependency and constituency) tree-
bank encoded in the Prague Markup Language (Hana
and Stépanek, 2012).

The Prague Markup Language (PML)?3 is an abstract
XML based format designed for annotation of linguis-
tic corpora, especially treebanks. Data in the PML
format can be browsed and edited in TrEd, a highly
customizable tree editor (Pajas and Stépanek, 2008).
The PML and TrEd, together with the PML-Tree
Query system, form a general framework for treebank
annotation and data processing. Virtually any tree-
bank can be transformed into the PML, and once en-
coded in the PML, it can be browsed and edited in
TrEd, and searched using the PML-TQ — see for ex-
ample HamleDT (Zeman et al., 2014), a project of har-
monizing 36 treebanks into a common data format and
annotation scheme.’

The server part of the PML-TQ is implemented either
as a relational database or as a system in btred, which
is a command-line version of the tree editor TrEd. The
client part uses either the tree editor TrEd along with
the PML-TQ extension or a web browser.5

Queries in the PML-TQ can be created both in a tex-
tual form and (in the TrEd client) in a graphical en-
vironment with a visual creation of the query.” The
query language allows to define properties of tree nodes
and relations among them, inside or between sentences
and also across layers of annotation; external resources
such as lexicons can also be incorporated. Negation on
the tree structure and Boolean expressions over the re-
lations can be used. Results of the corpus search can
be viewed along with the textual and tree context or

3 For an on-line documentation for the Prague Markup
Language, see http://ufal.mff.cuni.cz/jazz/PML/.

4 TrEd is written in Perl and can be easily cus-
tomized for a desired purpose by extensions that are in-
cluded into the system as modules. It is available from
https://ufal.mff.cuni.cz/tred/ under the GPL — The Gen-
eral Public Licence.

5 TFor treebanks that are publicly available
for searching at the Prague PML-TQ server, see
https://lindat.mff.cuni.cz/services/pmltq/#! /treebanks.

8 There is also a command-line interface, capable to
process a set of queries on a set of treebanks.

7 Most parts of a query can be created by clicking on
buttons, selecting values out of predefined lists, and drag-
ging one node over another.

processed with output filters to produce statistical ta-
bles.?

Possibilities of searching for discourse relations in the
Prague Dependency Treebank 3.0 using the PML-TQ
were first described in Mirovsky et al. (2014), and later
elaborated in more detail in Zikdnovd et al. (2015),
where also the basics of the query language are ex-
plained. In the present paper, we show how to search
— using the PML-TQ — for discourse relations in the
Penn Discourse Treebank 2.0 mapped onto the syntac-
tic trees of the Penn Treebank.

4. The PDTB-2.0 in the PML-TQ

4.1. The Data Format

As the PML is a general format for treebanks, a PML
schema needs to be specified for any concrete data.
It defines what types of nodes appear in the data,
how they form a tree, what attributes can appear at a
particular node type, which of them are obligatory or
play a special role (like an identifier or an ordering at-
tribute). Such a schema, which is an XML file too, has
been defined for the PTB/PDTB-2.0 data. The follow-
ing sample is a small part of the PTB/PDTB-2.0 PML
schema, defining a tree node.

01 <type name="node.type">

02 <structure role="#NODE" name="node">

03 <member name="id" role="#ID" as_attribute="1"
required="1">

04 <cdata format="ID"/>

05 </member>

06 <member name="type" required="1">

07 <choice>

08 <value>t</value>

09 <value>n</value>

10 </choice>

11 </member>

12 <member name="cat">

13 <alt type="cat.type"/>

14 </member>

15 <member name="functions">

16 <list ordered="1" type="function.type"/>

17 </member>

18 <member name="coindex.rf"><cdata
format="PMLREF"/></member>

19 <member name="form"><cdata format="any"/>

</member>

20 <member name="pos" type="postag.type"/>

21 <member name="order" role="#0RDER"><cdata
format="nonNegativeInteger"/></member>

22 <member name="discourse">

23 <list ordered="0" type="discourse.type"/>

24 </member>

25 <member name="children" role="#CHILDNODES">

26 <list type="node.type" ordered="1"/>

27 </member>

28 </structure>

29 </type>

Line 2 says that this structure has a role of a tree node
(#NODE). Lines 3 to 5 define an attribute carrying a
corpus-wide unique identifier of the node (role #ID).
Lines 6 to 11 define a distinction of non-terminal and
terminal nodes. Lines 12 to 14 define an attribute for
the syntactic category (its precise type cat.type to be
defined later). Lines 15 to 17 define an attribute for a
list of syntactic functions (again, its precise type to be
defined later), and so on. Line 21 defines an ordering

8 A documentation for the PML-TQ can be found at
http://ufal.mff.cuni.cz/pmltq/doc/pmltq doc.html.

1763

attribute (role #ORDER), which is used to order tree
nodes horizontally. Lines 22 to 24 define an attribute
for the discourse annotation, and lines 25 to 27 define
an attribute carrying a list of children of the given node
(role #CHILDNODES).

The following structure is a graphical representation of
the part of the PML schema that defines a single dis-
course relation (referred to from line 23 of the previous
listing):

discourse (Unordered list)
type
argl (Structure)
text
nodes.rf (Unordered list)
terminals.rf (Unordered list)
attribution (Structure)
source
source lit
type
polarity
determinacy
text
nodes.rf (Unordered list)
terminals.rf (Unordered list)
arg2 (Structure)
supl (Structure)
sup2 (Structure)
sense
sense2
text
head
nodes.rf (Unordered list)
terminals.rf (Unordered list)
impl sense
impl_sense2
impl text
imp2_sense
imp2_sense2
imp2_text
attribution (Structure)
target_node.rf
conn (Unordered list)
type
sem (Ordered list)
order (1 or 2)
sense
head
text
nodes.rf (Unordered list)
terminals.rf (Unordered list)

The attribute discourse/type (second line in the
structure) contains one of the values Explicit,
AltLex, Implicit, EntRel and NoRel. Structures
discourse/argl, discouse/arg2, discourse/supl
and discourse/sup2 represent the arguments and
supplementary texts for the discourse relation. At-
tributes of the argument 1 (Argl) are listed under the
branch of discourse/argl, similar structures are used
for the argument 2 (Arg2) and the supplementary texts
(with the exception of attribution, which is not defined
for supplementary texts). The surface form (rawtext)
of the explicit connective with its possible modifica-

tions, or the alternative lexicalization is kept in the
attribute discourse/text, the head of the connective
is kept in the attribute discourse/head. Throughout
the schema, the attribute nodes.rf contains a list of
identifiers of non-terminals and terminals correspond-
ing to the given text span, derived out of the gorn
addresses from the PDTB-2.0 data, and the attribute
terminals.rf represents a list of identifiers of termi-
nals created as a projection of the nodes from the at-
tribute nodes.rf (see Section 4.4 for a list of redun-
dancies that have been added to the data during the
transformation). The structure attribution is used
for keeping attribution properties for the relation and
the two arguments; its attributes reflect attributes and
their values from the PDTB-2.0 data (see Section 4.4
for the description of the attribute source_lit). The
potentially two senses of the discourse relation are kept
in attributes sense and sense2. For implicit rela-
tions, the information about the potentially two con-
nectives and, for each of them, potentially two senses
is kept in attributes starting with imp_. The attribute
target_node.rf contains an identifier of a represen-
tative node of Argl of the relation, it is a node selected
out of the nodes in the list nodes.rf (more about this
in Section 4.2). This flat representation of the con-
nectives and their senses is supplemented by a struc-
tured version of this information, kept in the attribute
discourse/conn. This redundancy was introduced to
simplify the creation of some queries. The structured
representation would be sufficient for all queries but
the flat representation makes many queries simpler
(more about redundancies in Section 4.4).

4.2. Arguments

After the transformation of the data into the PML for-
mat, each of the two arguments of a discourse relation
is represented as a set of non-terminal and terminal
nodes, derived from the gorn addresses of the original
PDTB-2.0 data. The discourse relation itself is graph-
ically represented as an oriented orange arrow going
from Arg2 to Argl (see Figure 1). For allowing the ar-
row to start in a single node and end in (another) single
node, a representative node for each argument was se-
lected out of all nodes corresponding to the argument
— it is the node (or the first of such nodes) that covers
the largest span of terminals. Technically, all informa-
tion about a discourse relation is kept in the attribute
discourse at the representative node of Arg2 (where
the arrow starts). As several discourse relations can
start at a single node, the attribute discourse is a list
of structures representing the individual relations.

4.3. Genres of Documents

Additionally to the annotations released with the
PDTB-2.0, we have enriched the data for the PML-
TQ with another, separately annotated genre-related
attribute genre_ad. For each document, it contains
one of eight possible values according to the genre clas-
sification of the Wall Street Journal texts correspond-
ing to the PTB texts in the ACL/DCT Corpus (errata,

1764

essays, highlights, letters, news, notable and quotable,
quaterly progress reports, wit, and short verse).? Sec-
tion 5.4 below offers an example of how document gen-
res can be used in the PMT-TQ search in combination
with attributes from other annotation levels.

4.4. Adding Redundancy

To keep a changing data consistent, especially during
an annotation phase, a well designed annotation for-
mat does not contain redundancies. However, to make
queries in the PML-TQ simpler, we have added several
redundancies to the transformed data of the PDTB-
2.0, as the last step just before the transformation of
the data into the database format. Namely:

e The genre of a document, although it is a property
of the document,'® has been copied to the techni-
cal root!! of each tree (attribute genre_ad).

o The surface form of the sentence has been added
to the root of each tree (attribute sentence), to
allow simple search in the surface form of the text.

e For each discourse argument, the attribution
source (attribute source) has been copied to an-
other attribute (source_lit) and in this copy, the
value Inh has been replaced with the real inher-
ited attribution source (e.g. Ot).

e The list of respective terminal nodes has
been added to each list of nodes (attribute
terminals.rf).

e The representative node for Argl has been
added to each discourse relation (attribute
target_node.rf).

e As a supplement to the structured attribute for
the semantic annotation of a discourse relation
(attribute conn), a flat version of the semantic
information has been added (mainly attributes
sense, sense2 and attributes starting with imp_).

There are other less obvious redundancies in the
schema, for example the text of an argument can be
derived from the list of nodes representing the argu-
ment and as such does not need to be explicitly stated
in the data. This redundancy was already present in
the original PDTB-2.0 data and significantly simplifies
queries that work with the surface text.!?

9 Details on the classification can be found in
Webber (2009) and in its online appendix comparing
the PDTB genre set of Webber with the one from
the ACL/DCI Corpus: http://www.let.rug.nl/~bplank/
metadata/genre_ files__updated.html.

10 with very few exceptions of multi-genred documents in
the PDTB-2.0, which we treat as single-genred (preferring
the genre that is less frequent in the corpus)

' The technical root is not displayed in the trees. It
is, however, available in the queries as a node of the type
root.

12 The additional information is also useful because
of some inconsistencies between the text spans explicitly

5. The PML-Tree Query in Action

The basic idea of creating a query in the PML-TQ is
such that a user defines (draws in the graphical client
environment) a tree that should be found in a result
tree as a subtree. The query is then processed by the
server and the results are reported back to the client.

5.1.

Our first example shows how to search for a dis-
course relation. The query defines two nodes con-
nected with a special member node that represents a
discourse relation between arguments represented by
the two nodes.'® A required type of the discourse re-
lation can be specified at the member node, in this
example it is set to Explicit. The query also specifies
that the start and target nodes of the relation (the
representative nodes of Arg2 and Argl) are from the
same tree, i.e. it looks for an explicit intra-sentential
discourse relation.

A Simple Example

(1a) The textual form of the query:

node
[same-tree-as $t,
member discourse
[type = "Explicit",
target_node.rf node $t := []]];

(Ib) The graphical form of the query:

member
same-tree-as
target_node.rf

node

O
discourse
type = "Explicit"

[]
node $t

The following sentence represents one of the results of
the query:

(1c) The governor couldn’t make it, so the lieutenant
governor welcomed the special guests. (PDTB-2.0)

Figure 1 below captures the graphical representation
of the syntactic annotation of the sentence, along
with the discourse relation represented by the thick
orange arrow connecting roots of the two respec-
tive propositions. Spans of the arguments are high-
lighted by different background colours as groups of

stated in the annotated PDTB-2.0 data and text spans one
obtains by projecting the respective gorn addresses to the
text.

13 In the PML-TQ, member nodes are used to specify or
mine properties of relations between nodes in cases where
several relations of the given type can be defined at a single
node, which is also the case of discourse relations in the
PDTB-2.0.

1765

| o
The governor c

DT NN MD RB VB PRP,IN DT

'sothe lieutenant governor welcomed the special guests .

NN

]
S

O

NN VBD DT NNS

)

Figure 1: A result tree for the query la/1b

terminal nodes. Additional information — sense as-
signed to the discourse relation (in this case Contin-
gency.Cause.Result) and the connective (so) — is dis-
played also in orange at the start node of the relation.

5.2. Output Filters

Results of queries in the PML-TQ can be further pro-
cessed using so-called output filters. Thanks to an out-
put filter, a result of a query does not consist of indi-
vidual matching positions in the searched data but of
a tabular summary of all matching positions, as speci-
fied by the output filter. In Example 2, we modify the
previous query by adding another member node repre-
senting an explicit connective (member conn) and yet
another member node representing each of potentially
two senses assigned to the connective (member sem),
naming the last member node $s and adding an out-
put filter (the last line with the prefix >>). To save
space, from now on we only show textual forms of the
queries.

(2)

node
[same-tree-as $t,
member discourse
[type = "Explicit", target node.rf node $t :=
member conn
[member sem $s [1111;
>> for $s.sense give $1,count() sort by $2 desc

The textual form of the query:

[

The query searches for all explicit intra-sentential dis-
course relations in the data and — thanks to the output
filter — produces a distribution table (see Table 1) of
the senses of these relations, sorted in the descending
order by the number of occurrences (only a few first
lines are printed here to save space). If there are two
senses assigned to a connective, each of them is counted
separately in this query. For examples of queries with
output filters where two senses for one connective are
counted in combination, see the Appendix.

5.3. Querying Syntactic Trees

Example 3 combines the annotation of discourse rela-
tions with the syntactic annotation of the Penn Tree-
bank. It searches for discourse relations with at least

Sense Count
Expansion.Conjunction 2 431
Contingency.Cause.Reason 1475
Temporal.Synchrony 1424
Temporal. Asynchronous.Succession 1041
Comparison.Contrast 923
Contingency.Condition.Hypothetical 767
Temporal. Asynchronous.Precedence 731
Comparison.Contrast.Juxtaposition 591
Contingency.Cause.Result 444

Table 1: (Selected) results of the query 2

one of the arguments realized by a declarative clause
with inverted subject—verb order (the subject follows
the tensed verb or modal). Such clauses are repre-
sented by a node with the syntactic category SINV in
the PTB annotation.

3)

node
[(cat = "SINV" or $t.cat = "SINV"),
member discourse $d
[target node.rf node $t := [] 1 1;

The textual form of the query:

If we add an output filter:
>> for $d.type give $1,count() sort by $2 desc

...we get a distribution of relation types for the results
of the query from Example 3, see Table 2.

5.4. Querying Genres

Example 4 combines the annotation of discourse re-
lations with the annotation of document genres. It
searches for all senses annotated at all discourse rela-
tions in the data and produces distributions of the four
semantic classes for each individual genre.

1766

Type Count
Implicit 365
EntRel 310
Explicit 104
AltLex 18
NoRel 8

Table 2: Results of the query 3 with the output filter

(4) The textual form of the query:

root $r :=
[descendant node
[member discourse
[member conn
[member sem $s := [1 111 1;
>> for $r.genre_ad,match($s.sense,'~[".]+")
give $1,$2,count() sort by $1,$3 desc
>> give $1,$2,ceil($3 * 100 div sum($3 over $1)) & 'S’

The query also shows how one line of an output filter
can be put after another, further processing the out-
put of the previous line. The first line of the output
filter in Example 4 (split over two lines here) produces
a temporary table with three columns: the genre, the
semantic class (cut out of the whole sense label using a
regular expression) and the number of co-occurrences
of this genre with this class in the query results. The
second line of the output filter is applied on this tem-
porary table, coppies the first and the second column,
counts the percentage of the occurrences of the seman-
tic classes for each genre and adds the sign %. Table 3
shows results of the query for two first genres in the
alphabetical order, i.e. errata and essay.

Genre Class Freq.
errata Comparison 65%
errata Contingency 18%
errata Temporal 12%
errata Expansion 6%
essay Expansion 42%
essay Contingency 25%
essay Comparison 21%
essay Temporal 14%

Table 3: (Selected) results of the query 4

6. Conclusion

Without a powerful and at the same time simple and
intuitive search tool, any annotated treebank of non-
trivial size would only be of limited use. We have
demonstrated how the PML-Tree Query system can
be used for searching for individual discourse relations
in the PDTB-2.0, as well as for creating tabular sum-
maries of all occurrences of the searched phenomenon
in the data. In the examples, we have combined the
annotation of discourse relations with the annotation

of syntactic trees and with the annotation of genres of
documents. We hope that it is quite clear that adding
any other annotation available for the Penn Treebank
data would be very straightforward, as long as it can
be reasonably mapped onto the syntactic trees of the
PTB.

For further information about the transformation of
the PTB and the PDTB-2.0 data into the PML/PML-
TQ format and searching in the data, please visit the
dedicated web page https://ufal.mff.cuni.cz/pdtb.

Acknowledgment

The authors gratefully acknowledge support from the
Ministry of Education, Youth and Sports of the Czech
Republic (project LH14011: Multilingual Corpus An-
notation as a Support for Language Technologies, and
project LM2015071: LINDAT/CLARIN). This work
has been using language resources and tools devel-
oped, stored and distributed by the LINDAT/CLARIN
project LM2015071.

Appendix: Example Queries

The following queries can be used to produce exact
coppies'* of the Appendices A to H of the PDTB-
2.0 Annotation Manual.'® Just reproducing the tables
would of course not be of much consequence. The main
benefit of the possibility to generate each of these ta-
bles with a single PML-TQ query is when the queries
are modified to search only for a desired subset of dis-
course relations, restricted for example by a genre of
the document or syntactic constructions involved in
the relations or any other set of features needed for a
given linguistic study.

Appendix A of the PDTB-2.0 Annotation
Manual: Explicit connectives and their senses

node
[member discourse
[type = "Explicit",
member conn $c :=
[member sem $s := [111 1;

>> give $c,lower($c.head),match($s.sense,'["\.]+$")
>> give distinct $1,$2,concat($3,'/' over $1 sort by $3)
>> for $2,$3 give $1,%$2,count()

>> for $1,$2,$3 give $1,$2 & ' (' & $3 & '),
sum($3 over $1) sort by $1,$2
>> give distinct $1,concat($2,', ' over $1),$3 sort by $1

A few first lines of the result of the query are shown in
Table 4.

Appendix B of the PDTB-2.0 Annotation
Manual: Senses and their associated explicit
connectives

The query is identical to the previous one with the
exception of the third line of the output filter, where
there are switched references to columns 2 and 3 from
the previous line of the filter.

14 without the headings of the columns and with some

difference in the capitalization of senses
15 https://www.seas.upenn.edu/~pdth/PDTBAPI/pdtb-
annotation-manual.pdf

1767

Connective Senses Total

accordingly Result (5) 5

additionally ~Conjunction (7) 7
Expectation (2),
Expectation/Succession (1),

after Reason/Succession (50), 577
Specification/Succession (1),
Succession (523)

afterward Precedence (11) 11
Conjunction (1733),

also Conjunction/Synchrony (2), 1746

List (10), Specification (1)

Table 4: Appendix A of the PDTB-2.0 annotation
manual, produced by a PML-TQ query

node
[member discourse
[type = "Explicit",
member conn $c :=
[member sem $s := [111 1;

>> give $c,lower($c.head),match($s.sense, ' ["\.]+$")
>> give distinct $1,$2,concat($3,'/' over $1 sort by $3)
>> for $3,$2 give $1,$2,count()
>> for $1,$2,$3 give $1,$2 & ' (' & $3 & '),

sum($3 over $1) sort by $1,$2

>> give distinct $1,concat($2,', ' over $1),$3 sort by $1

Appendix C of the PDTB-2.0 Annotation
Manual: Modified forms and variants of
explicit connectives

node
[member discourse $d :=
[type = "Explicit" 1 1;
>> for lower($d.head),lower($d.text) give $1,$2,count()
>> for $1,$2,$3 give $1,$2 & ' (' & $3 & '),
sum($3 over $1) sort by $1,$2

>> give distinct $1,concat($2,', ' over $1),$3 sort by $1

Appendix D of the PDTB-2.0 Annotation
Manual: Implicit connectives and their senses
The query is identical to the respective query for ex-
plicit connectives with the exception of specifying type
= "Implicit" instead of "Explicit", and using at-
tribute text instead of head in the first line of the
output filter.

node
[member discourse
[type = "Implicit",
member conn $c :=
[member sem $s := [111 1;

>> give $c,lower($c.text),match($s.sense,'["\.]+$")
>> give distinct $1,$2,concat($3,'/' over $1 sort by $3)
>> for $2,$3 give $1,$2,count()
>> for $1,$2,$3 give $1,$2 & ' (' & $3 & '),

sum($3 over $1) sort by $1,$2

>> give distinct $1,concat($2,', ' over $1),$3 sort by $1

Appendix E of the PDTB-2.0 Annotation
Manual: Senses and their associated implicit
connectives

The query is identical to the previous one with the
exception of the third line of the output filter, where
there are switched references to columns 2 and 3 from

the previous line of the filter.

node
[member discourse
[type = "Implicit",
member conn $c :=
[member sem $s := [111 1;

>> give $c,lower($c.text),match($s.sense,'["\.]+$")
>> give distinct $1,$2,concat($3,'/' over $1 sort by $3)
>> for $2,%$3 give $1,%$2,count()
>> for $1,$2,%$3 give $1,$2 & ' (' & $3 & '),

sum($3 over $1) sort by $1,$2

>> give distinct $1,concat($2,', ' over $1),$3 sort by $1

Appendix F of the PDTB-2.0 Annotation
Manual: AltLex senses

node
[member discourse
[type = "AltLex",
member conn $c :=

[member sem $s := [111 1;
>> give $c,match($s.sense, '["\.]1+$")
>> give distinct $1,concat($2,'/' over $1 sort by $2)
>> for $2 give $1,count() sort by $1

Appendix G of the PDTB-2.0 Annotation
Manual: Attribution features for explicit
relations and their arguments

node

[member discourse $d :=

[type = "Explicit"] I;

>> give $d.attribution/source & '.' & $d.attribution/type
& '.' & $d.attribution/polarity & '.' & $d.attribution/
determinacy,$d.argl/attribution/source & '.' & $d.argl/
attribution/type & '.' & $d.argl/attribution/polarity
& '.' & $d.argl/attribution/determinacy, $d.arg2/
attribution/source & '.' & $d.arg2/attribution/type & '.'
& $d.arg2/attribution/polarity & '.' & $d.arg2/
attribution/determinacy
>> for $1,$2,$3 give $1,$2,$3,count() sort by $1,%$2,$3

Appendix H of the PDTB-2.0 Annotation
Manual: Attribution features for implicit

relations and AltLexes, and their arguments
16

node

[member discourse $d :=

[type in {"Implicit","AltLex"} 1 1;

>> give $d.attribution/source & '.' & $d.attribution/type
& '.' & $d.attribution/polarity & '.'
determinacy, $d.argl/attribution/source & '.' & $d.argl/
attribution/type & '.' & $d.argl/attribution/polarity
& '.' & $d.argl/attribution/determinacy, $d.arg2/
attribution/source & '.' & $d.arg2/attribution/type & '.'
& $d.arg2/attribution/polarity & '.' & $d.arg2/
attribution/determinacy
>> for $1,%$2,$3 give $1,%$2,%$3,count() sort by $1,%$2,$3

& $d.attribution/

Please note that for the last two queries, linebreaks in
the attribute paths (e.g. arg2/attribution/source)
need to be removed before the query can be processed
by the PML-Tree Query server.

16 For a reason yet unknown to the authors of the present
paper, some numbers produced by this query differ from
the numbers in the Appendix H of the PDTB-2.0 anno-
tation manual. We believe our numbers to be correct, as
they are slightly higher in all cases different from the Ap-
pendix H and they add up to a correct total number of
implicit relations (16 053; implicit relations with two con-
nectives are counted as one (not two)) and AltLexes (624)
in the PDTB-2.0 data (in total 16 677).

1768

References

Bejcek, E., Hajicova, E., Haji¢, J., Jinova, P., Ket-
tnerova, V., Kolarova, V., Mikulova, M., Mirovsky,
J., Nedoluzhko, A., Panevovd, J., Polakovi,
L., Sevéikova, M., Stépanek, J., and Zikénova,
S. (2013). Prague Dependency Treebank 3.0.
Data/software.

Haji¢, J., Panevovéa, J., Hajicova, E., Sgall, P., Pa-
jas, P., Stépéanek, J., Havelka, J., Mikulova, M.,
Zabokrtsky, Z., Sevéikova-Razimova, M., and Ure-
Sovd, Z. (2006). Prague Dependency Treebank 2.0.
Data/software.

Hana, J. and Stépanek, J. (2012). Prague Markup
Language Framework. In Proceedings of the Sizth
Linguistic Annotation Workshop, pages 12-21,
Stroudsburg. Association for Computational Lin-
guistics, Association for Computational Linguistics.

Marcus, M., Santorini, B., and Ann, M. M. (1993).
Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics, 19:313—
330.

Miltsakaki, E., Prasad, R., Joshi, A., and Webber, B.
(2004). The Penn Discourse Treebank. In Proceed-
ings of the Fourth International Conference on Lan-
guage Resources and Fvaluation (LREC’04), Lisbon.
European Language Resources Association.

Mirovsky, J., Jinova, P., and Poldkova, L. (2014). Dis-
course Relations in the Prague Dependency Tree-
bank 3.0. In Lamia Tounsi et al., editors, The
25th International Conference on Computational
Linguistics, Proceedings of the Conference System
Demonstrations, pages 34-38, Dublin. Dublin City
University.

Mirovsky, J. (2009). Searching in the Prague Depen-
dency Treebank. Charles University in Prague, Fac-
ulty of Mathematics and Physics, Institute of Formal
and Applied Linguistics, Prague.

Pajas, P. and Stépanek, J. (2008). Recent Advances
in a Feature-Rich Framework for Treebank Anno-
tation. In Donia Scott et al., editors, Proceedings
of the 22nd International Conference on Computa-
tional Linguistics, pages 673-680, Manchester. The
Coling 2008 Organizing Committee.

Pajas, P. and Stépanek, J. (2009). System for Query-
ing Syntactically Annotated Corpora. In Gary Lee
et al., editors, Proceedings of the ACL-IJCNLP 2009
Software Demonstrations, pages 33-36, Suntec. As-
sociation for Computational Linguistics.

Prasad, R., Dinesh, N., Lee, A., Joshi, A., and Web-
ber, B. (2006). Annotating Attribution in the Penn
Discoure Treebank. In Proceedings of the COL-
ING/ACL Workshop on Sentiment and Subjectivity
in Text, pages 31-38, Sydney. Association for Com-
putational Linguistics.

Prasad, R., Miltsakaki, E., Dinesh, N., Lee, A., Joshi,
A., Robaldo, L., and Webber, B. (2007). The Penn
Discourse Treebank 2.0 Annotation Manual. Num-
ber IRCS-08-01, Technical Report. Institute for Re-

search in Cognitive Science, University of Pennsyl-
vania, Philadelphia.

Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E.,
Robaldo, L., Joshi, A., and Webber, B. (2008). The
Penn Discourse Treebank 2.0. In Nicoletta Calzolari,
et al., editors, Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), pages 29612968, Marrakech. European
Language Resources Association.

Webber, B. (2009). Genre Distinctions for Discourse
in the Penn TreeBank. In Keh-Yih Su, et al., editors,
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP, pages 674-682, Suntec. Association for
Computational Linguistics.

Yao, X., Borisova, I., and Alam, M. (2010). PDTB
XML: the XMLization of the Penn Discourse Tree-
Bank 2.0. In Nicoletta Calzolari, et al., editors,
Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10),
Valletta, Malta. European Language Resources As-
sociation.

Zeman, D., Dusek, O., Marecek, D., Popel, M., Ra-
masamy, L., Stépanek, J., Zabokrtsky, Z., and
Haji¢, J. (2014). HamleDT: Harmonized Multi-
Language Dependency Treebank. Language Re-
sources and Fvaluation, 48(4):601-637.

Zikanovéa, S., Hajicova, E., Hladk4, B., Jinova, P.,
Mirovsky, J., Nedoluzhko, A., Poldkovd, L., Rysové,
K., Rysova, M., and Vécl, J. (2015). Discourse and
Coherence. From the Sentence Structure to Relations
in Text. Studies in Computational and Theoretical
Linguistics. UFAL, Praha, Czechia.

1769

