
Evaluating a Deterministic Shift-Reduce Neural Parser for Constituent Parsing

Hao Zhou†, Yue Zhang‡, Shujian Huang†, Xinyu Dai†, Jiajun Chen†
†State Key Laboratory for Novel Software Technology, Nanjing University, China,

‡Singapore University of Technology and Design, Singapore
{zhouh, huangsj, daixy, chenjj}@nlp.nju.edu.cn, yue zhang@sutd.edu.sg

Abstract
Greedy transition-based parsers are appealing for their very fast speed, with reasonably high accuracies. In this paper, we build a
fast shift-reduce neural constituent parser by using a neural network to make local decisions. One challenge to the parsing speed is
the large hidden and output layer sizes caused by the number of constituent labels and branching options. We speed up the parser by
using a hierarchical output layer, inspired by the hierarchical log-bilinear neural language model. In standard WSJ experiments, the
neural parser achieves an almost 2.4 time speed up (320 sen/sec) compared to a non-hierarchical baseline without significant accuracy
loss (89.06 vs 89.13 F-score).

Keywords: Hierarchical Model, Neural Networks, Parsing

1. Introduction
With the growth of demands for processing massive
amounts of web data, the speed of NLP systems has be-
come a key practical performance.
Transition-based parsers build outputs by using a sequence
of shift-reduce actions (Sagae and Lavie, 2005; Zhang and
Nivre, 2011; Bohnet and Nivre, 2012; Zhou et al., 2015).
They are attractive by their fast speed, offering linear time
complexity with deterministic decoding algorithms. Linear
classifiers have traditionally been used to build very fast
deterministic parsers (Nivre, 2008; Goldberg and Nivre,
2013).
Recently, Chen and Manning (2014) proposed a transition-
based dependency parser, which adopts a neural network as
the classifier. It has two advantages compared to the tra-
ditional linear model (Nivre, 2008), namely fast speed and
automatic feature combination. In particular, the speed of a
neural dependency parser can be 1000 sentences per second
on a single CPU, which is significant faster than traditional
parsers.
In this paper, we explore the method of Chen and Manning
(2014) for fast deterministic transition-based constituent
parsing. This is a more challenging task compared with
neural dependency parsing (Table 1). First, due to unary
actions and temporary nodes caused by binarization, the
number of actions in a transition-based constituent parser
is much larger than in a dependency parser, resulting in a
large output layer for the neural network. Second, we find
empirically that the neural constituent parser needs a much
larger hidden layer (i.e. 800) to obtain reasonable perfor-
mance compared to the neural dependency parser (i.e. 200).
As a result, the speed of neural constituent parser is much
slower than the dependency counterpart.
Motivated by hierarchical log-bilinear neural language
models (Morin and Bengio, 2005; Mnih and Hinton, 2009),
we propose a hierarchical-output neural model to speed up
the parser. A hierarchical neural language model divides
a huge vocabulary into a hierarchy of clusters, and con-
structs a binary tree upon the word clusters. Each word
corresponds to a leaf node, and can be uniquely specified
by the path from the root.

Hidden Action Computation
Dependency 200 27 5,400
Constituent 800 131 104,800

Table 1: Comparison between neural constituent and de-
pendency parsing. Computation: the product of hidden size
and action number.

The actions of constituent parsing are natively hierarchi-
cal based on the action structure. We decompose the out-
put layer of the neural network into a two-layer hierarchical
softmax, the action layer and the label layer. In determin-
istic parsing, we first find the optimal shift-reduce action
type, which resolves structural ambiguities, and then find
the optimal constituent label given the action type. With
this hierarchical neural network, the computation cost from
the hidden layer to the output layer is effectively reduced.
In our experiments, the hierarchical neural constituent
parser achieves almost 2.4 times the speed of the baseline
non-hierarchical neural parser, without significant accuracy
loss. Our final parser runs at 320 sentences per second on
a Intel(R) Core(TM) i7-4790 CPU, giving an accuracy of
89.06 on the standard Penn Treebank benchmark.

2. Shift-Reduce Constituent Parsing
Transition-based parsers parse a sentence by performing a
sequence of shift-reduce actions. At each step, the action to
be taken is determined by a statistical classifier. We adopt
the model of Sagae and Lavie (2005), which uses a stack
to hold partial outputs, and a queue to maintain the next
incoming words in the input sentence.
Formally, a parsing state is 〈S,Q〉, where S is the stack
of partial outputs [. . . , s2, s1, s0] and Q is the queue of in-
coming words [q0, q1, q2, . . .]. A shift-reduce constituent
parser starts with an initial state and makes transitions from
one state to another by taking actions. Parsing stops when
Q is empty and S contains only one tree. Given an input
sentence W , the initial state is 〈φ,W 〉 and the final state
is 〈[s0], φ〉. At each step, one of the following actions is
applied:

659

Feature
Extraction

Feature
Extraction

 Word
…

 POS

 Label

Sparse
Features

…

Hidden
Layer

…

Action
Layer

…

…

Label
Layer

…

Input
Layer

…

Parsing State

Hierarchical
Output Layer

…

…

…

…

…

…

…

…

Figure 1: Hierarchical softmax neural network parser.

• SHIFT: remove the first word q0 from the queue and
push it onto the stack.

• UNARY-X: pop the top node s0 off the stack; gen-
erate a unary-branching node with constituent label X
whose child is s0; push the new node back onto the
stack.

• LEFT/RIGHT-X: pop the top two nodes s1, s0 off
the stack; generate a binary-branching node with con-
stituent label X whose left child is s1 and right child
is s0, with the left (LEFT)/right (RIGHT) child as its
head; push the new node back to the stack.

The shift-reduce actions only build binarized trees. As a re-
sult, a binarization process is necessary to convert the Penn
Treebank into binarized trees. During this process, tem-
porary nodes are constructed. To accommodate for bina-
rization, we follow Zhang and Clark (2009), adding coun-
terparts to LEFT/RIGHT-X for temporary nodes, namely
LEFT/RIGHT-TEMP-X.

3. Vanilla Neural Network Parsing
Following Chen and Manning (2014), we use a three-layer
feed-forward neural network for deterministic parsing. At
each step of deterministic parsing, the neural model extracts
n atomic features from a parsing state, which consists of
head words, POS-tags and constituent labels from the stack
and queue. Embeddings are used to represent atomic fea-
tures. Each embedding is a d-dimensional vector ei ∈ R.
Therefore, the full embedding matrix is E ∈ Rd×V , where
V is the number of distinct features.
Once each sparse feature is extracted, we retrieves its fea-
ture embedding ei from E by index i. An input layer is
used to concatenate the n feature embeddings into a vec-
tor x = [ei1; ei2 . . . ein], where x ∈ Rd·n. Then x is
mapped to a dh-dimensional hidden layer by a mapping
matrix W1 ∈ Rdh×d·n and a cube activation function for
feature combination:

h = (W1x+ b1)
3 (1)

Finally, h is mapped into a output layer:

o =W2h (2)

Templates

Fw s0w, s1w, s2w, s3w, s0lw, s0rw, s0uw
s1lw, s1rw, s1uw, q0w, q1w, q2w, q3w

F t s0t, s1t, s2t, s3t, q0t, q1t, q2t, q3t

F c s0c, s1c, s2c, s3c, s0lc, s0rc, s0uc, s1lc
s1rc, s1uc

Table 2: Feature templates.

Here, W2 ∈ Rdo×dh and do is the number of shift-reduce
actions.
Given the neural networks parameter θ, the probability of
each candidate shift-reduce action ai is calculated by a soft-
max function over the output layer o:

p(ai | θ) =
eo

i∑
aj∈GEN(Acts)

eoj
(3)

Where oi is the ith dimension of output o, GEN(Acts) re-
turns the valid actions according to the history actionsActs,
θ is the set of all parameters.
We employ the features used in Zhang and Clark (2009),
but remove the features about brackets and separators (Ta-
ble 2). Here si is the ith node on top of the stack S and qj is
the jth node in the queue Q. s0l, s0r represent the left and
right child for a binary branching s0, and s0u represents the
single child for a unary branching s0. w, c and t represent
the lexical head token, constituent label and lexical head’s
POS tag for a node, respectively.
Given a set of training examples, the training objective is
to minimize the cross-entropy loss, plus a l2-regularization
term:

L(θ) = −
∑
a∈A

log p(a | θ) + λ

2
‖ θ ‖2 (4)

Here A is the set of all gold labeled actions in the train-
ing data. Mini-bached AdaGrad (Duchi et al., 2011) and
dropout (Srivastava et al., 2014) are used for optimization.

4. Hierarchical Output Neural Network
Due to its large hidden and output layer sizes, the vanilla
neural constituent parser is much slower than the depen-
dency counterpart. The main computation cost is the map-
ping from hidden layer to output layer.
Motivated by the hierarchical neural language model (Mnih
and Hinton, 2009), we adjust the neural constituent parser
by using a hierarchical output layer.
The structure is shown in Figure 1. We decompose the out-
put layer of the baseline in two layers: the action layer
and the label layer. The action layer is a six-way class
between SHIFT, UNARY, LEFT, RIGHT, LEFT-TEMP
and RIGHT-TEMP. A label layer selects constituent labels,
such as NP, for the LEFT-NP, LEFT-TEMP-NP, RIGHT-
NP and RIGHT-TEMP-NP actions. Except SHIFT, differ-
ent action types have different label output layers.
Given the hidden layer h (Equation 1), the action type out-
put layer oact and the label output layer olabel(ai) of action
type ai are computed as

oact =W2h (5)

olabel(ai) =W i
3h (6)

660

200 500 800
baseline 85.38 86.91 87.28
hierarchical 84.70 86.82 87.23

Table 3: Results against hidden layer sizes.

W2 ∈ Rda×dh is the mapping matrix from hidden layer
to the action layer and da is the number of action types.
W i

3 ∈ Rdlabel×dh is the mapping matrix from the hidden
layer to the label layer.
The probability of a labeled action yi,j , given its history
Acts and input x, is computed as:

p(yi,j | x,Acts)
= p(ai | x,Acts)× p(lj | x,Acts, ai) (7)

where

p(ai | x,Acts) =
eo

i
act∑

ak∈GEN(Acts)

eo
k
act

(8)

p(lj | x,Acts, ai) =
eo

j
label(ai)∑

lk∈GEN(Acts)

eo
k
label(ai)

(9)

Here ai is the ith action in the action layer, and lj is the jth
label in the label layer.
We adopt a greedy decoding strategy in the hierarchical
parsing process. In each parsing step, the action type ai
with the highest probability is first selected, and then the
constituent label lj with the highest probability is selected
given the optimal action type ai.
As in the baseline parser, we adopt the cross-entropy loss
as our training objective:

L(θ) = −
∑

yi,j∈A
log p(yi,j | x,Acts) +

λ

2
‖ θ ‖2 (10)

5. Experiments
5.1. Set-up
We conduct our experiments on the Wall Street Journal
(WSJ) corpus of the Penn Treebank (Marcus et al., 1993).
Following the standard splits of WSJ, sections 2–21 are
used as the labeled training data, section 24 is used as the
development data and section 23 is used as the evaluation
data. Ten-fold jackknifing (Collins, 2000) is used to auto-
matically assign POS tags to the training data. The SVM-
Tool is used as the POS-tagger1.

5.2. Parameters
We carry out a development experiment to measure the cor-
relation between hidden layer size and constituent pars-
ing accuracies. From Table 3, we can see that both the
baseline neural parser and the hierarchical neural parser
achieve higher parsing accuracies with increasing hidden
larger sizes. The two neural parsers obtain converging per-
formances with the hidden size of 800, which is larger than
200 in the dependency case.

1http://www.lsi.upc.edu/?nlp/SVMTool/

Model F1 Speed

Linear

Collins (1999) 88.2 3.5
Charniak (2000) 89.6 5.7
Charniak and Johnson (2005)‡ 91.1
Huang (2008)‡ 91.7
McClosky et al. (2006)‡ 92.1
Shindo et al. (2012) 92.4
Sagae and Lavie (2005) 86.0 3.7
Petrov and Klein (2007) 90.1 6.2
Carreras et al. (2008) 91.1
Zhu et al. (2013) 89.9 100.7
Zhu et al. (2013) + padding 90.4 89.5

Neural

Henderson (2004)‡ 90.1
Titov and Henderson (2007) 90.0
Collobert (2011) 87.9 31.7
Billingsley and Curran (2012) 84.9
Socher et al. (2013)‡ 90.4 6.1
Legrand and Collobert (2014) 88.3 22.0
Watanabe and Sumita (2015) 90.7 1.8

This Work 89.13 133.6
This Work + hierarchical 89.06 320.2

Table 4: Comparisons with previous work. ‡: reranking
model. Speed: sentences per second.

We also tune the other hyper parameters on the develop-
ment data. For the final test, we set the parameters as fol-
lows: embedding size d = 50, regularization parameter λ =
10−8, initial learning rate of Adagrad α = 0.01, batch size
b = 10000.

5.3. Final Results
The final parsing result is shown in Table 4, which are
grouped into 2 classes, the traditional linear parsers (Lin-
ear) and the neural parsers (Neural).
Our deterministic neural constituent parser obtains an accu-
racy of 89.13. Besides the reranking neural parsers, accu-
racy of our parser falls behind the parser of Titov and Hen-
derson (2007), who give a high parsing accuracy by using a
dynamic sigmoid belief network, and the parser of Watan-
abe and Sumita (2015), who use a beam search decoding.
However, their parsers are much more time consuming than
our parser.
The baseline neural parser runs at a speed of 133 sentences
per second. The hierarchical neural constituent parser
achieves a 2.4 times parsing speed up (320 sen/sec) without
significant accuracy loss.

6. Acknowledgements
We would like to thank the anonymous reviewers for their
insightful comments.
This work was partially founded by the Natural Sci-
ence Foundation of China (61223003, 61300158), the
Jiangsu Provincial Research Foundation for Basic Research
(BK20130580).

7. Conclusion
We proposed a shift-reduce neural constituent parser, using
a hierarchical softmax model to improve the parsing speed.

661

The hierarchical neural parser runs at a speed of 320 sen-
tences per second on a single CPU, with a reasonable accu-
racy. To our knowledge, this is the best speed result in the
literature for constituent parsing.
The source code of our system could be found at:
github.com/zhouh/StructNNConParser.

8. Copyrights
The The Language Resource and Evaluation Conference
(LREC) proceedings are published by the European Lan-
guage Resources Association (ELRA). They are available
online from the conference website.
ELRA’s policy is to acquire copyright for all LREC contri-
butions. In assigning your copyright, you are not forfeiting
your right to use your contribution elsewhere. This you
may do without seeking permission and is subject only to
normal acknowledgement to the LREC proceedings. The
LREC 2016 Proceedings are licensed under CC-BY-NC,
the Creative Commons Attribution-NonCommercial 4.0 In-
ternational License.

9. Bibliographical References
Billingsley, R. J. and Curran, J. R. (2012). Improvements

to training an rnn parser.
Bohnet, B. and Nivre, J. (2012). A transition-based sys-

tem for joint part-of-speech tagging and labeled non-
projective dependency parsing. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natural
Language Learning, pages 1455–1465. Association for
Computational Linguistics.

Carreras, X., Collins, M., and Koo, T. (2008). Tag, dy-
namic programming, and the perceptron for efficient,
feature-rich parsing. In Proceedings of the Twelfth Con-
ference on Computational Natural Language Learning,
pages 9–16. Association for Computational Linguistics.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-
best parsing and maxent discriminative reranking. In
Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 173–180. Associa-
tion for Computational Linguistics.

Charniak, E. (2000). A maximum-entropy-inspired parser.
In Proceedings of the 1st North American chapter of the
Association for Computational Linguistics conference,
pages 132–139. Association for Computational Linguis-
tics.

Chen, D. and Manning, C. D. (2014). A fast and accurate
dependency parser using neural networks. In Empirical
Methods in Natural Language Processing (EMNLP).

Collins, M. (1999). HEAD-DRIVEN STATISTICAL MOD-
ELS FOR NATURAL LANGUAGE PARSING. Ph.D. the-
sis, University of Pennsylvania.

Collobert, R. (2011). Deep learning for efficient discrimi-
native parsing. In AISTATS.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive sub-
gradient methods for online learning and stochastic op-
timization. The Journal of Machine Learning Research,
12:2121–2159.

Goldberg, Y. and Nivre, J. (2013). Training determinis-
tic parsers with non-deterministic oracles. Transactions
of the Association for Computational Linguistics, 1:403–
414.

Henderson, J. (2004). Discriminative training of a neural
network statistical parser. In Proceedings of the 42nd
Annual Meeting on Association for Computational Lin-
guistics, page 95. Association for Computational Lin-
guistics.

Huang, L. (2008). Forest reranking: Discriminative pars-
ing with non-local features. In ACL, pages 586–594.

Legrand, J. and Collobert, R. (2014). Recurrent greedy
parsing with neural networks. In Proceedings of the Eu-
ropean Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases
(ECML-PKDD).

Marcus, M. P., Marcinkiewicz, M. A., and Santorini,
B. (1993). Building a large annotated corpus of en-
glish: The penn treebank. Computational linguistics,
19(2):313–330.

McClosky, D., Charniak, E., and Johnson, M. (2006). Ef-
fective self-training for parsing. In Proceedings of the
main conference on human language technology confer-
ence of the North American Chapter of the Association of
Computational Linguistics, pages 152–159. Association
for Computational Linguistics.

Mnih, A. and Hinton, G. E. (2009). A scalable hierarchi-
cal distributed language model. In Advances in neural
information processing systems, pages 1081–1088.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilis-
tic neural network language model. In Proceedings of
the international workshop on artificial intelligence and
statistics, pages 246–252. Citeseer.

Nivre, J. (2008). Algorithms for deterministic incre-
mental dependency parsing. Computational Linguistics,
34(4):513–553.

Petrov, S. and Klein, D. (2007). Improved inference for
unlexicalized parsing. In HLT-NAACL, pages 404–411.

Sagae, K. and Lavie, A. (2005). A classifier-based parser
with linear run-time complexity. In Proceedings of the
Ninth International Workshop on Parsing Technology,
pages 125–132. Association for Computational Linguis-
tics.

Shindo, H., Miyao, Y., Fujino, A., and Nagata, M. (2012).
Bayesian symbol-refined tree substitution grammars for
syntactic parsing. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 440–448. Association
for Computational Linguistics.

Socher, R., Bauer, J., Manning, C. D., and Ng, A. Y.
(2013). Parsing with compositional vector grammars. In
In Proceedings of the ACL conference. Citeseer.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929–1958.

Titov, I. and Henderson, J. (2007). Constituent pars-
ing with incremental sigmoid belief networks. In

662

ANNUAL MEETING-ASSOCIATION FOR COMPUTA-
TIONAL LINGUISTICS, volume 45, page 632.

Watanabe, T. and Sumita, E. (2015). Transition-based neu-
ral constituent parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pages 1169–1179, Beijing, China, July. Association for
Computational Linguistics.

Zhang, Y. and Clark, S. (2009). Transition-based pars-
ing of the chinese treebank using a global discriminative
model. In Proceedings of the 11th International Confer-
ence on Parsing Technologies, pages 162–171. Associa-
tion for Computational Linguistics.

Zhang, Y. and Nivre, J. (2011). Transition-based depen-
dency parsing with rich non-local features. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technolo-
gies: short papers-Volume 2, pages 188–193. Associa-
tion for Computational Linguistics.

Zhou, H., Zhang, Y., Huang, S., and Chen, J. (2015).
A neural probabilistic structured-prediction model for
transition-based dependency parsing. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pages 1213–1222, Beijing, China, July.
Association for Computational Linguistics.

Zhu, M., Zhang, Y., Chen, W., Zhang, M., and Zhu, J.
(2013). Fast and accurate shift-reduce constituent pars-
ing. In 51st Annual Meeting of the Association for Com-
putational Linguistics.

663

