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Abstract

Answer selection aims at identifying the cor-
rect answer for a given question from a set of
potentially correct answers. Contrary to pre-
vious works, which typically focus on the se-
mantic similarity between a question and its
answer, our hypothesis is that question-answer
pairs are often in analogical relation to each
other. Using analogical inference as our use
case, we propose a framework and a neu-
ral network architecture for learning dedicated
sentence embeddings that preserve analogical
properties in the semantic space. We evaluate
the proposed method on benchmark datasets
for answer selection and demonstrate that our
sentence embeddings indeed capture analog-
ical properties better than conventional em-
beddings, and that analogy-based question an-
swering outperforms a comparable similarity-
based technique.

1 Introduction

Answer selection is the task of identifying the
correct answer to a question from a pool of can-
didate answers. The standard methodology is to
prefer answers that are semantically similar to the
question. Often, this similarity is strengthened
by bridging the lexical gap between the text pairs
via learned semantic embeddings for words and
sentences. The main drawback of this method
is that question-answer (QA) pairs are modeled
independently, and that the correspondence be-
tween different pairs is not considered in these
embeddings. In fact, these methods only focus on
the relationship that may exist between the entities
that constitutes the QA pair at hand and are thus,
limited to pairwise semantic structures.

Instead, we argue in this paper that questions
and their correct answers often form analogical
relations. For example, the question ”Who is the
president of the United States?” and its answer are

Figure 1: Illustration of analogy-based answer selec-
tion. Given a question and its candidate answers, each
pair is compared to a QA prototype pair. The candidate
answer with the highest score is assumed to be the
correct answer.

in the same relation to each other as the question
”Who is the current chancellor of Germany?”
and ”Angela Merkel”. Thus, for modelling these
relations, we need to look at quadruples of textual
items in the form of two question-answer pairs,
and want to reinforce that they are in the same
relation to each other.

We expect that using analogies to identify and
transfer positive relationships between QA pairs
will be a better approach for tackling the task
of answer selection than simply looking at the
similarity between individual questions and their
answers.

We use sentence embeddings as the mechanism
to assess the relationship between two sentences,
and aim to learn a latent representation in which
their analogical relation is explicitly enforced in
the latent space. Analogies are defined as rela-
tional similarities between two pairs of entities,
such that the relation that holds between the enti-
ties of the first pair, also holds for the second pair.
Loosely speaking, the quadruple of sentences is
in analogical proportion if the difference between
the first question and its answer is approximately
the same as the difference between the second
question and its answer.

This formulation is especially valuable because
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analogies allow to put on relation pairs that are not
directly or explicitly linked. Consequently, in the
vector space, analogous QA pairs will be oriented
in the same direction, whereas dissimilar pairs will
not correspond.

The remainder of the paper is organized as
follows: the next section will present related work
on answer selection, metric learning, as well as
laying down the foundations of analogical rea-
soning. In Section 3, we formally define analo-
gies, and introduce our approach for learning such
analogical embeddings. Finally, in Section 4, we
evaluate the learnt representations to demonstrate
that the found embeddings indeed respect the
sought analogies, and to illustrate the benefits of
analogies for the task of answer selection.

2 Related Work

Answer Selection. Answer selection is an im-
portant problem in natural language processing
that has drawn a lot of attention in the research
community (Lai et al., 2018). Given a ques-
tion and a set of candidate answers, the task
is to identify the correct answer(s) in this set.
This task can be formulated as a classification
or a ranking problem. Early works relied on
computing a matching score between a question
and its correct answer, and were characterized
by the heavy reliance on feature engineering for
representing the QA pairs. Representative works
include (Filice et al., 2016), which studies the
effects of various similarity, heuristic, and thread-
based features, or (Tymoshenko and Moschitti,
2015), which analyzes the effect of syntactic and
semantic features extracted by syntactic parser
for answer re-ranking. Recently, deep learning
methods have achieved excellent results in miti-
gating the difficulty of feature engineering. These
methods are used to learn latent representations
for questions and answers independently, and a
matching function is applied to give the score of
the two texts. The most representative works in
this line of work include (Wang and Nyberg, 2015;
Yin et al., 2016; Severyn and Moschitti, 2015; Tay
et al., 2017).

Embeddings and Metric Learning. Our work
is also related to representation learning usig deep
neural networks. In fact, learning the embeddings
of entities can be seen as a knowledge induction
process, as those induced latent representations
can be used to infer properties of unseen samples.

Although many studies confirmed that embed-
dings obtained from distributional similarity can
be useful in a variety of different tasks, (Levy
et al., 2015) showed that the semantic knowl-
edge encoded by general-purpose similarity em-
beddings is limited, and that enforcing the learnt
representations to distinguish functional similarity
from relatedness is beneficial. For this purpose,
many task-specific embeddings have been pro-
posed for a variety of tasks including (Riedel
et al., 2013) for binary relation extraction and
(FitzGerald et al., 2015) for semantic role labeling.
This work aims to preserve more far reaching
structures, namely analogies between pairs of en-
tities.

Analogical Reasoning. Analogical reasoning
has been an active research topic in classic arti-
ficial intelligence. It has been successfully used in
different domains such as classification (Bounhas
et al., 2014), clustering (Marx et al., 2002), dimen-
sionality reduction (Memisevic and Hinton, 2004),
or learning to rank (Fahandar and Hüllermeier,
2018). Gentner (1983) studies analogies with
respect to human cognition, defines an analogy as
a relational similarity over two pairs of entities,
and differentiates it from the more superficial
similarity defined by attributes. Since this general
definition of analogy requires high-level reasoning
which is not scalable to large-scale automated
prediction systems, Miclet et al. (2008) define the
concept of analogical dissimilarity between enti-
ties in the same semantic universe. The analogical
dissimilarity allows to perform direct inference for
unseen entities. Contrary to their direct inference
setting, we enforce the analogical constraints in
the learned embedding in the form of geometrical
constraints, by imposing the co-linearity of the
vector that maps the entities of each pair in the
analogical proportion. It is worth mentioning that
analogies have been found as the result of sev-
eral word embedding models—inter alia (Mikolov
et al., 2013; Pennington et al., 2014)—but those
are allegedly only empirical observations, which
we found to not carry over to our task.

3 Analogical Embeddings

In this section, we explain our approach towards
generating semantic embeddings that preserve
analogical proportions.
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3.1 Analogical Reasoning
In this section, we briefly introduce key concepts
in analogical reasoning, starting with analogical
proportions.

Definition 1 (Analogical Proportion) Let a, b, c,
d be four values from a domain X. The quadruple
(a, b, c, d) is said to be in analogical proportion
a : b :: c : d if a is related to b as c is related to d,
i.e.,R(a, b) ∼ R(c, d).
This comparative relation between two pairs of
entities can be expressed in many ways (Dubois
et al., 2016), but the most noteworthy are:

– Arithmetic proportion: (a− b) = (c− d)

– Geometric proportion:
min(ad, bc)

max(ad, bc)
In this work, we focus solely on the arithmetic
interpretation of analogy.

An intuitive way of viewing analogies is
through geometrical constraints in an Euclidean
space. Enforcing the relational similarity between
pairs of elements is equivalent to constraining the
four elements to form a parallelogram.

The left graph of Figure 2 illustrates such an
analogical parallelogram. As we can see, in
an analogical parallelogram, there is not only
a relation R holding between (a, b) and (c, d)
respectively, but there must also hold a similar
relationR′ between (a, c) and (b, d).

We can now make a first step towards our
problem, which is learning to identify correct an-
swers according using analogical inference. Given
the aforesaid quadruple, when one of the four
elements is unknown, an analogical proportion
becomes an analogical equation.

Definition 2 (Analogical Equation) An analogi-
cal equation has the form

a : b :: c : x (1)

(a) (b)

Figure 2: Analogical parallelograms in Rn. (a) shows
the case where (a − b) = (c − d). The geometrical
structure is a parallelogram. If (a − b) ∼ (c − d), the
resulting structure is a general quadrangle with almost
parallel sides (b).

where x represents an unknown element that is in
analogical proportion to a, b, c.

In our setting, an exact solution to an analogical
equation can often not be expected. Instead, we
aim at finding the element di, among n candidates,
where the analogical proportion is as closely satis-
fied as possible. For example, in the right graph of
Figure 2, neither d1 nor d2 are perfect solutions to
the analogical equation a : b :: c : x, but d1 seems
to be a better solution than d2.

In order to relax the equality constraint be-
tween the pairs of entities, and to generalize the
formulation of analogical proportions beyond the
Boolean case, Miclet et al. (2008) proposed to
measure the degree of an analogical proportion
using analogical dissimilarity.

Definition 3 (Analogical Dissimilarity) In a Eu-
clidean space, the degree of analogical dissimilar-
ity of a quadruple (a, b, c, d) is defined as

v(a, b, c, d) = ‖(a− b)− (c− d)‖ (2)

This equation represents the relation R as the
difference between the entities of the pair and ∼
as the difference between the previously the so
expressed relation pairs. Obviously, v(a, b, c, d) =
0 if (a, b, c, d) are in analogical proportion, and the
value increases the less similar (a− b) and (c−d)
are to each other.

This allows us to re-frame the original problem
of answer selection as a ranking problem, in which
the goal is to select the candidate answer d which
minimizes the degree of analogical dissimilarity:

d = argmin
i
v(a, b, c, di)i=1,...,N (3)

In the following sections, we will describe the
details of the model by motivating the architectural
choices.

3.2 Generating Quadruples
In this work, we consider QA pairs as relational
data. We aim to transfer knowledge from pairs
whose relation is well known, which we call pro-
totypes, to unseen pairs. For this, we train a model
to encode analogies in the latent representations
of the sentences. For creating a instances of
quadruples to train the model, we adapt state-of-
the-art datasets.

An analogy quadruple has the following form:

[qp : ap :: qi : aij ]
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”Where” questions
Sentence A ”Where was Abraham Lincoln born?”
Sentence B ”On February 12, 1809, Abraham Lincoln was born Hardin County, Kentucky”
Sentence C ”Where was Franz Kafka born?”
Sentence D ”Franz Kafka was born on July 3, 1883 in Prague, Bohemia, now the Czech Republic.”

”Who” questions
Sentence A ”Who made the rotary engine automobile?”
Sentence B ”Mazda continued work on developing the Wankel rotary engine.”
Sentence C ”Who discovered prions?”
Sentence D ”Prusiner won Nobel prize last year for discovering prions”

”When” questions
Sentence A ”When was Leonardo da Vinci born?”
Sentence B ”Leonardo da Vinci was actually born on 15 April 1452 [...] ”
Sentence C ”When did Mt St Helen last have significant eruption?”
Sentence D ”Pinatubo’s last eruption [...] as Mt St Helen’s did when it erupted in 1980.”

Table 1: Example of analogy between sentences. Sentence A and Sentence B constitutes the prototype QA
pair in the analogical quadruples Sentence C and Sentence D are the QA pair at hand.

where the qp and ap, respectively stand for the
question and the answer of the prototype pair,
whereas qi is the i-th question and aij is the j-th
candidate answer to qi.

Figure 3: Procedure to generate analogical quadruples.
The cells in red represent positive analogical quadru-
ples, composed of a prototype QA pair, a question and
its correct answer. In reverse, a negative quadruple
contains a QA prototype, a question and one of its
incorrect answer.

Given a set of questions and their relative candi-
dates answers, we construct the analogical quadru-
ples in two steps. First, we divide all the questions
into three different subsets of wh-word questions:
”Who”, ”When” and ”Where”. We focus on
these three types because their answer type fall in
distinct and easily identifiable categories:

• ”Where” corresponds to an answer of type
”Location”

• ”Who” corresponds to an answer of type
”Person”

• ”When” corresponds to an answer of type

”Date” or ”Time”

Table 1 illustrates examples of quadruples for
the three described categories. From these cate-
gories, we extract a variable number of QA pairs
in order to form the prototype set. To generate
positive quadruples, we select a prototype from
one of the above-mentioned subsets and we asso-
ciate a question from the same set and the correct
answer among its candidates. This procedure
provides a large number of analogical quadru-
ples. On the other hand, to generate negative
training samples we use the following approach:
in the same subset, we associate a prototype, a
question and a randomly selected wrong answer
among its candidates. This is done in order to
purposely break the analogical relation between a
prototype QA pair and the QA pair at hand. This
approach will generate a set of hard examples to
help improve the training. Figure 3 illustrates the
procedure.

To summarise, ranking by analogical dissimi-
larity is performed in three steps:

1. Given a prototype QA pair, a question and N
candidate answers, N quadruples are gener-
ated.

2. The analogical dissimilarity score is com-
puted for each quadruple.

3. The N candidates are consequently ranked
by the analogical dissimilarity score.

The next section closely describe the architectural
choices of the model.
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3.3 Quadruple Siamese Network

Figure 4: BiGRU with max pooling.

We recall that our focus is on learning an em-
bedding function that pushes analogous QA pairs
with similar mappings to be mutually close by
enforcing a geometrical constraint in the vector
space. This constraint states that the vector shift
that maps the entities of the first pair should be
similar to the vector shift of the second pair,
according to the degree of analogical dissimilarity
that holds between the two pairs (a, b), (c, d).

To tackle this problem, we propose a Siamese
network architecture as shown in Figure 5. In the
next paragraphs, we describe the notation used and
the details of each component of the model.

Notation. Let Q and A be the space of all
questions and candidate answers. We denote a
quadruple of sentences as (a, b, c, d), where a, c ∈
Q and b, d ∈ A. Quadruples are assigned a
label y = 1 if the analogical proportion holds,
and 0 otherwise. θ denotes the parameters to
be learnt that map the relation from a to b, and
c to d respectively. Let x· refer to the latent
representation of one sentence in the quadruple.

Architecture. The Siamese network takes as
input four sentences. The sub-networks in the
Siamese model share the parameters and learn the
vector representations for every sentence received
as input. A sentence Si = wi1, ...wik where
wij represents the jth word in the sentence Si,
∀i ∈ 1 ≤ i ≤ n and ∀j ∈ 1 ≤ j ≤ k. Words
are mapped into word embeddings xij = Ewij ,
where Ed,|V | is a matrix of vectors of size d, and
V is the vocabulary. Out-of-vocabulary words are
initialized by a random vector. We use bidirec-
tional gated recurrent units (GRUs) (Cho et al.,
2014) over the input sentence. For a sentence of

T words, the network encodes T hidden states
h1, ..., hT such that:

−→
ht =

−−−→
GRU t(w1, ..., wT )

←−
ht =

←−−−
GRU t(w1, ..., wT )

ht = [
−→
ht ,
←−
ht ]

In order to obtain a fixed-size vector, we select
the maximum value over each dimension of ht
using max pooling. After this step, we obtain
four vectors of dimension d, one for each input
sentence of the quadruple.

Training Strategy. The next step is to get the
semantic relation between the pairs of input sen-
tences. Given a pair a vectors, (xi, xj), the
arithmetic proportion expects the difference of the
vectors to encode the relational similarity between
the entities that constitutes the pair. We let the
network predict four d-dimensional embedding
vectors, which we merge through a pairwise sub-
traction. Let fW (·) be the projection of an input
sentence in the embedding space computed by the
network function fW . Furthermore, let

fab = fW (a)− fW (b) (4)

fcd = fW (c)− fW (d) (5)

be the pairwise differences between the em-
bedding vectors. In order to separate instances
of analogical proportion, similar pairs need to be
mapped mutually close to each other, whereas
dissimilar instances should be pushed apart.

For the energy of the model, we use the cosine
similarity between the vector shifts of each pair of
the quadruple:

EW (fab, fcd) =
fab · fcd
‖fab‖‖fcd‖

(6)

We argue that this is an appropriate energy func-
tion since the goal is for the pairs of parallel vec-
tors to be parallel which maximises the analogical
parallelogram likelihood.

We propose to use the contrastive loss (Hadsell
et al., 2006) to perform the metric learning. This
loss function has two terms, one for the similar
and and another dissimilar samples. The similar
instances are denoted by a label y = 1 whereas the
dissimilar pairs are represented by y = 0. Thus,
the loss function has the following form:

LW = y L+(fab, fcd)+ (1−y)L−(fab, fcd) (7)
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Figure 5: Siamese architecture.

Each term is expressed by:

L+(fab, fcd) = (1− EW )2 (8)

L−(fab, fcd) = max((EW −m)2, 0) (9)

This loss function measures how well the model
learns to encode similar transformations such that
analogous pairs are mutually close and form an
analogical parallelogram in the embedding space,
while pushing dissimilar transformations apart.
Given a question and a pool of candidate answers,
the goal is to rank the correct answer in the first
position, based on how well each sentence com-
pletes the analogical equation according to (6).

This architecture is summarized in Figure 5.
We learn all the parameters of the model through
a gradient based method that minimizes the L2-
regularized loss. Further details about the imple-
mentation are given in section 4.1.

4 Experiment

In this section, we present an evaluation of our
approach in two experiments: first, in Section 4.2,
we confirm that the found analogical embeddings
do indeed improve the analogical parallelogram
structure illustrated in Figure 2 over commonly
used word- and sentence-based embeddings. In
Section 4.3 we then show that this also results
in improved performance for question answering.
Before that, we start with a brief description of our
experimental setup.

4.1 Experimental Setup
We begin the assessment of our model with a
direct evaluation, which is ranking candidate an-
swers in the same setting as during the training of
the embedding. We generate quadruples with the
same prototypes used for the training and we look

for the correct answers by iteratively solving the
analogical equations. We compare our model to
commonly used sentence representations methods
to evaluate the proposed approach results with re-
spect to general purpose sentence embedding and
word embedding methods. In the next paragraphs
we present the experimental setup and the results
obtained.

Datasets. We validate the proposed method on
two datasets: WikiQA (Yang et al., 2015), an
open domain QA dataset with answers collected
over Wikipedia and TrecQA, which was created
from the TREC Question Answer Track. Both
resources are well established for benchmarking
answer selection. We split each dataset into three
subsets, which contain only ”who”, ”where” and
”when” questions. Table 2 reports the statistics of
the two datasets.

WikiQA TrecQA
type train dev test train dev test

”Who” 119 15 34 190 11 8
”When” 86 11 16 116 13 19
”Where” 71 17 22 96 9 11
Comb. 276 43 72 402 33 38

Table 2: Dataset by question type.

Evaluation metrics. We assess the performance
of our method by measuring the Mean Average
Precision (MAP) and the Mean Reciprocal Rank
(MRR) for the generated quadruples in the test set.
Given a set of questions Q, MRR is computed as
follows:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(10)
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where ranki represents the rank position of the
first correct candidate answer for the ith question.
In other words, MRR is the average of the recipro-
cal ranks of results for the questions in set Q.

MAP is calculated as follows:

MAP =
1

|Q|

|Q|∑
j=1

1

mj

|mj |∑
k=1

Precision(πjk) (11)

where qj ∈ Q is a question whose candidate
answers are a1, ..., amj and πjk is the rank as-
sociated with those candidate answers. While
MRR measures the rank of any correct answer,
MAP computes the rank of all correct answers.
Generally, MRR is higher than MAP on the same
set of ranked objects.

Implementation details. We initiate the embed-
ding layer with FastText vectors. These weights
are not updated during training. The dimension
of the output of the sentence encoder is 300. For
alleviating overfitting we apply a dropout rate of
0.5. The model is trained with Adam optimizer
with a learning rate of 0.001 and a weight decay
rate of 0.01.

4.2 Quality of Analogical Embedding

Baselines. To support our claim that the learnt
representations of our model encode the semantic
of question answer pairs better than pre-trained
sentence representation models, we choose four
baselines commonly used to encode sentences:

1. Word2Vec and Glove (Mikolov et al., 2013;
Pennington et al., 2014): We use the simple
approach of averaging the word vectors for
all words in a sentence. This method has the
drawback of ignoring the order of the words
of the sentence, but has shown to perform
reasonably well.

2. InferSent (Conneau et al., 2017): Sentence
embeddings obtained from training on Nat-
ural Language Inference dataset.

3. Sent2Vec (Pagliardini et al., 2017): A method
to learn sentence embeddings such that the
average of all words and n-grams can serve
as sentence vector.

For each document in test set, we generate
analogical quadruples as explained in section 3.2.
Given a question qi in the test set with k candidate

answers, we obtain p × k possible quadruples,
where p is the cardinality of the prototype set. The
network encodes each sentence in the quadruple
and computes the cosine similarity (6) between the
obtained vector shifts.

Not every prototype QA pair will fit to the QA
pair at hand, so we compute p × m scores, and
choose only the prototype that leads to the highest
analogical score for each document and discard
the other comparisons. One might think about
using the average of the scores and sorting the
candidate answers accordingly, but this strategy
introduces noise in the analogical inference pro-
cedure.

Results. We applied the described procedure to
vectors obtained from our network as well as from
the baseline representation methods. The results
are shown in Table 3.

In order to better perceive the analogical prop-
erties of the baselines and the proposed approach,
we also include a random baseline in the com-
parison. We observe that averaging word em-
beddings such as Glove or Word2Vec performs
better than the dedicated sentence representations
in the WikiQA dataset. This might be due to the
fact that word embeddings have shown to encode
some analogical properties. On the other hand,
sentence embeddings have been trained with a par-
ticular learning objective, for example, InferSent
has been train for the task of claim entailment
with a classification objective and might not be
suitable for representing relations between pairs
of sentences. Nevertheless, ranking by the cosine
similarity of the difference vectors do not lead to
acceptable performances. This confirms our hy-
pothesis that pre-trained sentence representation
do not preserve analogical properties.

Similarly, we measure the influence of the
number of prototypes on the performances.

Model
WikiQA

MAP MRR

W.E
Glove 0.464 0.475

Word2Vec 0.4329 0.453

S.E
InferSent 0.399 0.404
Sent2Vec 0.481 0.486

This work 0.6771 0.6841

Table 3: Evaluation on quadruples. W.E. indicates av-
eraging over word embeddings approach. S.E indicates
dedicated sentence embeddings.
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Figure 6: MAP for different number of prototypes.

Figure 7: MRR for different number of prototypes.

We vary the number of prototypes pair p ∈
{10, 20, 30, 40, 50} and measure the MAP and the
MRR for both datasets. The results are shown in
Figures 6 and 7. We can observe that the best
performances are obtained for p = 30 and that
after both MAP and MRR decrease. The reason
might be that a high number of prototypes brings
more comparisons and increases the probability of
spurious interactions between QA prototypes and
QA pairs.

4.3 Question-Answering Performance

A natural benchmark model for our work is the
approach of Tam et al. (2017), which is similar
to ours in that it proposed to replace wh-word in
questions with appropriate named entities. This
approach leverages typological information from
a named entity recognizer and the word vector
space.

It showed that simply replacing the wh-word,
with a named entity that has the highest cosine
similarity with all the candidate answers for a
given question. This substitution is operated for
”where”, ”when” and ”who” types of questions.
Finally, the transformed QA pair is fed to a net-
work suited for the task of answer selection. This
study demonstrated that this simple pre-processing

step improves the state of the art results for the task
of answer selection.

Alike our experimental setup, they divide the
dataset in three categories, namely ”when”, ”who”
and ”where”, which is the same division we used
for our experimental setup, and evaluate their
method on the split dataset and the full dataset. We
will consider their work as our baseline in order
to evaluate the capabilities of the analogy based
embeddings. Moreover, we compare our approach
to a setup which doesn’t exploit analogical proper-
ties. This is to say, a Siamese network that takes as
input a question and a candidate answer, generate
the respective representations and compute the
cosine similarity of the obtained sentence embed-
dings. The described baseline corresponds to the
model proposed by (Tan et al., 2015) except for
the fact that we use BiGRU for fair comparison.

WikiQA
Baseline Tam et al. Analogy

”Who” 0.663 0.702 0.763
”When” 0.582 0.664 0.701
”Where” 0.568 0.616 0.602
Comb. 0.609 0.678 0.684

Table 4: MRR on WikiQA.

TrecQA
Baseline Tam et al. Analogy

”Who” 0.787 0.781 0.981
”When” 0.797 0.921 0.863
”Where” 0.894 0.864 0.929
Comb. 0.837 0.875 0.909

Table 5: MRR on TrecQA.

The results are shown in Tables 4 and 5.
We observe that simply computing the cosine

similarity between the difference vector of the
prototype QA pair and the QA pair at hand with
the learnt embedding from the proposed approach
lead to significant improvements for some particu-
lar type of questions. The bold numbers in Tables
4 and 5 indicate the best results for each dataset.
We can see that our method improves the MRR
of at least two of questions types by a relevant
margin. The last row of the same tables confirms
that enforcing analogical properties in the embed-
ding space generally improves the overall MRR
for these three subsets.
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5 Conclusion

This work introduced a new approach to learn sen-
tence representations for answer selection, which
preserve structural similarities in the form of
analogies. Analogies can be seen as a way of
injecting reasoning ability, and we express this
by requiring common dissimilarities implied by
analogies to be reflected in the learned feature
space. We showed that explicitly constraining
structural analogies in the learnt embeddings leads
to better results over the distance-only embed-
dings. We believe that it is worth-while to further
explore the potential of analogical reasoning be-
yond their common use in word embeddings, as
it is a natural mean of learning and generalizing
about relations between entities. The focus of this
work has been on answer selection, but analogical
reasoning can be useful in many other machine
learning tasks such as machine translation or vi-
sual question answering. As a next step, we plan
to explore other forms of analogies that involve
modelling across domains.
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