Amazon at MRP 2019: Parsing Meaning Representations with Lexical
and Phrasal Anchoring

Jie Cao'; Yi Zhang', Adel Youssef*, Vivek Srikumar'
TSchool of Computing, University of Utah
tAWS AI, Amazon
{jcao, svivek}@cs.utah.edu, {yizhngn, adel}QRamazon.com

Abstract

This paper describes the system submission
of our team Amazon to the shared task on
Cross Framework Meaning Representation
Parsing (MRP) at the 2019 Conference for
Computational Language Learning (CoNLL).
Via extensive analysis of implicit alignments
in AMR, we recategorize five meaning rep-
resentations (MRs) into two classes: Lexical-
Anchoring and Phrasal-Anchoring. Then we
propose a unified graph-based parsing frame-
work for the lexical-anchoring MRs, and a
phrase-structure parsing for one of the phrasal-
anchoring MRs, UCCA. Our system submis-
sion ranked 1st in the AMR subtask, and
later improvements shows promising results
on other frameworks as well.

1 Introduction

The design and implementation of broad-coverage
and linguistically motivated meaning representa-
tion frameworks for natural language is attracting
growing attention in recent years. With the ad-
vent of deep neural network-based machine learn-
ing techniques, we have made significant progress
to automatically parse sentences intro structured
meaning representation (Oepen et al., 2014, 2015;
May, 2016; Hershcovich et al., 2019). More-
over, the differences between various representa-
tion frameworks has a significant impact on the
design and performance of the parsing systems.
Due to the abstract nature of semantics, there
is a diverse set of meaning representation frame-
works in the literature (Abend and Rappoport,
2017). In some application scenario, tasks-specific
formal representations such as database queries
and arithmetic formula have also been proposed.
However, primarily the study in computational se-
mantics focuses on frameworks that are theoreti-
cally grounded on formal semantic theories, and

*Work done when Jie Cao was an intern at AWS Al

sometimes also with assumptions on underlying
syntactic structures.

Anchoring is crucial in graph-based meaning
representation parsing. Training a statistical parser
typically starts with a conjectured alignment be-
tween tokens/spans and the semantic graph nodes
to help to factorize the supervision of graph struc-
ture into nodes and edges. In our paper, with
evidence from previous research on AMR align-
ments (Pourdamghani et al., 2014; Flanigan et al.,
2014; Wang and Xue, 2017; Chen and Palmer,
2017; Szubert et al., 2018; Lyu and Titov, 2018),
we propose a uniform handling of three meaning
representations from Flavor-0 (DM, PSD) and
Flavor-2 (AMR) into a new group referred to
as the lexical-anchoring MRs. It supports both
explicit and implicit anchoring of semantic con-
cepts to tokens. The other two meaning represen-
tations from Flavor—1 (EDS, UCCA) is referred
to the group of phrasal-anchoring MRs where the
semantic concepts are anchored to phrases as well.

To support the simplified taxonomy, we named
our parser as LAPA (Lexical-Anchoring and
Phrasal-Anchoring)'. We proposed a graph-based
parsing framework with a latent-alignment mech-
anism to support both explicit and implicit lexi-
con anchoring. According to official evaluation
results, our submission for this group ranked 1st
in the AMR subtask, 6th on PSD, and 7th on
DM respectively, among 16 participating teams.
For phrasal-anchoring, we proposed a CKY-based
constituent tree parsing algorithm to resolve the
anchor in UCCA, and our post-evaluation submis-
sion ranked 5th on UCCA subtask.

2 Anchoring in Meaning Representation

The 2019 Conference on Computational Lan-
guage Learning (CoNLL) hosted a shared task on

'The code is available online at https:/github.com/
utahnlp/lapa-mrp

138

Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 CoNLL, pages 138-148
Hong Kong, November 3, 2019. (©2019 Association for Computational Linguistics
https://doi.org/10.18653/v1/K19-2013

https://github.com/utahnlp/lapa-mrp
https://github.com/utahnlp/lapa-mrp

Cross-Framework Meaning Representation Pars-
ing (MRP 2019, Oepen et al., 2019), which en-
courage participants in building a parser for five
different meaning representations in three dis-
tinct flavors. Flavor-0 includes the DELPH-
IN MRS Bi-lexical Dependencies (DM, Ivanova
et al,, 2012) and Prague Semantic Dependen-
cies (PSD, Hajic et al., 2012; Miyao et al., 2014).
Both frameworks under this representation have a
syntactic backbone that is (either natively or by-
proxy) based on bi-lexical dependency structures.
As a result, the semantic concepts in these mean-
ing representations can be anchored to the individ-
ual lexical units of the sentence. Flavor-1 in-
cludes Elementary Dependency Structures (EDS,
Oepen and Lgnning, 2006) and Universal Con-
ceptual Cognitive Annotation framework (UCCA,
Abend and Rappoport, 2013), which shows an ex-
plicit, many-to-many anchoring of semantic con-
cepts onto sub-strings of the underlying sentence.
Finally, Flavor-2 includes Abstract Meaning
Representation (AMR, Banarescu et al., 2013),
which is designed to abstract the meaning rep-
resentation away from its surface token. But it
leaves open the question of how these are de-
rived. Previous studies have shown that the nodes
in AMR graphs are predominantly aligned with
the surface lexical units, although explicit anchor-
ing is absent from the AMR representation. In this
section, we review the related work supporting the
claim of the implicit anchoring in AMR is actu-
ally lexical-anchoring, which can be merged into
Flavor-0 when we consider the parsing meth-
ods on it.

2.1 Implicit Anchoring in AMR

AMR tries to abstract the meaning representation
away from the surface token. The absense of ex-
plicit anchoring can present difficulties for pars-
ing. In this section, by extensive analysis on pre-
vious work AMR alignments, we show that AMR
nodes can be implicitly aligned to the leixical to-
kens in a sentence.

AMR-to-String Alignments A straightforward
solution to find the missing anchoring in an AMR
Graph is to align it with a sentence; We denote it
as AMR-to-String alignment.

ISI alignments (Pourdamghani et al., 2014)
first linearizes the AMR graph into a se-
quence, and then use IBM word alignment
model (Brown et al., 1993) to align the lin-

139

earized sequence of concepts and relations with
tokens in the sentence. According to the AMR
annotation guidelines and error analysis of ISI
aligner, some of the nodes or relations are
evoked by subwords, e.g., the whole graph frag-
ment (p/possible-01 :polarity -) is
evoked by word “impossible”, where the sub-
word "im—-" actually evoked the relation polar-
ity and concept "-"; On the other side, some-
times concepts are evoked by multiple words, e.g.,
named entities, (c/city :name (n/name
:opl "New":0p2 "York")), which also
happens in explict anchoring of DM and PSD.
Hence, aligning and parsing with recategorized
graph fragments are a natural solution in aligners
and parsers. JAMR aligner (Flanigan et al., 2014)
uses a set of rules to greedily align single tokens,
special entities and a set of multiple word expres-
sion to AMR graph fragments, which is widely
used in previous AMR parsers (e.g. Flanigan et al.,
2014; Wang et al., 2015; Artzi et al., 2015; Pust
etal., 2015; Peng et al., 2015; Konstas et al., 2017;
Wang and Xue, 2017).

Other AMR-to-String Alignments exists, such
as the extended HMM-based aligner. To consider
more structure info in the linearized AMR con-
cepts, Wang and Xue (2017) proposed a Hidden
Markov Model (HMM)-based alignment method
with a novel graph distance. All of them re-
port over 90% F-score on their own hand-aligned
datasets, which shows that AMR-to-String align-
ments are almost token-level anchoring.

AMR-to-Dependency Alignments Chen and
Palmer (2017) first tries to align an AMR graph
with a syntactic dependency tree. Szubert et al.
(2018) conducted further analysis on dependency
tree and AMR interface. It showed 97% of AMR
edges can be evoked by words or the syntactic de-
pendency edges between words. Those nodes in
the dependency graph are anchored to each lexical
token in the original sentence. Hence, this obser-
vation indirectly shows that AMR nodes can be
aligned to the lexical tokens in the sentence.

Both AMR-to-String and AMR-to-dependency
alignments shows that AMR nodes, including re-
categorized AMR graph fragements, do have im-
plicit lexical anchoring. Based on this, Lyu and
Titov (2018) propose to treat token-node align-
ments as discrete and exclusive alignment matrix
and learn the latent alignment jointly with parsing.
Recently, attention-based seq2graph model also

_almost_a_1
(23:29)

ARG1

_impossible_a_for
(30:40

IARG1

IARG1

_similar_a_to _apply_v_to udef_qg _
(2:9) (44:49) (53:100)
ARG2

other_a_1
(53:58)
ARG1 ARG1

ARG1 ARG3 BV

_technique_n_1
10:19)

BV

_crop_n_1
(59:65)

_such+as_p udef_q
{66:73> (74:100)

ARG2 BV
udef_q implicit_conj udef_g
(74:81) (82:100) (82:100)
BV
_cotton_n_1 udef_q
(74:81) (82:90)
BV

-INDEX R-INDEX BV
_soybean_n_unknown

_and_c udef_q
(91:94) (95:100)
(82:90

-INDEX R-INDEX [BV

_rice_n_1
(95:100)

Figure 1: Phrasal-anchoring in EDS[wsj#0209013], for the sentence "2 similar technique is almost

impossible to apply to other crops,

such as cotton,

Bold

soybeans and rice.".

nodes are similar to the non-terminal nodes in UCCA, which are anchored multiple tokens, thus overlapping with

the anchors of other nodes.

achieved the state-of-the-art accuracy on AMR
parsing (Zhang et al., 2019). However, whether
the attention weights can be explained as AMR
alignments needs more investigation in future.

2.2 Taxonomy of Anchroing

Given the above analysis on implicit alignments in
AMR, in this section, we further discuss the taxon-
omy of anchoring of the five meaning representa-
tions in this shared task.

Lexical-Anchoring According to the bi-lexical
dependency structures of DM and PSD, and im-
plicit lexical token anchoring on AMR, the nodes/-
categorized graph fragments of DM, PSD, and
AMR are anchored to surface lexical units in an
explicit or implict way. Especially, those lexical
units do not overlap with each other, and most of
them are just single tokens, multiple word expres-
sion, or named entities. In other words, when pars-
ing a sentence into DM, PSD, AMR graphs, tokens
in the original sentence can be merged by look-
ing up a lexicon dict when preprocessing and then
may be considered as a single token for aligning
or parsing.

Phrasal-Anchoring However, different from
the lexical anchoring without overlapping, nodes

140

in EDS and UCCA may align to larger overlapped
word spans which involves syntactic or semantic
pharsal structure. Nodes in UCCA do not have
node labels or node properties, but all the nodes
are anchored to the spans of the underlying sen-
tence. Furthermore, the nodes in UCCA are linked
into a hierarchical structure, with edges going be-
tween parent and child nodes. With certain ex-
ceptions (e.g. remote edges), the majority of the
UCCA graphs are tree-like structures. Accord-
ing to the position as well as the anchoring style,
nodes in UCCA can be classified into the follow-
ing two types:

1. Terminal nodes are the leaf semantic con-
cepts anchored to individual lexical units in the
sentence

2. Non-terminal nodes are usually anchored
to a span with more than one lexical units, thus
usually overlapped with the anchoring of terminal
nodes.

The similar classification of anchoring nodes
also applies to the nodes in EDS, although they do
not regularly form a recursive tree like UCCA. As
the running example in Figure 1, most of the nodes
belongs to terminal nodes, which can be explicitly
anchored to a single token in the original sentence.
However, those bold non-teriminal nodes are an-

chored to a large span of words. For example,
the node "undef_g" with span <53:100> is
aligned to the whole substring starting from “other
crops” to the end; The abstract node with label
imp_conj are corresponding to the whole coordi-
nate structure between soybeans and rice

In summary, by treating AMR as an implicitly
lexically anchored MR, we propose a simplified
taxonomy for parsing the five meaning representa-
tion in this shared task.

e Lexical-anchoring: DM, PSD, AMR
e Phrasal-anchoring: EDS, UCCA

3 Model

For the two groups of meaning representations de-
fined in Section 2, in this section, we propose two
parsing framework: a graph-based parsing frame-
work with latent alignment for lexically anchored
MRs, and a minimal span-based CKY parser for
one of the phrasally anchored MRs, UCCA .2

3.1 Graph-based Parsing Framework with
Latent Alignment

Before formulating the graph-based model into a
probabilistic model as Equation 1, we denote some
notations: C, R are sets of concepts (nodes) and
relations (edges) in the graph, and w is a sequence
of tokens. a € Z™ as the alignment matrix, each
a; is the index of aligned token where ith node
aligned to. When modeling the negative log like-
lihood loss (NLL), with independence assumption
between each node and edge, we decompose it into
node- and edge-identification pipelines.

NLL(P(C,R | w))
= —log(P(C,R | w))
= —log(>_P(a)P(C,R| w,a))

= —log <Z P(a)P(R | w,a,c)P(c]| w,a))

= —log (ZP(CL)HP(Ci | haz‘)

%

m
. H P(TZ] | haiaciahajvcj)
i,7=1

)

2After the CKY parser gets the related phrasal spans,
graph-based parser can also be used to predict the relations
between nodes.

141

In DM, PSD, and AMR, every token will only
be aligned once. Hence, we train a joint model
to maximize the above probability for both node
identification P(c; | hg,) and edge identification
P(rij | ha;ciha, ;) and we need to marginalize
out the discrete alignment variable a.

3.1.1 Alignment Model

The above model can support both explicit align-
ments for DM, PSD, and implicit alignments for
AMR.

Explicit Alignments For DM, PSD, with ex-
plicit alignments ax, we can use P(a*) = 1.0 and
other alignments P(ala # a*) = 0.0

Implicit Alignments For AMR, without gold
alignments, one requires to compute all the valid
alignments and then condition the node- and edge-
identification methods on the alignments.

log(P(C,R | w)) >
Egllog(Py(c | w,a)Ps(R | w,a,c))]
— Dkr(Qu(a | ¢, R,w) || P(a))

However, it is computationally intractable to enu-
merate all alignments. We estimate posterior
alignments model () as Equation 3, please refer
to Lyu and Titov (2018) for more details.

2

e Applying variational inference to reduce it
into Evidence Lower Bound (ELBO, Kingma
and Welling, 2013)

The denominator Zy in Q can be estimated
by Perturb-and-Max(MAP) (Papandreou and
Yuille, 2011)

eXp(E?:l ¢(Qi7 hai))
Zy(c,w)

Qu(a|c,Ryw) =

3)
Where ¢(gi, hq,) score each alignment link
between node i and the corresponding words,
gi is node encoding, and h,, is encoding for
the aligned token.

Discrete argmax of a permutation can be es-
timated by Gumbel-Softmax Sinkhorn Net-
works (Mena et al., 2018; Lyu and Titov,
2018)

3.1.2 Node Identification

Node Identification predicts a concept c given a
word. A concept can be either NULL (when there
is no semantic node anchoring to that word, e.g.,

A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.

\
/

\
\

___ e papapy

Preprocessing

Tokenizing, Lemmatizing, MWE Labeling, NER Labeling

7
777 e i B
/ \

Lemma Classifier (with copy)
Identification
With
decomposed
label tuple

14
(NEG, possible, 02, N/A)
<possible-02 :polarity ->

<possible-02, apply-02>
Edge

Identification n*n Deep

Multiple Pass <apply-02, p ible-02 >

Biaffine i Biaffine

Attention[1] <emplify-02, possible-02> ogn
Classifier

<possible-02, emplify-02>

Root Encoder with MLP(with anchoring word)

Root
Identification

ReR"”

MCSG(greedy)
Connectivity

Category Classifier (with cup\x)

|

(frame, apply, 02, N/A)
<apply-02>

Two Separate Encoders for Head and Dep Node(with bi-lexicon) Encoding

\

POS Clas\sjﬁer Sense Classifier
v

|

(mwe, exemplify, 02, N/A)
. <exemplify-02> i
@.mm

|polarity - |

/ARG1 \mod (domain)

=)

r
E e Rn*n*r

apply-02
Ancr \arc2
techniaue crop

e
[ARGL)-of

od (domain) \ (ARG1)-of

From root node, greedily select edges until all nodes are connected, force connecting some wrongly predicted NULL edge

.

IARGO

Figure 2: Architecture of graph-based model and inference, for running exmaple [wsj#0209013]

the word is dropped), or a node label (e.g., lemma,
sense, POS, name value in AMR, frame value in
PSD), or other node properties. One challenge in
node identification is the data sparsity issue. Many
of the labels are from open sets derived from the
input token, e.g., its lemma. Moreover, some la-
bels are constrained by a deterministic label set
given the word. Hence, we designed a copy mech-
anism (Luong et al., 2014) in our neural network
architecture to decide whether to copying deter-
ministic label given a word or estimate a classifi-
cation probability from a fixed label set.

3.1.3 Edge Identification

By assuming the independence of each edge,
we model the edges probabilites independently.
Given two nodes and their underlying tokens, we
predict the edge label as the semantic relation be-
tween the two concepts with a bi-affine classi-
fier (Dozat and Manning, 2016).

3.1.4 Inference

In our two-stage graph-based parsing, after nodes
are identified, edge identification only output a
probility distribution over all the relations between
identified nodes. However, we need to an infer-
ence algorithm to search for the maximum span-
ning connected graph from all the relations. We
use Flanigan et al. (MSCG, 2014) to greedily se-
lect the most valuable edges from the identified
nodes and their relations connecting them. As
shown in Figure 2, an input sentence goes through
preprocessing, node identification, edge identifica-
tion, root identification, and MCSG to generate a

142

final connected graph as structured output.

3.2 Minimal Span-based CKY Parsing
Framework

Let us now see our phrasal-anchoring parser for
UCCA. We introduce the transformation we used
to reduce UCCA parsing into a consituent parsing
task, and finally introduce the detailed CK'Y model
for the constituent parsing.

3.2.1 Graph-to-CT Transformation

We propose to transform a graph into a constituent
tree structure for parsing, which is also used in
recent work (Jiang et al., 2019). Figure 3 shows
an example of transforming a UCCA graph into
a constituent tree. The primary transformation as-
signs the original label of an edge to its child node.
Then to make it compatible with parsers for stan-
dard PennTree Bank format, we add some aux-
iliary nodes such as special non-terminal nodes,
TOP, HEAD, and special terminal nodes TOKEN
and MWE. We remove all the “remote” annotation
in UCCA since the constituent tree structure does
not support reentrance. A fully compatible trans-
formation should support both graph-to-tree and
tree-to-graph transformation.

In our case, due to time constraints, we remove
those remote edges and reentrance edges during
training. Besides that, we also noticed that for
multi-word expressions, the children of a parent
node might not be in a continuous span (i.e., dis-
continuous constituent), which is also not sup-
ported by our constituent tree parser. Hence, when
training the tree parser, by reattaching the dis-

continuous tokens to its nearest continuous parent
nodes, we force every sub span are continuous in
the transformed trees. We leave the postprocessing
to recover those discontinuous as future work.

For inference, given an input sentence, we first
use the trained constituent tree parsing model to
parse it into a tree, and then we transform a tree
back into a directed graph by assigning the edge
label as its child’s node label, and deleting those
auxiliary labels, adding anchors to every remain-
ing node.

similar ~ technique

(TOP

(HEAD

(A

(:F (TOKA))
(:E (:S (TOK similar)))
(:C (TOK technique)))
(TOK is))
(:E almost) (:C impossible))
(TOK to))
(TOK apply))
(:R (TOK to))
(:E (TOK other))
(:C (TOK crops))
(:U (TOK),))
(:C (TOK soybeans))
(:N (TOK and))
(:C (TOK rice))
(TOK)

>oTmom

)

Figure 3: UCCA to Constituent Tree Transformation
for [wsj#0209013]

3.2.2 CKY Parsing and Span Encoding

After transforming the UCCA graph into a con-
stituent tree, we reduce the UCCA parsing into a
constituent tree parsing problem. Similar to the
previous work on UCCA constituent tree pars-
ing (Jiang et al., 2019), we use a minimal span-
based CKY parser for constituent tree parsing.
The intuition is to use dynamic programming to
recursively split the span of a sentence recursively,
as shown in Figure 3. The entire sentence can be
splitted from top to bottom until each span is a sin-
gle unsplittable tokens. For each node, we also
need to assign a label. Two simplified assumptions
are made when predicting the hole tree given a
sentence. However, different with previous work,

143

we use 8-layers with 8 heads transformer encoder,
which shows better performance than LSTM in
Kitaev and Klein (2018).

Tree Factorization In the graph-to-tree trans-
formation, we move the edge label to its child
node. By assuming the labels for each node are
independent, we factorize the tree structure predic-
tion as independent span-label prediction as Equa-
tion 4. However, this assumption does not hold for
UCCA. Please see more error analysis in §4.4

T* = argmaxs(T)
T

> 840

s(T) “)

CKY Parsing By assuming the label prediction
is independent of the splitting point, we can further
factorize the whole tree as the following dynamic
programming in Equation 5.

Sbest(,1 +1) = maxs(i,i + 1,1)
SbeSt(i’j) = mlaxs(i,j, l)

+ m,?x[sbest(i, k) + spest(k,)]
(5)

Span Encoding For each span (i, j), we repre-
sent the span encoding vector v(; j) = [y; — ¥i] ©
[Yj+1—yit+1]. @ denotes vector concatenation. As-
suming a bidirectional sentence encoder, we use
the forward and backward encodings ¥; and ¢;
of iy, word. Following the previous work, and
we also use the loss augmented inference training.
More details about the network architecture are in
the Section 4.2

3.3 Summary of Implementation

We summarize our implementation for five mean-
ing representations as Table 1. As we men-
tioned in the previous sections, we use latent-
alignment graph-based parsing for lexical an-
choring MRs (DM, PSD, AMR), and use CKY-
based constituent parsing phrasal anchoring in
MRs (UCCA, EDS). This section gives informa-
tion about various decision for our models.

Top The first row “Top” shows the numbers of
root nodes in the graph. We can see that for PSD,
11.56% of graphs with more than 1 top nodes. In
our system, we only predict one top node with a
N (N is size of identified nodes) way classifier, and

Lexicon Anchoring Phrase Anchoring
DM PSD AMR EDS UCCA

Top 1 > 1(11.56%) 1 1 1
Node Label Lemma Lemma(*) Lemma(*) + NeType(143+) | lemma(*)_semi_sense ~ N/A
Node Properties ' POS ' POS constant values ' N/A

semi(160%*)_args(25) wordid_sense(25) polarity, Named entity carg: constant value N/A
Edge Label (45) 1) (94+) (45) (15)
Edge Properties N/A N/A N/A N/A “remote”
Connectivity True True True True True
Training Data 35656 35656 57885 35656 6485
Test Data 3269 3269 1998 3269 1131

Table 1: Detailed classifiers in our model, round bracket

means the number of ouput classes of our classify, *

means copy mechanism is used in our classifier. At the end of shared task, EDS are not fully supported to get an

official results, we leave it as our future work.

then fix this with a post-processing strategy. When
our model predicts one node as the top node, and if
we find additional coordination nodes with it, we
add the coordination node also as the top node.

Node Except for UCCA, all other four MRs
have labeled nodes, the row “Node Label” shows
the templates of a node label. For DM and PSD,
the node label is usually the lemma of its under-
lying token. But the lemma is neither the same as
one in the given companion data nor the predicted
by Stanford Lemma Annotators. One common
challenge for predicting the node labels is the open
label set problem. Usually, the lemma is one of the
morphology derivations of the original word. But
the derivation rule is not easy to create manually.
In our experiment, we found that handcrafted rules
for lemma prediction only works worse than clas-
sification with copy mechanism, except for DM.

For AMR and EDS, there are other components
in the node labels beyond the lemma. Especially,
the node label for AMR also contains more than
143 fine-grained named entity types; for EDS, it
uses the full SEM-I entry as its node label, which
requires extra classifiers for predicting the corre-
sponding sense. In addition to the node label, the
properties of the label also need to be predicted.
Among them, node properties of DM are from
the SEMI sense and arguments handler, while for
PSD, senses are constrained the senses in the pre-
defined the vallex lexicon.

Edge Edge predication is another challenge in
our task because of its large label set (from 45
to 94) as shown in row “Edge Label”, the round
bracket means the number of output classes of
our classifiers. For Lexical anchoring MRs, edges
are usually connected between two tokens, while

144

phrasal anchoring needs extra effort to figure out
the corresponding span with that node. For exam-
ple, in UCCA parsing, To predict edge labels, we
first predicted the node spans, and then node labels
based that span, and finally we transform back the
node label into edge label.

Connectivity Beside the local label classifica-
tion for nodes and edges, there are other global
structure constraints for all five MRs: All the
nodes and edges should eventually form a con-
nected graph. For lexical anchoring, we use
MSCG algorithm to find the maximum connected
graph greedily; For phrasal anchoring, we use dy-
namic programming to decoding the constituent
tree then deterministically transforming back to a
connected UCCA Graph 3

4 Experiments and Results

4.1 Dataset and Evaluation

For DM, PSD, EDS, we split the training set by
taking WSJ section (00-19) as training, and sec-
tion 20 as dev set. For other datasets, when devel-
oping and parameter tuning, we use splits with a
ratio of 25:1:1. In our submitted model, we did not
use multitask learning for training. Following the
unified MRP metrics in the shared tasks, we train
our model based on the development set and fi-
nally evaluate on the private test set. For more de-
tails of the metrics, please refer to the summariza-
tion of the MRP 2019 task (Oepen et al., 2019),

4.2 Model Setup

For lexical-anchoring model setup, our network
mainly consists of node and edge prediction

*Due to time constraint, we ignored all the discontinuous
span and remote edges in UCCA

model. For AMR, DM, and PSD, they all use
one layer Bi-directional LSTM for input sentence
encoder, and two layers Bi-directional LSTM for
head or dependent node encoder in the bi-affine
classifier. For every sentence encoder, it takes a
sequence of word embedding as input (We use 300
dimension Glove here), and then their output will
pass a softmax layer to predicting output distri-
bution. For the latent AMR model, to model the
posterior alignment, we use another Bi-LSTM for
node sequence encoding. For phrasal-anchoring
model setup, we follow the original model set up
in Kitaev and Klein (2018), and we use 8-layers 8-
headers transformer with position encoding to en-
code the input sentence.

For all sentence encoders, we also use the
character-level CNN model as character-level em-
bedding without any pre-trained deep contextual-
ized embedding model. Equipping our model with
Bert or multi-task learning is promising to get fur-
ther improvement. We leave this as our future
work.

Our models are trained with Adam (Kingma and
Ba, 2014), using a batch size 64 for a graph-based
model, and 250 for CKY-based model. Hyper-
parameters were tuned on the development set,
based on labeled F1 between two graphs. We ex-
ploit early-stopping to avoid over-fitting.

4.3 Results

At the time of official evaluation, we submit-
ted three lexical anchoring parser, and then we
submitted another phrasal-anchoring model for
UCCA parsing during post-evaluation stage, and
we leave EDS parsing as future work. The fol-
lowing sections are the official results and er-
ror breakdowns for lexical-anchoring and phrasal-
anchoring respectively.

Official Results on Lexical Anchoring Table 2
shows the official results for our lexical-anchoring
models on AMR, DM, PSD. By using our latent
alignment based AMR parser, our system ranked
top 1 in the AMR subtask, and outperformed the
top 5 models in large margin. Our parser on PSD
ranked 6, but only 0.02% worse then the top 5
model. However, official results on DM and PSD
shows that there is still around 2.5 points per-
formance gap between our model and the top 1
model.

Official Results on Phrasal Anchoring Table 3
shows that our span-based CKY model for UCCA

145

MR Ours (P/R/F1) Top 1/3/5 (F1)
AMR(1) 75/71/7338 73.38/71.97/71.72
PSD(6) 89/89/88.75 90.76/89.91/88.77
DM(7) 93/92/92.14 94.76/94.32/93.74

Table 2: Official results overview on unified MRP met-
ric, we selected the performance from top 1/3/5 sys-
tem(s) for comparison

can achieve 74.00 F1 score on official test set, and
ranked 5th. When adding ELMo (Peters et al.,
2018) into our model, it can further improve al-
most 3 points on it.

MR Ours (P/R/F1) Top 1/3/5 (F1)
UCCA(5) 80.83/73.42/76.94 81.67/77.80/73.22
EDS N/A 94.47/90.75/89.10

Table 3: Official results overview on unified MRP met-
ric, we selected the performance from top 1/3/5 sys-
tem(s) for comparison. It shows our UCCA model for
post-evluation can rank 5th

4.4 Error Breakdown

Table 4, 5, 6 and 7 shows the detailed error break-
down of AMR, DM, PSD and UCCA respectively.
Each column in the table shows the F1 score of
each subcomponent in a graph: top nodes, node
lables, node properties, node anchors, edge la-
bels, and overall F1 score. No anchors for AMR,
and no node label and propertis for UCCA. We
show the results of MRP metric on two datasets.
“all” denotes all the examples for that specific
MR, while Ipps are a set of 100 sentences from
The Little Prince,and annotatedin all five
meaning representations. To better understand the
performance, we also reported the official results
from two baseline models TUPA (Hershcovich
and Arviv, 2019) and ERG (Oepen and Flickinger,
2019).

data tops labels prop edges all
TUPA all 63.95 57.20 2231 36.41 44.73
single Ipps 71.96 55.52 26.42 36.38 47.04
TUPA all 61.30 39.80 27.70 27.35 33.75
multi Ipps 72.63 50.11 20.25 33.12 43.38
Ours(1) all 65.92 82.86 77.26 63.57 73.38
Ipps 72.00 78.71 58.93 63.96 71.11
Top 2 all 78.15 82.51 71.33 63.21 72.94
Ipps 83.00 76.24 51.79 60.43 69.03

Table 4: Our parser on AMR ranked 1st. This ta-
ble shows the error breakdown when comparing to the
baseline TUPA model and top 2 (Che et al., 2019) in
official results

data tops labels prop anchors edges all data tops anchors edge attr all

ERG all 91.83 98.22 95.25 98.82 90.76 95.65 TUPA single all 78.73 69.17 1696 15.18 27.56
Ipps 95.00 97.32 97.75 99.46 92.71 97.03) Ipps 86.03 76.26 28.32 24.00 40.06

Top 1 all 93.23 94.14 94.83 98.40 91.55 94.76 TUPA multi all 84.92 6574 12.99 9.07 23.65
Ipps 96.48 91.85 94.36 99.04 93.28 94.64 Ipps 88.89 77.76 26.45 18.32 41.04

Ours(7) all 70.95 93.96 92.13 97.25 86.45 92.14 (Che et al., 2019) all 1.00 9536 72.66 61.98 81.67
’ Ipps 84.00 90.55 9191 97.96 87.24 91.82 ” Ipps 1.00 96.99 73.08 48.37 82.61
Ours(*5) all 98.85 9492 60.17 0.00 74.00

Table 5: Our parser on DM ranked 7th. This ta- Ipps 96.00 96.75 60.20 0.00 75.17
ble shows the error breakdown when comparing to the Ours + ELMo all 99.38 95.7064.88 0.00 76.94
paring Ipps 98.00 96.84 66.63 0.00 78.77

model ranked Top 1 (Li et al., 2019) in official results

anchors
98.35
98.40
96.94
95.97

edges all
77.79 90.76
77.63 88.34
72.40 88.75
73.60 85.83

data tops labels prop
all 93.45 94.68 91.78
Ipps 93.33 91.73 84.37
Ours(6) all 82.01 94.18 91.28

Ipps 85.85 90.48 82.63

Top 1

Table 6: Our parser on PSD ranked 6th. This ta-
ble shows the error breakdown when comparing to the
model ranked top 1 (Donatelli et al., 2019) in official
results

4.4.1 Error Analysis on Lexical-Anchoring

As shown in Table 4, our AMR parser is good at
predicting node properties and consistently per-
form better than other models in all subcompo-
nent, except for top prediction. Node properties
in AMR are usually named entities, negation, and
some other quantity entities. In our system, we re-
categorize the graph fragements into a single node,
which helps for both alignments and structured in-
ference for those special graph fragments. We see
that all our 3 models perform almost as good as
the top 1 model of each subtask on node label pre-
diction, but they perform worse on top and edge
prediction. It indicates that our bi-affine relation
classifier are main bottleneck to improve. More-
over, we found the performance gap between node
labels and node anchors are almost consistent, it
indicates that improving our model on predicting
NULL nodes may further improve node label pre-
diction as well. Moreover, we believe that multi-
task learning and pre-trained deep models such as
BERT (Devlin et al., 2018) may also boost the per-
formance of our paser in future.

4.4.2 Error Analysis on Phrasal-Anchoring

According to Table 7, our model with ELMo
works slightly better than the top 1 model on an-
chors prediction. It means our model is good at
predicting the nodes in UCCA and we belive that
it is also helpful for prediction phrasal anchoring
nodes in EDS.

However, when predicting the edge and edge

146

Table 7: Our UCCA parser in post-evaluation ranked
5th according to the original official evaluation results.
This table shows the error breakdown when comparing
to the model ranked top 1 (Che et al., 2019) in official
results. * denotes the ranking of post-evaluation results

attributes, our model performs 7-8 points worse
than the top 1 model. In UCCA, an edge label
means the relation between a parent nodes and its
children. In our UCCA transformation, we as-
sign edge label as the node label of its child and
then predict with only child span encoding. Thus
it actually misses important information from the
parent node. Hence, in future, more improvement
can be done to use both child and parent span en-
coding for label prediction, or even using another
span-based bi-affine classifier for edge prediction,
or remote edge recovering.

5 Conclusion

In summary, by analyzing the AMR alignments,
we show that implicit AMR anchoring is actually
lexical-anchoring based. Thus we propose to re-
group five meaning representations as two groups:
lexical-anchoring and phrasal-anchoring. For lex-
ical anchoring, we suggest to parse DM, PSD, and
AMR in a unified latent-alignment based parsing
framework. Our submission ranked top 1 in AMR
sub-task, ranked 6th and 7th in PSD and DM tasks.
For phrasal anchoring, by reducing UCCA graph
into a constituent tree-like structure, and then use
the span-based CKY parsing to parse their tree
structure, our method would rank 5th in the origi-
nal official evaluation results.

Acknowledgments

The authors wish to thank the anonymous review-
ers and members of the Amazon LEX team for
their valuable feedback.

References

Omri Abend and Ari Rappoport. 2013. Universal con-
ceptual cognitive annotation (ucca). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228-238.

Omri Abend and Ari Rappoport. 2017. The state of the
art in semantic representation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
77-89.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage CCG Semantic Parsing with AMR.
EMNLP.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. LAW@ACL.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics, 19(2):263-311.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at
MRP 2019: A unified pipeline for meaning repre-
sentation parsing via efficient training and effective
encoding. In Proceedings of the Shared Task on
Cross-Framework Meaning Representation Parsing
at the 2019 Conference on Natural Language Learn-
ing, pages 76 — 85, Hong Kong, China.

Wei-Te Chen and Martha Palmer. 2017. Unsupervised
amr-dependency parse alignment. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, volume 1, pages 558-567.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Lucia Donatelli, Meaghan Fowlie, Jonas Groschwitz,
Alexander Koller, Matthias Lindemann, Mario
Mina, and Pia Weienhorn. 2019. Saarland at
MRP 2019: Compositional parsing across all graph-
banks. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 66 —75, Hong Kong, China.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. ICLR.

Jeffrey Flanigan, Sam Thomson, Jaime G Carbonell,
Chris Dyer, and Noah A Smith. 2014. A Discrimi-
native Graph-Based Parser for the Abstract Meaning
Representation. ACL.

147

Jan Hajic, Eva Hajicov4, Jarmila Panevova, Petr Sgall,
Ondrej Bojar, Silvie Cinkovd, Eva Fucikova, Marie
Mikulovd, Petr Pajas, Jan Popelka, et al. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In LREC, pages 3153-3160.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. SemEval-2019 task 1: Cross-lingual
semantic parsing with UCCA. In Proceedings
of the 13th International Workshop on Semantic
Evaluation, pages 1-10, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

Daniel Hershcovich and Ofir Arviv. 2019. TUPA at
MRP 2019: A multi-task baseline system. In Pro-
ceedings of the Shared Task on Cross-Framework
Meaning Representation Parsing at the 2019 Con-
ference on Natural Language Learning, pages 28 —
39, Hong Kong, China.

Angelina Ivanova, Stephan Oepen, Lilja @vrelid, and
Dan Flickinger. 2012. Who did what to whom?:
A contrastive study of syntacto-semantic dependen-
cies. In Proceedings of the sixth linguistic annota-
tion workshop, pages 2—11. Association for Compu-
tational Linguistics.

Wei Jiang, Yu Zhang, Zhenghua Li, and Min Zhang.
2019. HIt@ suda at semeval 2019 task 1: Ucca
graph parsing as constituent tree parsing. arXiv
preprint arXiv:1903.04153.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. ICLR.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. arXiv preprint
arXiv:1805.01052.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-Sequence Models for Parsing and Gen-
eration.

Zuchao Li, Hai Zhao, Zhuosheng Zhang, Rui Wang,
Masao Utiyama, and Eiichiro Sumita. 2019. SJTU-
NICT at MRP 2019: Multi-task learning for end-to-
end uniform semantic graph parsing. In Proceed-
ings of the Shared Task on Cross-Framework Mean-
ing Representation Parsing at the 2019 Conference
on Natural Language Learning, pages 45 — 54, Hong
Kong, China.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2014. Addressing
the rare word problem in neural machine translation.
IJCNLP.

Chunchuan Lyu and Ivan Titov. 2018. Amr parsing as
graph prediction with latent alignment. ACL.

https://doi.org/10.18653/v1/S19-2001
https://doi.org/10.18653/v1/S19-2001
http://arxiv.org/abs/1704.08381
http://arxiv.org/abs/1704.08381
http://arxiv.org/abs/1704.08381

J May. 2016. SemEval-2016 Task 8: Meaning Repre-
sentation Parsing. In Proceedings of SemEval, pages
1063-1073, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Gonzalo Mena, David Belanger, Scott Linderman, and
Jasper Snoek. 2018. Learning latent permutations
with gumbel-sinkhorn networks. arXiv preprint
arXiv:1802.08665.

Yusuke Miyao, Stephan Oepen, and Daniel Zeman.
2014. In-house: An ensemble of pre-existing off-
the-shelf parsers. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval

2014), pages 335-340.

Stephan Oepen, Omri Abend, Jan Haji¢, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zderika
UreSovd. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings of
the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Nat-
ural Language Learning, pages 1—27, Hong Kong,
China.

Stephan Oepen and Dan Flickinger. 2019. The ERG at
MRP 2019: Radically compositional semantic de-
pendencies. In Proceedings of the Shared Task on
Cross-Framework Meaning Representation Parsing
at the 2019 Conference on Natural Language Learn-
ing, pages 40 —44, Hong Kong, China.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkovd, Dan Flickinger,
Jan Haji¢, and Zdenka UreSova. 2015. SemEval
2015 Task 18. Broad-coverage semantic depen-
dency parsing. In Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation, page 915 —
926, Bolder, CO, USA.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Haji¢, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 Task
8. Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation, page 63 —72, Dublin, Ireland.

Stephan Oepen and Jan Tore Lgnning. 2006.
Discriminant-based mrs banking. In LREC,
pages 1250-1255.

George Papandreou and Alan Yuille. 2011. Perturb-
and-map random fields: Using discrete optimization
to learn and sample from energy models—iccv 2011
paper supplementary material—.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A Synchronous Hyperedge Replacement
Grammar based approach for AMR parsing. In Pro-
ceedings of the Nineteenth Conference on Compu-
tational Natural Language Learning, pages 3241,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

148

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English Strings with
Abstract Meaning Representation Graphs. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 425-429, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Using Syntax-
Based Machine Translation to Parse English into
Abstract Meaning Representation. arXiv.org.

Ida Szubert, Adam Lopez, and Nathan Schneider. 2018.
A structured syntax-semantics interface for english-
amr alignment. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1169-1180.

Chuan Wang and Nianwen Xue. 2017. Getting the
most out of amr parsing. In Proceedings of the
2017 conference on empirical methods in natural
language processing, pages 1257-1268.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015. Boosting Transition-based AMR Parsing with
Refined Actions and Auxiliary Analyzers. Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 1-6.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR Parsing as Sequence-to-
Graph Transduction. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Flo-
rence, Italy. Association for Computational Linguis-
tics.

http://arxiv.org/abs/1504.06665v2
http://arxiv.org/abs/1504.06665v2
http://arxiv.org/abs/1504.06665v2

