
All Fragments Count in Parser Evaluation

Abstract
PARSEVAL, the default paradigm for evaluating constituency parsers, calculates parsing success (Precision/Recall) as a function of
the number of matching labeled brackets across the test set. Nodes in constituency trees, however, are connected together to reflect
important linguistic relations such as predicate-argument and direct-dominance relations between categories. In this paper, we present
FREVAL, a generalization of PARSEVAL, where the precision and recall are calculated not only for individual brackets, but also for
co-occurring, connected brackets (i.e. fragments). FREVAL fragments precision (FLP) and recall (FLR) interpolate the match across the
whole spectrum of fragment sizes ranging from those consisting of individual nodes (labeled brackets) to those consisting of full parse
trees. We provide evidence that FREVAL is informative for inspecting relative parser performance by comparing a range of existing
parsers.
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1. Motivation
Current approaches to parsing usually employ a training
treebank to learn a statistical parser. The goal of learning
is to obtain a parser that can reproduce the test set tree-
bank parses as accurately as possible. The rationale behind
this is that the treebank parses themselves are products of
trained human annotators and, hence, should serve as the
gold standard.
If indeed the ultimate goal of learning statistical parsers
from treebanks is to obtain parsers that immitate human
parsing capability as represented by a sample in a tree-
bank, then parser evaluation should aim at measuring the
amount match/mismatch between a parse produced by a
parser and a parse produced by human annotation. It is
crucial at this point to highlight the difference between this
view of parser evaluation and a linguistically-oriented point
of view: a linguistically-motivated parser evaluation fo-
cuses on linguistically-relevant aspects of parse trees that
are crucial for subsequent linguistic processing, e.g., de-
pendency relations might be very important for semantic
or other linguistic processing (cf. alternative linguistically
relevant proposals (Sampson and Babarczy, 2003; Carroll
et al., 1998)). The contrast between linguistic relevance
and the statistical view of treebank parsing as a learning
problem (with some cognitive relevance) is crucial, because
parser output often has other practical uses besides serv-
ing as mere input for subsequent linguistic processing, e.g.,
parsers may serve as target language models in machine
translation systems.
Consequently, to evaluate a statistical parser learned from a
treebank we need a measure of similarity between its output
parse and the human annotated parse in the test set. Such
a measure of similarity between two tre could measure dif-
ferent shared aspects between two trees. The PARSEVAL
measures (Black et al., 1991) are currently the de facto stan-
dard for evaluating (English) parser output. To calculate the
Precision and Recall, the output trees of a parser are com-
pared to a gold standard, i.e. human-annotated trees in a

treebank. A well known treebank in this respect is the Penn
Wall Street Journal treebank (Marcus et al., 1993). To fa-
cilitate comparison among different parsers, it is common
practice to test a parser on section 23 of that corpus and
report PARSEVAL F-scores.
PARSEVAL counts how many individual brackets match
between a test-tree and a gold-tree, and also whether the
test-tree was a complete match or not. However, what
PARSEVAL does not count, for example, is whether the
matching brackets together constitute a connected unit (e.g.
a subtree or paths of direct-dominance relations). Consider
for example the following trees:
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VBZ
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The trees differ in a single node labeled VP vs XP. This
label change ruins the relation of VP with its VBZ verb
and object NP, with its parent S and finally, this ruins the
subject-verb structure (S (NP VP)). Consequently, different
parsers may report very close F-scores coming from com-
pletely different parse trees, some of which might be more
useful than others.
In this paper we exploit a more elaborate measure of simi-
larity between two trees as the basis for a new parser evalu-
ation measure called FREVAL. FREVAL is a generalization
of PARSEVAL from individual nodes to arbitrary size frag-
ments, i.e., subtrees defined as connected non-empty sub-
graphs of a tree. FREVAL computes its final precision (and
recall) as a mixture of the individually computed precisions
(and recalls) for each of the fragment granularity levels.
By employing a mixture of evaluation measures of a range
of fragment sizes, FREVAL allows discriminating between
parsers performing closely under PARSEVAL but otherwise
having completely different kinds of output. As well as
subtrees, FREVAL considers paths and parent-child rela-
tions also as fragments, thereby accommodating certain as-
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pects of leaf-ancestor (Sampson and Babarczy, 2003) and
dependency (Carroll et al., 1998) proposals. Interestingly,
fragment mixtures has been exploited in statistical parsing,
e.g., (Bod et al., 2003; Sima’an, 2000; Bansal and Klein,
2010), but never before for parser evaluation as far as we
know.

2. Preliminaries
We start with an overview of PARSEVAL. We assume a
test set consisting of sentences {U1,U2, . . . ,Un} and their
corresponding gold-standard trees TC = {τ1C , τ2C , . . . , τnC}.
Now, let the parser output be a set of ‘guessed’ trees Tg =
{τ1g , τ2g , . . . , τng }. More accurately, τ iC and τ ig denote the
correct and the ‘guessed’ tree for sentence Ui, respectively.
PARSEVAL can be seen to represent a tree τ as a set of
labeled constituents:

Tree(τ) = {〈i,X, j〉 | 〈i,X, j〉 ∈ τ}

where 〈i,X, j〉 stands for a constituent in τ that covers span
i to j with label X . |Tree(τ)| is the cardinality of the
set, in this case the number of brackets/constituents. The
PARSEVAL (Labeled Recall, Precision, and Exact Match)
are as follows:

LR(TC , Tg)
def
=

∑
i |Tree(τ iC) ∩ Tree(τ ig)|∑

i |Tree(τ iC)|

LP (TC , Tg)
def
=

∑
i |Tree(τ iC) ∩ Tree(τ ig)|∑

i |Tree(τ ig|

EM(TC , Tg)
def
=

∑
i δ(T

i
C , T

i
g)

n

where δ is the Kronecker delta function, returning 1 if the
specified trees are equal and 0 otherwise.

3. FREVAL: Beyond Sets of Constituents
We introduce a new representation of trees in terms of their
fragments. Let max = |τ | denote the number of nodes in
a tree τ . A tree τ is represented by a sequence of sets of
situated fragments

Tree1(τ),Tree2(τ), . . . ,Treemax(τ)

where for every 1 ≤ s ≤ max, we define Trees(τ) as the
set of all situated fragments ϕ in τ of size |ϕ| = s. A
situated fragment 〈i, ϕ, j〉 is a fragment ϕ together with the
span span(ϕ) = 〈i, j〉 that ϕ covers. More formally,

Trees(τ)
def
= {〈i, ϕ, j〉 | fragment(ϕ, τ)∧
|ϕ| = s ∧ span(ϕ) = 〈i, j〉}

Where fragment(ϕ, τ) is True iff ϕ is a fragment of τ , i.e.,
a non-empty, connected subgraphs of τ . Note here that we
maintain for every fragment size s a separate set Trees(τ)
of situated fragments, i.e., we do not put together fragments
of different sizes. This is crucial next because we will cal-
culate over the whole test set a separate precision/recall for
each fragments size separately. Had we not done so, the

counts of larger fragments would dominate the final preci-
sion and recall figures because the number of fragements of
a certain size in a tree could be exponential in the number
of nodes in the tree.
With this new representation of trees in place, now we de-
fine for every fragment size s a separate Labeled Precision
(LPs) and Labeled Recall (LRs):

LPs(TC , Tg) =

∑
i |Trees(τ iC) ∩ Trees(τ ig)|∑

i |Trees(τ ig)|

LRs(TC , Tg) =

∑
i |Trees(τ iC) ∩ Trees(τ ig)|∑

i |Trees(τ iC)|

The Fragment Labeled Recall (FLR) and Fragment Labeled
Precision (FLP) are defined as a linear interpolation over
the sequence of different fragment sizes:1

FLR =
∑
s

αs × LRs FLP =
∑
s

αs × LPs

where αs fulfills
∑

s αs = 1.0. If we set α1 = 1 we
would obtain standard PARSEVAL LP and LR. And when
αmax = 1.0 this is the Exact Match for the largest trees
in the treebank. Hence, FREVAL is the mean of all mea-
sures between these two extremes. In the lack of prefer-
ence for certain fragments sizes over others, we choose to
set αs uniformly over all fragment sizes. Another reason-
able setting for αs could be one that takes the sparsity of the
space of fragments of size s into account for smoothing the
FREVAL outcomes for larger fragment sizes using results
from smaller fragment sizes.
The FREVAL F1 is defined F1 = 2×(FLR×FLP)

FLR+FLP , but we also
define F1s values for every s using the corresponding LRs

and LPs values.

4. Empirical explorations
Equipped with our new evaluation metric, we ran various
popular and new parsers of English on section 23 of the
Penn Wall Street Journal tree-bank (Marcus et al., 1993).
We cleaned up section 23 by (1) pruning traces subtrees
(-NONE-), (2) removing numbers in labels (e.g., NP-2 or
NP=2), (3) removing semantic tags (e.g., NP-SBJ), and fi-
nally by removing redundant rules (e.g., NP→ NP).
The tested parsers are Bansal and Klein (2010) with ba-
sic refinement (B&K (basic)), Bansal and Klein (2011) all-
fragments, shortest-derivation with richer annotations and
state-splits (B&K (SDP)); the Berkeley Parser2 (Petrov et
al., 2006); the Charniak parser (Charniak and Johnson,
2005)3 with and without Johnson reranking; the Collins
parser (Collins, 1999) as implemented in (Bikel, 2004)4;

1An alternative is to interpolate log-linearly (e.g., geometric
mean) in following of BLEU in machine translation (Papineni et
al., 2002). It is not yet clear whether this has added value over
simple linear interpolation.

2http://code.google.com/p/berkeleyparser/
3ftp://ftp.cs.brown.edu/pub/nlparser/
4http://www.cis.upenn.edu/∼dbikel/software.html
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Double-DOP5 (Sangati and Zuidema, 2011); and the Stan-
ford Parser6 (Klein and Manning, 2003) with PCFG and
with Factored models.
We ran the parsers using the models trained on WSJ
sections 02-21.7 Most parsers provided such a model
out-of-the-box, except for the Bikel-Collins parser, which
we trained ourselves on the same sections. We evalu-
ated the output of the parsers with PARSEVAL (using the
Evalb implementation of Sekine and Collins (1997)) and
FREVAL.
Table 1 shows the FREVAL evaluation results for the tested
parsers. We can choose to only evaluate up to a certain
fragment size, which is reflected in the various columns. In
the first column, the maximum fragment size is 1 — single
nodes. Therefore, here FREVAL’s results are identical to
the results of PARSEVAL.8 In the second column, FLR and
FLP were calculated on fragments of size 1, 2, . . . , 15, and
in the third column on fragments of size 1, 2, . . . , 25. Fi-
nally, in the fourth column all fragments are taken into ac-
count (in this case, 1, 2, . . . , 55). Interestingly, as we take
bigger fragments into account the ranking of the parsers
changes. For example, when evaluating with just single
nodes the Berkeley parser outperforms B&K (basic), but
when we also take larger fragments into account (all other
columns) B&K (basic) has the upper hand. The same is true
for Double-DOP, which is outperformed by Berkeley under
PARSEVAL, but finally is on par with it when evaluating
using all fragments.
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Figure 1: Absolute F1 measure as function of fragment size
up to 15.

5http://staff.science.uva.nl/∼fsangati/
6http://nlp.stanford.edu/software/lex-parser.shtml
7For Double-DOP and the B&K parsers we received the output

directly from the respective authors.
8In line with the behavior of Evalb, our FREVAL implemen-

tation deletes certain nodes (e.g. ‘TOP’) from its input trees and
tries to re-insert pre-terminals in case it deleted one holding a
quote in the one tree but not in the other. On top of the default
configuration, we also delete nodes with label ‘ROOT’.

1 3 5 7 9 11 13 15 17 19 21 23 25

−15

−5

5

15

ParsEval

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

F1 by Fragment Size

Fragment Size

F
1

●

●

B & K (2010)
B & K (2011)
Berkeley
Bikel−Collins
Charniak (Rerank.)
Charniak
Double−DOP
Stanford (Factored)
Stanford (PCFG)

Figure 2: With Berkeley’s parser as baseline, a plot of F1

difference (Parser − Berkeley) for every other parser as
a function of fragment size.

Figure 1 shows how these performance changes depend on
the individual F1 scores (of LRs and LPs) for each frag-
ment size. Intuitively, with uniform α, the parser with the
largest “area” under the curve (sum) performs best. For
fragments up to size 15, Charniak’s reranking parser clearly
scores highest. The Berkeley parser, though, scores high on
fragment size 1, but starts losing to other parsers as we take
larger fragments into account. Figure 2 magnifies the dif-
ferences between the parsers: it plots for each parser the
difference between its F1 score and the Berkeley parser’s
corresponding score as a function of fragment size. Some
parsers seem to have worse performance for smaller frag-
ment sizes but improve considerably for larger fragment
sizes (e.g., Bikel-Collins, Double-DOP, Stanford factored).
Both versions of Charniak’s parser as well as B&K (SDP)
perform well across the whole range of fragment sizes, with
the plot of the latter looking almost as a horizontal shift of
that of the former.

5. Discussion
The FLR and FLP measures provide an interesting new per-
spective on parser performance. The Parser ranking, ac-
cording to the highest FREVAL F1 score, may change along
the Fragment size axes. It is easy to see that one node’s
mismatch can cause the mismatch of a whole lot of big-
ger fragments. For this very reason, there are hardly any
matches for fragments of size 25 and bigger. Moreover,
FREVAL, like PARSEVAL, can punish a parser severely for
certain mistakes, e.g. attachment errors (see e.g. Kübler
and Telljohann (2002)).
The tested parsers differ from one another in various
ways. We concentrate on two particular axis of differences
(A) The grammar units: Context-Free productions or larger
fragments, and (B) Enriched categories by manual refine-
ments, automatic state-splits, head-lexicalization. A single
parser employs discriminative reranking (Charniak (rerank-
ing)) and most parsers employ horizontal Markovization of
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Evaluated Fragment Sizes
Fragment sizes 1 (PARSEVAL) 1-15 1-25 All Fragments
Parser FLR FLP F1 FLR FLP F1 FLR FLP F1 FLR FLP F1
B&K (basic) 2010 87.7 87.6 87.6 49.0 49.8 49.4 35.2 35.2 35.2 16.6 16.7 16.7
B&K (richer) 2011 89.5 89.4 89.5 52.8 58.0 55.3 35.9 44.7 39.8 16.5 20.7 18.4
Berkeley 90.0 90.3 90.2 47.4 51.1 49.2 31.1 35.0 33.0 14.2 16.4 15.3
Bikel-Collins 88.3 88.2 88.2 49.8 55.4 52.5 33.7 41.1 37.0 15.4 18.9 17.0
Charniak 89.7 89.9 89.8 52.8 57.0 54.8 35.7 40.0 37.7 16.3 18.4 17.3
Charniak (Rerank.) 91.2 91.8 91.5 56.8 60.0 58.4 38.7 42.1 40.4 17.8 19.4 18.6
Double-DOP 86.3 87.7 87.0 47.1 48.1 47.6 32.4 33.8 33.1 14.9 15.6 15.3
Stanford (Factored) 86.7 86.4 86.5 46.1 48.7 47.4 31.2 34.3 32.7 14.3 15.8 15.0
Stanford (PCFG) 85.0 86.1 85.5 43.1 44.6 43.8 29.1 29.6 29.3 13.4 13.5 13.4

Table 1: FREVAL results of the tested parsers on WSJ section 23 (all sentences), using various maximum fragment sizes.
B&K stands for Bansal&Klein. FLR and FLP were computed with uniform α weights. When fragment size is exactly 1
(single nodes), FLR and FLP become identical to PARSEVAL’s LR and LP scores.
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Figure 3: F1 measure (of LRs and LPs) for fragment sizes
6-13.

treebank productions, leading to CFG and fragment mod-
els with horizontal Markovization. Comparing the two
B&K versions (basic and SDP), the increase in FREVAL
F1 scores as larger fragment sizes are included confirms the
importance of category refinement; the same holds for the
head-lexicalization of categories, where some of the best
performing parsers are found (Charniak’s, Bikel-Collins);
and finally, we see that parsers using fragment models are
performing increasingly well along the size line, most no-
tably B&K (basic) already outperforms Berkeley parser
for fragment size 1-15, 1-25 and for all sizes, whereas
it is far less accurate than Berkeley according to PAR-
SEVAL. And surprisingly, for all fragment sizes, we find
that Double-DOP (a selected-fragments parser) performs as
well as Berkeley. The mix of head-lexicalization/category
refinement with all-fragment modeling B&K (SDP) pro-
vides for a parser that outperforms Charniak’s (without

reranking) for FREVAL values (1-15), (1-25) and all frag-
ments, despite performing slightly less accurately accord-
ing to PARSEVAL. Adding a fragment-based discrimina-
tive reranker on top of Charniak’s arrives at the overall best
results.

6. Conclusion
Where the original PARSEVAL measure only looks at
individual nodes when matching two trees, we present
FREVAL, which looks at all the situated fragments in those
trees. This causes a radically more fine-grained analy-
sis of the performance of existing parsers. By looking
at increasingly larger situated fragments, FREVAL indeed
shows what is inside the ‘evaluation gap’ between the orig-
inal Precision and Recall scores on the one hand and the
Complete Match score on the other. Furthermore, FREVAL
helps explore the impact of the different kinds of techniques
(CFG rules vs. all-fragments, and refined categories) at a
variety of treebank linguistic units.
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