
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 CoNLL, pages 149–157
Hong Kong, November 3, 2019. c©2019 Association for Computational Linguistics

https://doi.org/10.18653/v1/K19-2014

149

SUDA–Alibaba at MRP 2019: Graph-Based Models with BERT

Yue Zhang1, Wei Jiang2, Qingrong Xia2, Junjie Cao1, Rui Wang1, Zhenghua Li2∗, Min Zhang2

1 Alibaba Group, China
2 School of Computer Science and Technology, Soochow University, China
{shiyu.zy, junjie.junjiecao, masi.wr}@alibaba-inc.com
wjiang0501@stu.suda.edu.cn, kirosummer.nlp@gmail.com

{zhli13, minzhang}@suda.edu.cn

Abstract

In this paper, we describe our participat-
ing systems in the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2019 Conference for Compu-
tational Language Learning (CoNLL). The
task includes five frameworks for graph-based
meaning representations, i.e., DM, PSD, EDS,
UCCA, and AMR. One common characteristic
of our systems is that we employ graph-based
methods instead of transition-based methods
when predicting edges between nodes. For
SDP, we jointly perform edge prediction,
frame tagging, and POS tagging via multi-task
learning (MTL). For UCCA, we also jointly
model a constituent tree parsing and a remote
edge recovery task. For both EDS and AMR,
we produce nodes first and edges second in
a pipeline fashion. External resources like
BERT are found helpful for all frameworks
except AMR. Our final submission ranks the
third on the overall MRP evaluation metric, the
first on EDS and the second on UCCA.

1 Introduction

Cross-Framework Meaning Representation Pars-
ing (MRP) at CoNLL 2019 contains five differ-
ent graph-based semantic representations, includ-
ing DM, PSD, EDS, UCCA and AMR. The shared
task releases training and testing data for all five
frameworks. For different frameworks, organiz-
ers design different evaluation criteria and pro-
vide standard evaluation scripts. Details about the
five semantic formalisms and evaluation criteria
are given in the MRP shared task homepage1 and
the overview paper (Oepen et al., 2019). In the
following, we give a brief introduction of each
framework and followed by our corresponding ap-
proaches.

∗Corresponding author
1http://mrp.nlpl.eu/index.php?page=1

Semantic Dependency Parsing (SDP) aims to
parse the predicate-argument relationships for all
words in the input sentence, leading to bilexical
semantic dependency graphs (Oepen et al., 2014,
2015, 2016). This shared task focuses on two dif-
ferent formal types of SDP representations, i.e.,
DELPH-IN MRS Bi-Lexical Dependencies (abbr.
as DM, Ivanova et al., 2012) and Prague Semantic
Dependencies (abbr. as PSD, Hajič et al., 2012;
Miyao et al., 2014). They are both classified as
Flavor 0 representations in the sense that every
node in the graph must anchor to one and only
one token unit, and vice verse. Compared with
syntactic dependency trees, some nodes in an SDP
graph may have no incoming edges and some may
have multiple ones. Borrowing the idea of Dozat
and Manning (2018), we encode the input word se-
quence with BiLSTMs and predict the edges and
labels between words with two MLPs. We also
predict the POS tag and frame of each word jointly
under the MTL framework.

Universal Conceptual Cognitive Annotation
(UCCA) is a multi-layer linguistic framework
(Flavor 1) firstly proposed by Abend and Rap-
poport (2013). In UCCA graphs, input words are
leaf (or terminal) nodes. One non-terminal node
governs one or more nodes, which may be discon-
tinuous; and one node can have multiple governing
(parent) nodes through multiple edges, consisting
of a single primary edge and other remote edges.
Relationships between nodes are given by edge
labels. The primary edges form a tree structure,
whereas the remote edges introduce reentrancy,
forming directed acyclic graphs (DAGs).2 We
directly adopt the previous graph-based UCCA
parser proposed by Jiang et al. (2019), treating
UCCA graph parsing as constituent parsing and
remote edge recovery under the MTL framework.

2The full UCCA scheme also has implicit nodes and link-
age relations, which are excluded in the shared task.

http://mrp.nlpl.eu/index.php?page=1


150

Elementary Dependency Structure (EDS) is a
graph-structured semantic representation formal-
ism (Flavor 1) proposed by Oepen and Lønning
(2006). Buys and Blunsom (2017) introduce a
neural encoder-decoder transition-based model to
obtain the EDS graph. They use external knowl-
edge to generate nodes3. Chen et al. (2018) intro-
duce a novel SHRG (Synchronous Hyperedge Re-
placement Grammar) extraction algorithm which
requires a syntactic tree and alignments between
conceptual edges and surface strings. Such align-
ment information is not provided in the shared
task and seems difficult for us to induce due to
time limitation. Therefore, we divide the EDS task
into two-stage task: node prediction and edge pre-
diction, and treat both as sequence labeling. To
tackle with the explicit, many-to-many relation-
ship between nodes and sub-strings of the underly-
ing sentence (via anchoring), we introduce a sim-
ilar method used in dependency SRL (semantic
role labeling) to produce nodes. For the edge pre-
diction, the widely-used Biaffine model is used.

Abstract meaning representation (AMR), pro-
posed by Banarescu et al. (2013), is a broad-
coverage sentence-level semantic formalism (Fla-
vor 2) to encode the meaning of natural language
sentences. AMR can be regarded as a rooted
labeled directed acyclic graph. Nodes in AMR
graphs represent concepts, and labeled directed
edges are relations between the concepts. Due to
the time limitation and the complexity of the AMR
parsing problem, we directly employ the state-
of-the-art parser of Lyu and Titov (2018), which
treats AMR parsing as a graph prediction prob-
lem.

Methodology Summarization. Our participat-
ing systems can be characterized in the following
aspects:

• Graph-Based. All our methods for the five
frameworks belong to graph-based methods
in the sense that we directly predict edges
among nodes, instead of using a transition
system. In particular, the constituent parser
for UCCA is also graph-based.

• Joint Model. We simplify our architecture
and use less training steps by jointly model-
ing subtasks whenever it is possible. This is
achieved by sharing the encoder component

3Their knowledge sources ERG 1214 (http://svn.delph-
in.net/erg/tags/1214) are not in the white list of this shared
task.

under the MTL framework and it is adopted
by the DM, PSD, and UCCA models. For
both EDS and AMR, we first produce nodes
and then predict edges in a pipeline architec-
ture. We have not attempted to jointly solve
multiple semantic frameworks via MTL yet.

• BERT. We observe that using BERT as our
extra inputs is effective for all the models, ex-
cept AMR. It is also interesting that BERT-
large does not produce more improvements
over BERT-base based our preliminary exper-
iments.

Our final submission ranks the third on the over-
all evaluation metric, the first on EDS and the sec-
ond on UCCA. In the following, We introduce our
methods in detail in Section 2, and present the ex-
perimental results in Section 3, and finally con-
clude our paper in Section 4.

2 Methods

2.1 SDP

We construct our SDP parser based on the ideas of
Dozat and Manning (2017) and Dozat and Man-
ning (2018). Note that lemmas, POS tags and
frames are also included in the MRP evaluation
metrics, so our method is a bit different from
Dozat and Manning (2018).

Edge Prediction. Our basic edge prediction
model is similar to the Dozat and Manning (2017)
and Dozat and Manning (2018). The input words
are first mapped into a dense vector composed by
pretrained word embeddings and character-level
features.

xi = ewordi ⊕ echari

where echari is extracted by the bidirectional
character-level LSTM (Lample et al., 2016). They
are then fed into a multilayer bidirectional word-
level LSTM to get contextualized representations.
Finally, two modules are applied to predict edges.
One is to predict whether or not a directed edge
exists between two words (keeping the edges be-
tween pairs of words with positive scores); and the
other is to predict the most probable label for each
potential edge (choosing the label with maximum
score). Each of them has two seperate MLPs for
head and dependent representations and a biaffine
layer for scoring. The training loss is the sum of
sigmoid cross-entropy loss for edges and softmax



151

xi... ...

Shared BiLSTMs

MLPs & Biaffines MLP

Edge Prediction POS Tagging

MLP

Frame Tagging

Figure 1: The framework of our SDP Parser.

cross-entropy loss for labels.

`
′
= `label + `edge

Lexical Taggers. This SDP task is more dif-
ficult than the ealier 2014 and 2015 SDP tasks
(Oepen et al., 2014, 2015), since the gold tok-
enization result, lemmas, and POS tags are not
available in the parser input data and the predic-
tions are parts of the MRP evaluation metrics. We
use automatic tokenization result and lemmas pro-
vided by the datasets; while for POS and frames,
we train the taggers with the edge predicter si-
multaneously under the multi-task learning frame-
work. Figure 1 shows the framework of our SDP
parser. The final training loss is :

`sdp = `
′
+ `frame + `pos

where `frame and `pos are both softmax cross-
entropy losses.

2.2 UCCA
We directly follow Jiang et al. (2019)’s graph-
based UCCA parser. The key idea is to convert a
UCCA semantic graph into a constituent tree, and
mark remote edges and discontinuous nodes with
extra labels for later recovery.

Graph-to-tree Conversion. In the new version
of UCCA, one non-terminal node is allowed to
point to another by more than one primary edges,
e.g., the word “singer” represents a “process” and
a “participant” in a semantic scene at the same
time (Figure 2 shows the example). Therefore,
we keep only one of the edges and concatenate all
their tags in the alphabetical order. During the re-
covery step, the edge with a mixed label is splitted
according to the label’s length.

Then for the edges that point to the same node,
we delete all remote edges and concatenate an ex-
tra “remote” to the label of the only primary edge.

Figure 2: An example of newest version of UCCA.

To handle discontinuous node, we trace bottom-
up from a discontinuous leaf node until we find
the specific node whose parent is the lowest com-
mon ancestor (LCA) of the discontinuous node
and leaf node. Finally we move the edge to make
the specific node become the child of the discon-
tinuous, with “-ancestor” added behind the edge
label. Please refer to Jiang et al. (2019) for more
conversion details.

Constituent Parsing. We directly adopt the
minimal span-based parser of Stern et al. (2017).
Given an input sentence X = {x0, x1, · · · , xn},
each word xi is mapped into a dense vector xi and
fed into bidirectional LSTM layers. The top-layer
output of each position are used to represent the
span as

ri,j = (fj − fi)⊕ (bi − bj)

where fi and bi are the output vectors of the top-
layer forward and backward LSTMs. The span
representations are then fed into MLPs to com-
pute the scores of span splitting and labeling. Fi-
nally, a parse tree is derived by a greedy top-down
searching. In particular, We start from the span
of the whole sentence, assigning it the label with
maximum score and choosing the best split point
where the sum of two sub-spans’ splitting scores
are maximum. Then we repeat this process for
the left and right sub-spans until the span can no
longer be split.

Remote Edge Recovery. To recover remote
edges, two seperate MLPs and biaffine operations
are applied on remote nodes and other candidate
parent nodes representations. They share the same
inputs and LSTM encoder with the constituent
parser under the MTL framework. The parsing
loss and the cross-entropy losses of all remote and
non-terminal node pairs are added in the MTL
framework.



152

2.3 EDS

This subsection describes our models on EDS
task, which are simple but effective. Since many
external resources cannot be used to generate
nodes in EDS graph in this shared task, we con-
vert the main task into two sequence labeling sub-
tasks: node prediction and edge prediction.

Node prediction. For each input sentence
X = {x0, x1, · · · , xn}, our model needs to pre-
dict nodes in EDS graph N = {n0, n1, · · · , nm}.
For each node, it contains such information: id,
anchors, labels, properties and values. Taking
one node as example, anchors mean the span in-
dicators of characters in the input sentence, like
“< a, b >”. It means this node strides across the
sub string from character index a to b in the in-
put sentence string. We can convert anchors from
character index provided by the data to word in-
dex4.

From the definition of EDS graph, there is
a many-to-many relationship between words and
nodes. Lots of nodes stride across more than one
word of the underlying sentence according to their
anchors. To simplify the alignment between words
and nodes, we divide nodes in graphs into two
types due to their characteristic.

The first type is those nodes whose labels be-
gin with “ ” or properties are not null, e.g.,
“ fund n 1”. We call them the original node,
labels of which usually consist of three parts:
lemma, coarse part-of-speech(POS) tag and sense
according to the role the word plays in the sen-
tence. The second type is the append node, e.g.,
“udf q”. Those nodes do not contain explicit sen-
tence text and many of them stride across several
words, which makes us difficult to obtain their an-
chors.

We align the nodes to input words, so that we
predict labels and anchors based on the input word
sequence:

For original nodes , we use the lemma of each
word provided by organizers and we take POS
tag and sense as a joint label and predict them
with sequence labeling, like the POS tagger. To
generate training data, based on our statistics and
analysis, we tag words in the following ways:
1) in most cases, original nodes are aligned to

4Index conversion makes us align nodes to words in the
input sentence, so that we can simplify our task. And due to
the evaluation standard of this shared task, we do not consider
punctuation and we can take punctuation as common words
if the task needs.

Pension Reserves : Holdings by pension funds .

n 1 n 1 v id n 1 p n 1 n 1 O

compound compound

udf q udf q
udf q udf q

udf q

Figure 3: An example for node prediction in the EDS
graph. We use nodes with different color shadows to
represent different kinds of EDS nodes. Nodes with
yellow shadows under the input sentence are original
nodes. The number of original nodes is equal to the
length of sentence. Nodes with pink shadows above
the sentence are non-terminal append nodes and purple
nodes below the sentence are leaf nodes. In the ex-
ample sentence, there are two non-terminal nodes and
five leaf nodes. Nodes over across several words means
their anchors.

words one by one and these words are tagged with
their “POS sense”5; 2) for those compound nodes
striding across several words (e.g., “ such+as p”
means it combines “such” and “as” two words),
we tag the first word with the true label and other
words tagged with “A”; and 3) we tag the input
words disappearing in EDS graph with “O”. Note
that, when one word participates in different orig-
inal nodes, we will concatenate all labels of one
word together with separator “:”.

For append node , we divide it into two types,
leaf nodes and non-terminal nodes6. The differ-
ence between leaf nodes and non-terminal nodes
is that whether they are pointed by other nodes.
Both leaf nodes and non-terminal nodes may over-
lap several words and one input word may partic-
ipate in different append nodes as Figure3 shows.
Therefore, we take a similar way like the predic-
tion of SRL predicate and argument7. We firstly
predict the begin index of each append node, like
predicate identification in the SRL task, and then,
we predict their end index and their labels, like ar-
gument prediction. Given the beginning, we tag
the end words of nodes with their labels and con-
catenate labels with separator “:” if more than one
node have same anchors. This allows us to solve

5Sometimes, the label only contains POS information.
6We take this division originally for edge prediction and

task simplification. In EDS graph, leaf nodes should partici-
pate in only one edge, but our edge prediction model achieves
great performance on all nodes, so we do not distinguish them
in the edge prediction.

7We did not apply the same sequence labeling method for
the original node, since it is difficult to recover when contin-
uous words participate in more than nodes.



153

Detailed errors Modification
company abbreviation, like Corp., Co., Inc corporation, company and inc
address forms, like Mr., Mrs., Dr. corresponding full name
numbers in English Arabic numerals
country name abbreviation delete “.” in string
some symbol like “%”, “#”, “$”, “&” and “:” English String

Table 1: Effective post-processing for labels and values in EDS node.

Figure 4: Architecture of our multi-layers self-
attention-based model. The dotted box on the right is
the detailed composition of the self-attention block.

the problem of the overlap and multi-participation
of the append nodes elegantly.

We apply a multi-head self-attention model
(Tan et al., 2018) for our node prediction, which
has been proved effective in SRL task. Details
about the attention model please refer to Tan et al.
(2018) and Vaswani et al. (2017). For original
nodes and beginning of append nodes prediction,
the input consists of embeddings of words and
POS-tags provided by organizers; while for end of
append nodes prediction, the input contains em-
bedding of the beginning indicator in addition.
Then we use simple softmax function to get the
index or labels whose scores are the highest.

Edge prediction. Compared with the node
prediction, the edge prediction model is more
straightforward, which builds links between nodes
and generates the final EDS graph.

Labels in edges are used to tag the relation be-
tween two nodes, like “ARG1”, “BV”. If there
is no edges between two nodes, we use the rela-
tion “O”. Note that, we add one pseudo node like
the ”ROOT” node in the dependency parsing, so
that we can get the top node of the graph (which is
pointed by the ”ROOT” node).

For the edge prediction model, a multi-layered
BiLSTM is firstly used to encode the original in-
put sentence, so that we get the representation of
each word. Then we represent each node accord-
ing to its anchors (begin index and end index) as
formula in 2.2 shows, so that each node contains
information of all words in the anchors. Lastly, we
compute the score of each candidate edge relation
between two nodes by the biaffine mechanism, and
get label whose score is the highest.

Post-processing. We convert our predicted re-
sults into nodes according to the predicted begin
index and the predicted label (including the end
index and corresponding label). We sort them by
the anchors of nodes to get the id of each node in
the EDS graph. We index these nodes in the as-
cending order by the begin index of anchors and
then in the descending order by the end of the an-
chors.

We analysis the results of our splitted develop-
ment data, and correct some common lemma er-
rors by a post-processing script (Table 1).

For senses, we fix some errors according to the
ERG knowledge provided by the organizers. ERG,
a external knowledge provided by the shared task,
contains all legal sense for each lemma and POS
tag. Given a joint string of lemma and POS tag,
we judge whether our predicted sense is legal, and
for the illegal sense, we use the first one in ERG to
replace it.

For compound words containing “-”, we find
that most of them should split into several parts,
but limited by our model, we cannot get their
lemma, POS tag and sense. Therefore, we use one
split word and the predicted POS tag and sense to
replace the originally predicted one after we verify
sense legality8.

8In dev data, we find that, such split does not work well,
but we think, without the replacement, the node is unlikely to
be correct.



154

2.4 AMR
Abstract meaning representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism to
encode the meaning of natural language sentences,
which is a broad-coverage sentence-level semantic
representation. AMR can be regarded as a rooted
labeled directed acyclic graph. We directly follow
Lyu and Titov (2018)’s joint modeling of align-
ments, concepts and relations. In the following,
we describe the details of our AMR parser and
the modifications we make due to the constrains
of the white list of MRP. In general, the training
process employs a probability model composed of
concept identification, relation identification and
alignment, while the testing process only consists
of the former two.

Notations. Given a sentence s = w1, w2, ..., wn,
where n is the sentence length. Its concepts are
defined as c = (c1, c2, ..., cm), where m is the
number of concepts. A relation between ci and
cj is denoted as rij ∈ R, where R is the set of
all relations. If there is no relation between ci
and cj , we give them a NULL label. We employ
a = a1, a2, ..., am to denote the concepts, where
ai ∈ 1, 2, ..., n is the index of a word aligned to
ci. We use hk(k ∈ 1, 2, ..., l) to denote the hidden
states of BiLSTM encoders of our model compo-
nents, where l is the number of the BiLSTM lay-
ers.

Concept Identification Model. The concept
identification model chooses a concept c condi-
tioned on the aligned word k based on the BiL-
STM state hk, which is defined as Pθ(c|hk, wk).
For more details about the re-categorization and
candidate concept, please refer to Lyu and Titov
(2018).

Relation Identification Model. The relation
identification model is arc-factored as:

Pφ(R|a, c,w) =
m∏

i,j=1

P (rij |hai , ci,haj , cj)

(1)
The model employs a log-linear module with bi-
linear scorer to compute the probabilities of ci and
cj .

Alignment Model. The alignment model is
only used in training, and thus it only depends
on the BiLSTM hidden states h1,h2, ...,hn and
the concept list c1, c2, ..., cm. Given the concepts
list c, the alignment model encodes c with a BiL-
STM encoder, which defines the state of ci as gi,
i ∈ 1, 2, ..., n. A globally-normalized alignment

model is used, which is defined as Qψ(a|c,R,w),
and the score of the alignment ai is also computed
via a bilinear scorer.

Pre-processing and Post-processing. Since
the text format of MRP AMR is different from
the original AMR, we need to convert the MRP
AMR text to original AMR text, which is same as
the input file of the parser (Lyu and Titov, 2018).
We utilize Illinois Named Entity Tagger9 (NER)
to generate the NER labels for the AMR data; and
we use the Part-of-Speech (PoS) tags and lemmas
provided by MRP. After the parser generating the
test data output, we convert the AMR form to the
MRP form. For details about the pre-processing
and post-processing, please refer to the original
paper Lyu and Titov (2018) as well.

3 Experiments

This section describes model parameters used in
our models, and the overall results of all the five
tasks.

3.1 Model Parameters
In both SDP and UCCA tasks, we use 100-
dimensional GloVe (Pennington et al., 2014) as
pretrained embedding and random initialized 50-
dimensional char embedding. The char lstm out-
put is 100-dimensional. We also utilize the BERT
embeddings extracted from the last four trans-
former layers. The final BERT representation is
their normalized weighted sum, which is concate-
nated with the word embeddings. The other pa-
rameters are the same with the previous works
(Dozat and Manning, 2018; Jiang et al., 2019).

In EDS task, external resources we use are: 1)
word embeddings pre-trained with GloVe (Pen-
nington et al., 2014) on the Gigaword corpus for
Chinese; and 2) BERT 10 (Devlin et al., 2018),
recently proposed effective deep contextualized
word representation. We split the provided train-
ing data into train/dev/test data, and both dev and
test data contain 2500 examples respectively. We
evaluate our model on the split data, and before
submitting the final result, we train our model on
all the data and predict the provided test data as
our submission.

In AMR task, we randomly choose the samples
of the training data according to the proportion of

9https://cogcomp.org/page/software_
view/NETagger

10We generate our pre-trained BERT embedding with the
released model in https://github.com/google-research/bert.

https://cogcomp.org/page/software_view/NETagger
https://cogcomp.org/page/software_view/NETagger


155

DM PSD UCCA EDS AMR
P R F1 P R F1 P R F1 P R F1 P R F1

Node prediction
labels 89 90 89.26 83 85 83.80 # # # 91 91 91.20 82 81 81.53
properties 90 91 90.65 83 85 84.43 # # # 89 91 89.72 77 73 74.96
anchors # # # # # # 96 94 95.02 95 95 94.86 # # #

Edge prediction
top 91 91 91.01 96 79 86.49 100 100 99.56 90 90 89.94 63 63 62.86
edges 88 90 88.69 74 75 74.41 70 65 67.74 90 90 89.66 64 60 61.78
attributes # # # # # # 54 33 40.80 # # # # # #

Overall
all 90 92 91.26 84 86 84.81 81 76 78.43 92 92 91.85 73 70 71.72

Table 2: Experiment results on the provided test data from the shared task. We divide different evaluation criteria
into two types: node-related and edge related, which agrees with our task division.

each domain, and compose them as the develop-
ment data, which contain 2993 samples. We have
also attempted to integrate BERT representations
into the basic model input, but it did not bring
significant improvements. For the model param-
eters, we directly use the default settings of Lyu
and Titov (2018).

3.2 Experiment Results

Our experiment results on the provided test data
are shown in Table 2.

SDP. We randomly selected 20% sentences as
our development set and the rest as our training
set. After tuning on the development set, we train
the parser on the whole dataset from scratch and
early stop at the best epoch on the development
data. The MRP F1 scores of our DM and PSD
deveplopment data are 93.37 and 87.89, respec-
tively. After utilizing BERT embeddings, the re-
sults rise to 94.06 and 88.79 respectively. As the
improvements are not very significant, we will ex-
plore better ways of integrating BERT in the fu-
ture. We achieve 91.26 and 84.81 F1 scores on
PSD and SDP test data regarding to the MRP eval-
uation metrics, which rank the eighth and the ninth
respectively.

UCCA. The training strategy is the same as
SDP. The MRP F1 scores on our deveplopment
data are 79.80 and 73.41, w/o BERT respectively.
Unlike SDP, the result is significantly improved af-
ter using BERT embeddings. This is consistent
with Jiang et al. (2019). We achieve 78.43 F1
score on the test set which ranks the second.

EDS. For nodes prediction, our models cannot
assign the labels well compared to the anchors as
shown in Table 2, and properties are even worse.
This trend is consistent with our model design and
the evaluation strategy, since they predict anchors

first and the labels second. Another important rea-
son is that provided lemmas of the words are not
always correct for EDS task.

For edge prediction, on our split test/dev data,
edge model can achieve much better performance
based on the gold nodes than predicted nodes, up
to ca. 98%. Based on such high performance, we
have not considered constraints like leaf node can-
not be pointed by other nodes. Edge prediction
performance in Table 2 is not optimal mainlly due
to the error propagation from node prediction.

External knowledge including BERT and pre-
trained word embedding are effective; and post-
processing listed in can achieve about 1% im-
provement on our split dev/test data. Another
interesting observation during our experiments is
that the complete match score is much higher
than the normal dependency parsing (ca. 75% vs.
30%), although the corresponding LAS can be as
high as ca. 92%.

Finally, we obtain 91.85 F1 score on the test
data, ranks the first.

AMR. We choose the best model that tuned on
the development data to generate AMR graphs for
the test data, which achieves 69.9 F1 smatch score
on development data. Table 2 shows the results of
the AMR test data regarding to the MRP evalua-
tion metrics. We achieve 71.72 F1 score on the
test data and it ranks the fifth.

Our overall result on all five tasks ranks third,
and our results ranks first on EDS and second on
UCCA.

4 Conclusions and Future Work

We participate in the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at CoNLL-2019. The shared task com-
bines five frameworks for graph-based meaning



156

representation, including DM, PSD, EDS, UCCA,
and AMR. Considering the common character-
istics of the five semantic formalisms, we treat
them as two-stage processing using graph-based
methods: node prediction (no need for DM and
PSD) and edge prediction. For different graphs,
we generate nodes and edges in a joint way or in a
pipeline way. BERT is also employed to boost the
performance (except AMR). Our system ranked
the third on the overall evaluation metrics, the first
on EDS and the second on UCCA. For the future
work, we plan to jointly handle multiple semantic
frameworks (e.g., DM, PSD, and UCCA) at the
same time via MTL, in order to facilitate mutual
benefits and interactions, and make better use
of the non-overlapping training data. Moreover,
model ensemble may also further enhance the
performance.

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proc. of
ACL, pages 228–238.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1215–1226, Vancouver, Canada. Association
for Computational Linguistics.

Yufei Chen, Weiwei Sun, and Xiaojun Wan. 2018. Ac-
curate SHRG-based semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 408–418, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of ICLR.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers).

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr
Sgall, Ondřej Bojar, Silvie Cinková, Eva Fučı́ková,
Marie Mikulová, Petr Pajas, Jan Popelka, Jiřı́ Se-
mecký, Jana Šindlerová, Jan Štěpánek, Josef Toman,
Zdeňka Urešová, and Zdeněk Žabokrtský. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In Proceedings of the Eight International
Conference on Language Resources and Evaluation
(LREC’12).

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom?
a contrastive study of syntacto-semantic dependen-
cies. In Proceedings of the Sixth Linguistic Annota-
tion Workshop.

Wei Jiang, Zhenghua Li, Yu Zhang, and Min Zhang.
2019. Hlt@suda at semeval-2019 task 1: Ucca
graph parsing as constituent tree parsing. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation, pages 11–15.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Chunchuan Lyu and Ivan Titov. 2018. Amr parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 397–407.

Yusuke Miyao, Stephan Oepen, and Daniel Zeman.
2014. In-house: An ensemble of pre-existing off-
the-shelf parsers. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014).

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
Urešová. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings of
the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Nat-
ural Language Learning, pages 1 – 27, Hong Kong,
China.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger,
Jan Hajic, Angelina Ivanova, and Zdenka Uresova.
2016. Towards comparability of linguistic graph
banks for semantic parsing. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajič, and Zdeňka Urešová. 2015. SemEval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015).

https://doi.org/10.18653/v1/P18-1038
https://doi.org/10.18653/v1/P18-1038
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805


157

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014).

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceedings
of the Fifth International Conference on Language
Resources and Evaluation (LREC’06), Genoa,
Italy. European Language Resources Association
(ELRA).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proc. of ACL, pages 818–827.

Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen,
and Xiaodong Shi. 2018. Deep semantic role label-
ing with self-attention. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

http://www.lrec-conf.org/proceedings/lrec2006/pdf/364_pdf.pdf

