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Abstract
Understanding the experimental results of a scientific paper is crucial to understanding its contribution and to comparing it with related
work. We introduce a structured, queryable representation for experimental results and a baseline system that automatically populates this
representation. The representation can answer compositional questions such as: “Which are the best published results reported on the
NIST 09 Chinese to English dataset?”” and “What are the most important methods for speeding up phrase-based decoding?” Answering
such questions usually involves lengthy literature surveys. Current machine reading for academic papers does not usually consider the
actual experiments, but mostly focuses on understanding abstracts. We describe annotation work to create an initial (scientific paper;
experimental results representation) corpus. The corpus is composed of 67 papers which were manually annotated with a structured
representation of experimental results by domain experts. Additionally, we present a baseline algorithm that characterizes the difficulty of

the inference task.
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1. Introduction

Current technologies enable one to access large scientific
literature repositories via a variety of means, which range
from simple keyword searches for content and authors to
sophisticated inferences that exploit citation links (Dunne
et al., 2010; Schéfer et al., 2011), techniques that auto-
matically identify sections and section labels (Teufel and
Kan, 2011), and unsupervised methods to infer information
structures (Kiela et al., 2015). Unfortunately, these access
methods fall short of supporting many queries that could sig-
nificantly improve the day-to-day activities of a researcher.
Imagine, for example, a young researcher who wants to be-
gin working on Machine Translation (MT) or a seasoned
researcher who wants to keep track of recent developments
in the field. Ideally, they would like to quickly get answers
to questions like:

e Which are the best published results reported on the
NIST-09 Chinese dataset?

e What are the papers that show on training sets larger
than 100M words that morphology-inspired models
lead to improvements in translation quality that are
statistically significant?

e What are the most important methods for speeding up
phrase-based decoding?

e Are there papers showing that a neural translation
model is better than a non-neural model?

To our knowledge, answering such queries is beyond the
state of the art. Current methods cannot yet infer the main
elements of experiments reported in papers; as a matter of
fact, no consensus exists on what these elements should be
and what the relations between them are.

In this paper, we take a few steps towards addressing these
shortcomings. By focusing on MT as our exemplary sub-
field of study, we propose a representation that explicitly
models the hidden structure of typical experiments: data
sources used for training and testing, evaluation metrics,
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languages, baseline algorithms, methods and algorithms that
experiments are meant to highlight, etc. We also report an-
notation work aimed at creating a gold standard for this task,
and we review a set of simple algorithms that we developed
as a baseline to objectively characterize the difficulty of the
task. By making our representations, data, and baseline
results public, we hope to contribute to the more general
effort of transitioning the Information Extraction field from
identifying simple mentions and relations to identifying and
reasoning with complex structures like events, scripts, and
experiments.

2. Structured Representation of MT
Experiments and Task Definition

To capture meaningful elements of experiments in MT con-
ference papers, we design a structural representation of ex-
perimental results. While this can be used as a reference
to understand experiments in other fields, we intentionally
designed it to answer meaningful queries about MT papers.
Our overall task is to convert a paper (Figure 1, top) into
a connected graph (bottom) of experimental results. Fig-
ure 1 shows an example of a paper “SPMT: Statistical Ma-
chine Translation with Syntactified Target Language Phrases”
(Marcu et al., 2006). The structured representation is com-
posed of DATASETS, EXPERIMENT TYPE, and RESULTS.
Datasets are corpora used to either to train or evalu-
ate the systems. We decompose datasets into name,
size, and language. The example uses four datasets,
including LDC Chinese-English parallel corpus and
2002 NIST. Only the first dataset has a stated size,
138.7M words, while all of them use the Chinese-
English language pair.

Experiment type refers to the goal of the experiment and
the method used to achieve it. We define 9 goals and 27
methods.

Results are experimental results presented in the paper, con-
sisting of numerical value, metric, and the name of the sys-
tem that achieved the result. In Figure 1, we retrieved four
values (34.83, 31.46, 39.56, 34.10) with the BLEU metric.
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Figure 1: An illustration of the extraction task. Starting with a scientific paper (top), information is extracted to construct a

structured representation of the experimental data (bottom).

Two result values are associated with the PBMT system and
two with the SPMT-Comb system. The RESULT values are
connected to DATASETS via the test or train relation, and
to an EXPERIMENT TYPE.

We refer to the individual pieces of information that com-
prise the structured representation as atoms. In the exam-
ple, there are 15 atoms, including Chinese-English, BLEU,
31.46 and 2002 NIST.

3. Data and Annotation

In order to construct the dataset, we started by selecting
papers related to Machine Translation from the ACL Anthol-
ogy corpus (Radev et al., 2009) using keyword search and
targeting of MT related workshops. For a random sample
of 67 papers, we asked the annotators to provide a struc-
tured representation of experimental results as defined in

the previous section. In order to aid structured informa-
tion extraction, we automatically produced a structured text
representation of each paper. The representation consists
of plain text split into sections and subsections, as well as
parsed tables. The annotated dataset is released alongside
the paper! to promote future research. In total, 1063 atoms
were annotated. Additional dataset statistics are presented
in Table 1. In the remaining part of this section we describe
the dataset construction and annotation in more detail.

3.1. PDF to Structured Text Conversion

The starting point is a set of papers in PDF format. We
convert papers in PDF format into structured text using the

"The dataset is
nlp/mt_lit_lrec16.git

available from https://github.com/isi-
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Avg. Count  St. Dev.

Sections 7.55 1.38

Text Tables 3.76 1.78
Sentences 272.55 89.65

Total Atoms 23.47 9.85

Train/Tune Dataset 4.33 4.14

Experiment | Test Dataset 2.01 1.52
Structure Result 6.84 5.01
Experiment Type 1.13 0.34

Table 1: Structured text and survey response mean and
standard deviation.

How did you achieve
improvements in your
experiments?

What was the goal of the
experiments you reported in the
paper?

Experiment
Type ID
[

detect parallel documents v add better rule context ¥

D Usage Type Name Size Source Language Target Language

bitext
train ¥ bitext v

e.g.,1 train English

N

Europarl 1lk sentences Czech

Experiment Type ID Train Dataset ID Test Dataset ID System Name Metric

BLEU
BLEU v

e.g..1 3] 2 32.11

Lv 1w

Figure 2: Survey form to collect annotations.

commercial TET system.? As tables are often used to report
experimental results, we pay special attention to their extrac-
tion. We extract tabular information using TableSeer? (Liu et
al., 2007). We use ParsCit* (Councill et al., 2008) to derive
the hierarchical structure of sections and subsections. We
produce the final representation of papers with a system that
combines the inputs of all three components. The process
produces structured text, split into sections and subsections
with parsed tables accompanied by captions, but does not
include figures.

3.2. Structured Representation Annotation

Annotators are presented with the papers in PDF format.
Ideally, annotators would highlight relevant information in
the text and link it to the structured representation. However,
such linking is very time consuming. As an alternative, we
design a survey annotation tool, shown in Figure 2. From
survey responses, we create the structured representation
deterministically. We gather the annotations by sending
the survey to the selected papers’ authors and by annotat-
ing them ourselves. From survey responses, we create the
structured representation deterministically.

Six papers were annotated by two annotators. Inter-
annotator agreement on these papers is shown in Table 3.
Annotators disagree frequently on techniques, as a single
paper can use multiple techniques. Lexical variability in
naming a dataset or a system also causes disagreement. In-
structed to choose the top and baseline performance for
each important evaluation, people at times chose different
experiments.

2PDFlib TET 4.4 Text Extraction Toolkit
3http://sourceforge.net/projects/tableseer
*http://aye.comp.nus.edu.sg/parsCit

Value

4. Baseline System Approach

We present a pipelined pattern-based system that extracts
individual atoms from a plain text logical representation of
a machine translation paper and selects and links them into
a structured representation.

4.1.

In atom detection, the system generates lists of candidates
for each atom type. The aim of atom detection is to detect
as many atoms as possible to enable subsequent steps in the
system to select among multiple candidates. Detection con-
sists of finding substrings, overlapping words, and matching
regex patterns in text or tables.

The language detector matches a pre-defined list of lan-
guages against the text. The list includes two and three-
character language abbreviations.

Atom Detection

The dataset size detector is based on regex pattern match-
ing expressions such as ‘8M sentence pairs.” These patterns
either include a unit (as above) or are unitless, e.g., ‘8SM.’
The dataset name detector matches a curated list of known
MT datasets to text. Various ways to express datasets are
encoded by regex patterns.

The system name detector finds candidates in result tables,
excluding numerals and specific keywords.

The result value detector captures numeric cells in result
tables, such as 24.3, 12%.

The result metric detector is based on a list of common
metrics used in MT such as BLEU.

The goal detector and technology detector match pre-
constructed lists of phrases.

4.2. Linking

Linking consists of two stages: (1) linking of atoms into
intermediate structures and (2) linking of intermediate struc-
tures into the final composite structure. In the first stage,
individual atoms are selected and linked together to first
form a structure representing either a DATASET, an EXPER-
IMENT TYPE, or a RESULT. At this stage, many atoms are
available to link and a selection process is carried out on
atoms to create candidate intermediate structures. In the
second stage, a selection process is subsequently carried
out on intermediate structures to create the final composite
structure representing a single paper.

Dataset We select language pairs based on frequency, and
we find the closest dataset name and size atom. We choose
edge labels by searching for keywords such as ‘train’ and
‘test’ in proximity.

Result We construct RESULT structures from tables, using
the column, row, and caption of tables. We link system name
atoms and result metric atoms found either in the first row
or the first column.

Composite DATASETS are linked to RESULTS based on
proximity measures and cues from text, for example men-
tions of languages or dataset names in captions or adjacent
table cells. We limit each result to a single test DATASET,
but allow multiple training DATASETS.
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Atom Type P R F1 R*
Language Single | 21.3 94.7 34.8 100.0
Pair | 763 87.1 81.3 100.0
Dataset Name | 20.1 289 237 67.1
Size | 243 25.0 24.6 41.8
Value | 7.1 84.7 13.0 922
Result Metric | 355 83.6 498 924
Name | 7.1 16.0 99 46.7
Experiment Goal | 72.6 652 68.7 -
Tech | 242 227 234 -

Table 2: Performance of atom detector in terms of Preci-
sion, Recall, and F1 score, and reconstruction from survey
response (R*).

5. Evaluation

Data From the collected data, five papers are used for
development, and 62 are used for evaluation.

Evaluation Metrics We evaluate system performance of
atom detection with precision and recall. We approach the
evaluation of the linked structured representation by trans-
forming it into a directed acyclic graph and computing the
Smatch score (Cai and Knight, 2013), previously used to
evaluate the similarity between Abstract Meaning Represen-
tation (AMR) structures.

5.1. Atom Detection Evaluation

Table 2 shows the performance of atom detection. As annota-
tors do not tell us where the information is located, we match
the annotated atoms to every substring in the structured text
and present annotation recall from text as R* in Table 2. This
presents a soft ceiling for our baseline approach. Finding
annotated dataset name, size, and system name atoms was
challenging due to abbreviations, PDF-to-text conversion
errors, lexical diversity and name expansion, as well as ex-
tracted values consisting of scattered strings, as shown in
Figure 3. These problems persist in atom detection.

Successes The language and language pair detectors
achieve high recall. The result value and metric detectors
also achieve high recall on par with the R*. Dataset name
and size detectors achieve around half of the gold recall.
Even when they do not extract the entire name correctly,
they often capture a substring. Dataset names and sizes can
be expressed in a variety of ways—correct system output
can differ from the annotation.

Unresolved challenges The language pair detector strug-
gles with phrases such as ‘translating English to Japanese
and Turkish,” detecting only ‘English-Japanese.” This name
expansion happens in dataset names as well. Correctly inter-
preting information in tables, where information is presented
in a structured manner analogous to Figure 3 is also interest-
ing problem to be resolved. For datasest, errors are primarily
due to the variety of ways to express dataset names and sizes
(for example, MTO3 — MTO8 refers to a set of 6 datasets).
Additionally, new unnamed datasets are constantly being in-
troduced into the literature. Detecting system names is even
more challenging, as there is no naming convention. Detect-
ing the goal and technology of a paper achieves mediocre

PBMT

Language Experiment BLEU
feats method || tune test
MERT | 20.5 17.7
base | MIRA || 20.5 179
Urdu-English PRO 204 182
ext MIRA | 21.8 17.8
PRO 21.6 18.1

Figure 3: System name annotated as ‘PBMT base PRO’.

P R F1

Atom 035 0.18 0.22

S-Dataset | 0.51 0.40 0.40

Baseline S-Result | 0.54 0.31 0.34
S-Total | 0.58 0.34 0.39
Atom 0.44 (Jaccard Score)

Inter S-Dataset | 0.66 0.66 0.64
Annotator | S-Result | 0.77 0.77 0.73
S-Total | 0.68 0.68 0.65

Table 3: Linking performance evaluation results in terms
of Precision, Recall, and F1 Smatch scores. In the case of
atoms, precision, recall, and F1 of the selected atoms after
linking is shown.

recall. This challenging problem is a focus of research by
itself (e.g. Gupta and Manning (2011)).

5.2. Linker Evaluation

The linking performance is presented in Table 3. As a refer-
ence point, we present scores computed between two gold
annotations as ‘Inter-Annotator.” Analysis shows that the
system can detect the highest scoring BLEU score on the cor-
rect language pair, but at times fails to recover the names of
datasets or systems. For instance, in the example in Figure 1,
the system is able to detect all four result values and the
name PBMT, and link correctly to the language pair and met-
ric, but it could not retrieve the name SPMT_Combo. Further-
more, correctly linking a result to a set of training corpora
is a challenge that can only be resolved by understanding
long-distance dependencies in the document. While it is
able to link subsets of datasets, the system often fails to re-
cover the full expanded names of datasets. For the example
in Figure 1, the system is able to retrieve NIST as both test
and training data, but without specifying the year.

6. Related Work

Automatically processing scientific literature is receiving
growing attention. Researchers focus on extracting infor-
mation from abstracts, titles, and citations. There have
been efforts to create extractive summaries (Abu-Jbara and
Radev, 2011; Qazvinian et al., 2013) and flows of scientific
ideas (Shahaf et al., 2012). Analysis of individual papers
(Tsai et al., 2013; Gupta and Manning, 2011; Kiela et al.,
2015) focuses mainly on abstracts.

J. Hutchins has manually compiled an electronic repository
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of machine translation literature.” He categorizes 11,500
papers by methodology, language pairs, systems, linguistic
aspects, etc.

For the applications of the automatic analyses, the iOpener
project (Dunne et al., 2012; Dunne et al., 2010) and Schafer
et al. (2011) present bibliometric lexical link mining, sum-
marization techniques, and visualization tools. These focus
on metadata such as keyword, author, institution, conference
name, and citations.

7. Conclusions and Future Work

Presenting experimental information from scientific papers
in a structured representation that supports queries will help
researchers in understanding scientific literature. To this
end, we propose a new task of automatically extracting ex-
perimental information from scientific papers. We focus on
the field of Machine Translation, for which we created a
structured representation capturing the experimental infor-
mation. We create a dataset of 67 MT papers with manually
annotated experimental information in the structured repre-
sentation. The dataset is available at https://github.com/isi-
nlp/mt_lit_Irec16.git. Finally, we evaluate a simple baseline
system, which demonstrates several challenges for automatic
extraction of experimental information. These include find-
ing and resolving structured information in tables, dealing
with lexical variability and resolving long distance connec-
tions. Future work can explore injecting domain knowledge
in the form of prior beliefs such as result ranges for metrics,
as well as using manually compiled repositories for distant
supervision.
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