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Abstract 

Automated grammatical error detection, which helps users improve their writing, is an important application in NLP. Recently more 
and more people are learning Chinese, and an automated error detection system can be helpful for the learners. This paper proposes 
n-gram features, dependency count features, dependency bigram features, and single-character features to determine if a Chinese 
sentence contains word usage errors, in which a word is written as a wrong form or the word selection is inappropriate. With marking 
potential errors on the level of sentence segments, typically delimited by punctuation marks, the learner can try to correct the problems 
without the assistant of a language teacher. Experiments on the HSK corpus show that the classifier combining all sets of features 
achieves an accuracy of 0.8423. By utilizing certain combination of the sets of features, we can construct a system that favours 
precision or recall. The best precision we achieve is 0.9536, indicating that our system is reliable and seldom produces misleading 
results. 
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1. Introduction 

Recently, more and more people select Chinese as their 

second language. Developing grammatical error detection 

and correction tools for Chinese language learners is 

indispensable. The flexibility of the Chinese language 

makes error detection more challenging than other 

languages.  According to the analysis on the HSK 

dynamic composition corpus created by Beijing 

Language and Culture University, word usage error 

(WUE) with error tag CC, is the most frequent type of 

error at the lexical level.1 In the HSK corpus, the CC type 

errors are further divided into four major subtypes. The 

descriptions of the subtypes are shown as follows, each in 

terms of a pair (misused form, correct form).2 

(1) Character disorder in a word, e.g., (先首, 首先) (first 

of all) and (眾所知周, 眾所周知) (as we all know). 

(2) Incorrect selection of a word, e.g., 雖然現在還沒有
(實踐, 實現), … (while it is not yet implemented, …). 

(3) Non-existent word, e.g., (農 作 品, 農 產 品) 

(agricultural product). 

(4) Word collocation error, e.g., 最好的辦法是兩個都
(走去, 保持)平衡 (The best way is to keep both balance). 

In Chinese, segmentation is a fundamental problem. 

When characters in a word are disordered, e.g., “首” and 

“先” are exchanged in the word “首先”, the resulting 

form may not be a word. Thus, they may be segmented 

into a sequence of characters by a dictionary-based 

segmentation system. In word collocation error, both the 

misused form and the correct form are real words, but the 

latter collocates with other words in the given sentence 

and the former does not. 

CC (1) and (3) are similar in that the misused forms are 

                                                           
1 http://202.112.195.192:8060/hsk/tongji2.asp 
2 http://202.112.195.192:8060/hsk/help2.asp 

not in a dictionary. Likewise, CC (2) and (4) are similar. 

The misused forms are in a dictionary. In this paper, CC 

(1) along with (3), and CC (2) along with (4) are merged 

into morphological errors (W) and usage errors (U), 

respectively. This paper deals with the detection of WUE 

in Chinese sentences. Given a Chinese sentence, we tell if 

it contains any WUE. 

This paper is organized as follows. Section 2 surveys the 

related work. Section 3 describes the dataset used in this 

study. Section 4 proposes the classifiers and features for 

MUE detection. Section 5 shows and discusses the 

experimental results. Section 6 concludes the work. 

2. Related Work 

Leacock et al. (2014) give a comprehensive study of 

grammatical error correction (GEC). They pointed out the 

errors made by non-native language learners are quite 

different from those by native language learners. Training 

data should come from non-native language learners to 

capture the phenomena of grammatical errors.  

To measure the performance of GEC systems, several 

shared tasks have been organized in recent years for 

English, including HOO 2011 (Dale and Kilgarriff, 2011), 

HOO 2012 (Dale et al., 2012), CoNLL 2013 (Ng et al., 

2013) and CoNLL 2014 (Ng et al., 2014). Different types 

of grammatical errors were investigated. Language 

models, machine learning-based classifiers, rule-based 

classifiers, and machine translation models have been 

explored.  

In Chinese, spelling check evaluations were held at 

SIGHAN 2013 Bake-off (Wu et al., 2013) and SIGHAN 

2014 Bake-off (Yu et al., 2014). Yu, Lee and Chang 

(2014) extended the evaluation to Chinese grammatical 

error diagnosis. Four kinds of grammatical errors, i.e., 

redundant word, missing word, word disorder, and word 
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selection, were defined. 

Yu and Chen (2012) adopted the HSK corpus to study 

word ordering errors (WOEs) in Chinese, and proposed 

syntactic features, web corpus features and perturbation 

features for WOE detection. Cheng, Yu and Chen (2014) 

identified sentence segments containing WOEs, and 

further recommended the candidates with correct word 

orderings by using ranking SVM. 

Different from the above researches, this paper focuses on 

Chinese word usage error detection. WUE appears at 

lexical level rather than character level in spelling 

checking. Moreover, this task is also different from 

Chinese diagnosis task defined in Yu, Lee and Chang 

(2014). To the best of our knowledge, it is the first attempt 

to detect WUEs in Chinese sentences. 

3. Data Preparation 

Both wrong and correct sentences are selected from the 

HSK corpus. Sentences are determined by punctuation 

marks “？”, “！”, and “。”. The sentences which do not 

contain any error tags are regarded as correct ones. To 

simplify the problem, we convert a sentence with n errors 

into n sentences, each of which with only one error. That 

is, the following sentence, which contains three errors, 

○ ○ E1 ○ ○ ○ ○ ○ ○ E2 ○ ○ ○ ○ E3 ○ 

will be converted to three sentences like: 

○ ○ E1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

○ ○ ○ ○ ○ ○ ○ ○ ○ E2 ○ ○ ○ ○ ○ ○ 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ E3 ○ 

In Chinese, a sentence is usually composed of several 

segments separated by comma “，”. For example, the 

following sentence is composed of three segments: 

如果我當推銷員的話，為了早點兒習慣，打算盡可能
努力。 

The longer a sentence is, the more easily a learner makes 

grammatical errors. If we mark the whole sentence as 

“wrong” only because one of the segments contains 

WUE, the benefit to the learner will be limited. Therefore, 

we consider a segment as a unit of WUE detection. 

We adopt the ICTCLAS Chinese Word Segmentation 

System3 to perform word segmentation, and define the 

length of a sentence to be the number of words in the 

segmentation result. After excluding short segments of 

length less than 5, we get 63,612 correct segments and 

17,324 segments with WUEs. Table 1 shows that learners 

make usage errors more often than writing a word as a 

wrong form. 

Finally, we randomly select 15,000 correct and WUE 

segments respectively, and combine them into a dataset 

with 30,000 segments in total. This dataset is called 

“15000s”. 

 

 W Error U Error 

HSK WUE (1) & (3) (2) & (4) 

#segments 4,010 13,314 

 

Table 1: Distribution of WUEs. 

                                                           
3 http://ictclas.nlpir.org/ 

4. WUE Detection 

3.1. Classification Models 

Several properties of the Chinese WUE detection problem 

are worth noticing. W-type errors can be identified almost 

at first sight, but for U-type errors, even native speakers 

may have to “think twice”. For example, to determine if 

“體會” (realize) is a misuse of the word “體驗” 

(experience) in the sentence “親身體會了一場永遠難忘
的電單車意外” (personally realize an accident which 

was never forgotten), we have to consider its collocation 

with “意外” (accident). On the other hand, any sentences 

using a non-existent word such as “農作品” can be 

detected solely by its extremely low frequency in a 

Chinese corpus.  

In this paper, WUE detection is formulated as a binary 

classification problem. Given a Chinese segment, we tell 

if there is a WUE in the segment. Decision tree, random 

forest, and support vector machine with RBF kernel are 

explored. 

3.2. Google n-gram features 

We adopt the Chinese version of Google Web 5-gram (Liu 

et al., 2010) to generate n-gram features. For every word 

sequence of length n (n=2, 3, 4, 5) in a segment, we 

calculate the n-gram probability by Maximum Likelihood 

Estimation (MLE). Taking trigram for example, the 

probability is defined as follows. 

p(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1) =  
𝑐(𝑤𝑖−2, 𝑤𝑖−1,𝑤𝑖)

𝑐(𝑤𝑖−2, 𝑤𝑖−1)
 (1) 

where c(‧) is the frequency of the word sequence in the 

Google Web 5-gram corpus. We combine the sum of 

n-gram probabilities with segment length (s_len). All 

n-gram features are concatenated into a feature vector G = 

(g2, g3, g4, g5), where  

gn =  ∑ p(wi|wi−n+1, … , wi−1)L
i=n   (2) 

3.3. Dependency count feature 

Errors in a sentence affect the result of segmentation and 

parsing. We postulate that there is a certain distribution of 

dependency counts in normal sentences, and the counts of 

error sentences deviate from the distribution. Therefore, 

we take the count of each type of dependency of Stanford 

Parser (Chang et al., 2009) output as a set of features. For 

each dependency, there are two types of “count”: (1) 

internal count, which counts the occurrence if the two 

words are both in the target segment, and (2) external 

count, which counts as long as one of the words is in the 

target segment. 
There are 45 types of dependency in our dataset, and we 
also include total internal and external counts. The result 
feature vector D has 92 dimensions. We also combine 
them with segment length (s_len). 

3.4. Dependency bigram feature 

Long distance dependency is common in Chinese 

sentences. In the example, “親身/體會/了/一場/永遠/難
忘/的/電單車/意外”, “意外” is the object of “體會”, but  

221



 Model: support vector machine Model: decision tree 

Features Accuracy Precision Recall F1 Accuracy Precision Recall F1 

G 0.7706 0.7650 0.7813 0.7731 0.8333 0.9532 0.7011 0.8079 

D 0.6586 0.6771 0.6068 0.6400 0.6242 0.6248 0.6228 0.6238 

B 0.6102 0.6226 0.5595 0.5894 0.6148 0.6094 0.6447 0.6266 

S 0.6217 0.6435 0.5456 0.5905 0.6196 0.6453 0.5314 0.5828 

DB 0.6534 0.6702 0.6041 0.6354 0.6231 0.6272 0.6114 0.6192 

GD 0.7638 0.7710 0.7507 0.7607 0.8325 0.9513 0.7009 0.8071 

GB 0.7550 0.7453 0.7749 0.7598 0.8316 0.9536 0.6972 0.8055 

GS 0.7858 0.7885 0.7810 0.7874 0.8341 0.9503 0.7050 0.8095 

GDBS 0.7716 0.7765 0.7628 0.7696 0.8332 0.9486 0.7046 0.8086 

 

Table 2: Performance of support vector machine and decision tree on 15000s dataset. 

 

there are 6 words in-between, falling outside the range of 

n-gram features. To cope with the problem, we generate 

dependency bigrams. The above sentence contains 

dependencies such as nsubj(體會-2, 親身-1) and dobj(體
會-2, 意外-9). We compose the two words in each 

dependency, i.e., (親身, 體會) and (體會, 意外), query 

the Google n-gram corpus, and calculate the bigram 

probabilities. Since the collocating behavior may vary 

with dependency type, we sum the bigram probabilities of 

each type respectively. Similar to Section 3.3, we 

calculate both internal sum and external sum. This set of 

features, denoted as feature vector B, has 92 dimensions, 

and segment length is also considered. 

3.5. Single character feature 

A non-existent Chinese word (W-type error) is usually 

separated into several single-character words after 

segmentation, so the occurrence of single-character words 

is an important feature for the segments with WUEs. We 

define the following features: 

(1) Number of contiguous single-character blocks 

(seg_cnt) 

(2) Number of contiguous single-character blocks 

with length no less than 2 

(len2above_seg_cnt) 

(3) Length of the maximum contiguous 

single-character block (max_seg_len) 

(4) Sum of the lengths of all contiguous 

single-character blocks (sum_seg_len) 

Consider the following segment as an example: 

而且 我 認為 貴 公司 是 我國 最 大 的 

(…, and I thought that your company is the biggest 

in our country.) 

The feature values are 4, 1, 3, and 6, respectively. The 

proposed features are concatenated into a vector S and 

segment length is also considered. 

5. Experimental Results and Analysis 

4.1. Results on the 15000s dataset 

The performance of our classifiers on 15000s dataset is 

shown in Table 2. Three classification models are 

adopted: decision tree, support vector machine, and 

random forest. We use the implementation in the 

scikit-learn4 Python library. For support vector machines, 

we scale the feature values to unit variance. Since we use 

a balanced dataset, the baseline accuracy is simply 50%. 

We report the best accuracy among various parameter 

settings. All accuracy values are the average of 10-fold 

cross validation.  

For every set of features, decision trees outperformed 

support vector machines, showing that decision tree is a 

better model for WUE detection on the features we 

proposed. Google n-gram (G) is the most effective feature 

in decision tree, while accuracies of the other three 

individual features are only about 0.60. GS, the best 

feature combination in decision tree, has F1 of 0.8095.  

The feature combinations with accuracy higher than 0.83 

are further used in the experiments of random forest, as 

shown in Table 3. The best accuracy among various 

parameter settings is 0.8423 for the combination of all 4 

sets of features. We compare the best model with the other 

models resulting from decision tree and random forest. 

All p values are less than 0.05 with the paired t-test, so the 

improvement is significant. 

 

Model: random forest 

Feature Accuracy Precision Recall F1 

G 0.8324 0.9496 0.7021 0.8073 

GD 0.8371 0.9023 0.7560 0.8227 

GB 0.8386 0.9251 0.7369 0.8203 

GS 0.8391 0.9443 0.7206 0.8174 

GDBS 0.8423 0.8998 0.7705 0.8301 

 

Table 3: Performance of random forest on 15000s dataset. 

 

Note also that our methods can achieve high precision, 

which means that the segments marked by our system are 

very likely to contain true error, so the learners are seldom 

misled. The decision tree model with GB features 

provides the best precision, 0.9536. By adopting the 

random forest model, the precision slightly drops, but 

more errors are detected, which results in the increase of 

recall and the overall accuracy. The Google n-gram 

features (G) in general tend to facilitate more accurate 

detection. Other set of features help discover more errors, 

but might have a cost of lower precision. By utilizing 
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suitable model and certain combination of the sets of 

features, we can construct a system that favors precision 

or recall, according to specific application purposes. 

4.2. Results on different subtypes of WUEs 

To test the performance of our system on different error 

subtypes, we take 4,000 segments from each subtype and 

combine them with 4,000 correct segments respectively. 

The generated dataset, called 4000s_W and 4000s_U, 

contains 8,000 segments respectively. The experimental 

results of the two datasets are shown in Tables 4 and 5. 

Detecting U-type errors are generally harder than 

detecting W-type errors. Feature combinations with 

higher accuracy are also used in the experiments of 

random forest. The best accuracy of detecting W-type and 

U-type errors is 0.8421 and 0.7083 respectively.  

 

Model: decision tree 

Feature Accuracy Precision Recall F1 

G 0.8143 0.8776 0.7322 0.7983 

D 0.6438 0.6657 0.5810 0.6205 

B 0.6418 0.6706 0.5638 0.6126 

S 0.6199 0.6362 0.5678 0.6001 

DB 0.6643 0.6642 0.6648 0.6645 

GD 0.8163 0.9035 0.7085 0.7942 

GB 0.8091 0.8790 0.7188 0.7909 

GS 0.8205 0.8882 0.7345 0.8041 

GDBS 0.8111 0.8699 0.7345 0.7965 

Model: random forest 

Feature Accuracy Precision Recall F1 

G 0.8156 0.9117 0.6993 0.7915 

GD 0.8286 0.8602 0.7853 0.8211 

GS 0.8271 0.8801 0.7578 0.8144 

GDBS 0.8421 0.8610 0.8165 0.8382 

 

Table 4: Performance on 4000s_W dataset. 

 

Model: decision tree 

Feature Accuracy Precision Recall F1 

G 0.6299 0.6128 0.7143 0.6597 

D 0.6234 0.6283 0.6078 0.6179 

B 0.6225 0.6481 0.5588 0.6001 

S 0.6081 0.6212 0.5573 0.5875 

DB 0.6236 0.6478 0.5485 0.5940 

GD 0.6558 0.6671 0.6273 0.6466 

GB 0.6414 0.6484 0.6350 0.6416 

GS 0.6331 0.6345 0.6408 0.6376 

GDBS 0.6556 0.6668 0.6278 0.6467 

Model: random forest 

Feature Accuracy Precision Recall F1 

GD 0.7024 0.6975 0.7153 0.7063 

GB 0.6989 0.6970 0.7040 0.7005 

GDBS 0.7083 0.7039 0.7195 0.7116 

 

Table 5: Performance on 4000s_U dataset. 

 

By evaluating on the error subtypes separately, we can 

also observe the function of different sets of features. The 

single character features (S) is designed for W-type errors 

and is less helpful on the U-type dataset in the 

experiments. For the U-type dataset, the useful features 

except G are those derived from dependency relations, 

which have the potential to reveal long distance 

collocations. 

Figure 1 further shows the relationship between the best 

accuracy and the dataset size in the experiments of 

random forest. With the largest dataset, the accuracy for 

U-type errors reaches 0.8521. Due to the amount of 

available data for W-type errors, only two datasets are 

generated. We can observe that accuracy of the two 

sub-types both increases with the amount of training data. 

To reach the same level of accuracy, more training data 

are needed for U-type errors. 

 

 
 

Figure 1: Accuracy vs. dataset size. 

6. Conclusion 

We address the Chinese word usage error detection 

problem with n-gram features, dependency count 

features, dependency bigram features, and 

single-character features. The best model achieves 

accuracy of 0.8423, precision of 0.8998, recall of 0.7705, 

and F1 of 0.8301 with random forest in the 15000s 

dataset. By utilizing suitable model and combination of 

features, we can also construct a word usage error system 

that favors precision, up to 0.9536. The single character 

features in combination with n-gram features are effective 

for morphological errors (W), while dependency-derived 

features better capture usage errors (U). The detection of 

usage error is harder and need more training data. In the 

future, we will narrow down the detection scope from 

segment level to word level, and propose candidates to 

correct WUEs. 

7. Acknowledgements 

This research was partially supported by Ministry of 

Science and Technology, Taiwan, under grants 

MOST-103-2815-C-002-089-E, MOST-102-2221-E-002 

-103-MY3, and MOST-104-2221-E-002-061-MY3. 

8. References 

Chang, P.C., Tseng, H., Jurafsky, D. and Manning, C.D. 
(2009). Discriminative Re-ordering with Chinese 
Grammatical Relations Features. In Proceedings of the 
Third Workshop on Syntax and Structure in Statistical 
Translation, pp. 51–59.  

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

dataset size

W

U

223



Cheng, S.M., Yu, C.H., and Chen, H.H. (2014). Chinese 
Word Ordering Errors Detection and Correction for 
Non-Native Chinese Language Learners. In 
Proceedings of the 25th International Conference on 
Computational Linguistics, pp. 279–289. 

Dale, R., Anisimoff, Il. and Narroway, G. (2012). HOO 
2012: A Report on the Preposition and Determiner 
Error Correction Shared Task. In Proceedings of the 7th 
Workshop on the Innovative Use of NLP for Building 
Educational Applications, pp. 54–62. 

Dale, R., and Kilgarriff, A. (2011). Helping our own: The 
HOO 2011 pilot shared task. In Proceedings of the 13th 
European Workshop on Natural Language Generation, 
pp. 242-249. 

Liu, F., Yang, M. and Lin, D. (2010). Chinese Web 5-gram 
Version 1. Linguistic Data Consortium, Philadelphia. 

Leacock, C., Chodorow, M., Gamon, M. and Tetreault, J. 
(2014). Automated Grammatical Error Detection for 
Language Learners. 2nd Edition. Morgan and Claypool 
Publishers. 

Ng, H.T., Wu, S.M., Briscoe, T., Hadiwinoto, C., Susanto, 
R.H., and Bryant. C. (2014). The CoNLL-2014 Shared 

Task on Grammatical Error Correction. In Proceedings 
of the Eighteenth Conference on Computational 
Natural Language Learning: Shared Task, pp. 1–14. 

Wu, S. H., Liu, C. L., and Lee, L. H. (2013). Chinese 
spelling check evaluation at SIGHAN Bake-off 2013. 
In Proceedings of the 7th SIGHAN Workshop on 
Chinese Language Processing, pp. 35-42. 

Yu, C. H., and Chen, H. H. (2012). Detecting Word 
Ordering Errors in Chinese Sentences for Learning 
Chinese as a Foreign Language. In Proceedings of 
COLING 2012: Technical Papers, pp. 3003–3018. 

Yu, L.C., Lee, L.H. and Chang, L.P. (2014). Overview of 
Grammatical Error Diagnosis for Learning Chinese as a 
Foreign Language. In Proceedings ICCE 2014 
Workshop of Natural Language Processing Techniques 
for Educational Applications, pp. 42–47. 

Yu, L. C., Lee, L. H., Tseng, Y. H., and Chen, H. H. 
(2014). Overview of SIGHAN 2014 Bake-off for 
Chinese spelling check. In Proceedings of the Third 
CIPS-SIGHAN Joint Conference on Chinese Language 
Processing, pp. 126–132. 

 

224


