
Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 452–462
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

452

On the Limits of Learning to Actively Learn Semantic Representations

Omri Koshorek1 Gabriel Stanovsky2,4 Yichu Zhou3

Vivek Srikumar3 Jonathan Berant1,2

1Tel-Aviv University, 2Allen Institute for AI
3The University of Utah, 4University of Washington

{omri.koshorek,joberant}@cs.tau.ac.il
gabis@allenai.org, {flyaway,svivek}@cs.utah.edu

Abstract

One of the goals of natural language under-
standing is to develop models that map sen-
tences into meaning representations. How-
ever, training such models requires expensive
annotation of complex structures, which hin-
ders their adoption. Learning to actively-learn
(LTAL) is a recent paradigm for reducing the
amount of labeled data by learning a policy
that selects which samples should be labeled.
In this work, we examine LTAL for learning
semantic representations, such as QA-SRL.
We show that even an oracle policy that is al-
lowed to pick examples that maximize perfor-
mance on the test set (and constitutes an up-
per bound on the potential of LTAL), does not
substantially improve performance compared
to a random policy. We investigate factors that
could explain this finding and show that a dis-
tinguishing characteristic of successful appli-
cations of LTAL is the interaction between op-
timization and the oracle policy selection pro-
cess. In successful applications of LTAL, the
examples selected by the oracle policy do not
substantially depend on the optimization pro-
cedure, while in our setup the stochastic nature
of optimization strongly affects the examples
selected by the oracle. We conclude that the
current applicability of LTAL for improving
data efficiency in learning semantic meaning
representations is limited.

1 Introduction

The task of mapping a natural language sentence
into a semantic representation, that is, a structure
that represents its meaning, is one of the core goals
of natural language processing. This goal has
led to the creation of many general-purpose for-
malisms for representing the structure of language,
such as semantic role labeling (SRL; Palmer et al.,
2005), semantic dependencies (SDP; Oepen et al.,
2014), abstract meaning representation (AMR;

Banarescu et al., 2013), universal conceptual cog-
nitive annotation (UCCA; Abend and Rappoport,
2013), question-answer driven SRL (QA-SRL; He
et al., 2015), and universal dependencies (Nivre
et al., 2016), as well as domain-specific semantic
representations for particular users in fields such
as biology (Kim et al., 2009; Nédellec et al., 2013;
Berant et al., 2014) and material science (Mysore
et al., 2017; Kim et al., 2019).

Currently, the dominant paradigm for building
models that predict such representations is super-
vised learning, which requires annotating thou-
sands of sentences with their correct structured
representation, usually by experts. This arduous
data collection is the main bottleneck for building
parsers for different users in new domains.

Past work has proposed directions for accelerat-
ing data collection and improving data efficiency
through multi-task learning across different rep-
resentations (Stanovsky and Dagan, 2018; Hersh-
covich et al., 2018), or having non-experts anno-
tate sentences in natural language (He et al., 2015,
2016). One of the classic and natural solutions for
reducing annotation costs is to use active learning,
an iterative procedure for selecting unlabeled ex-
amples which are most likely to improve the per-
formance of a model, and annotating them (Set-
tles, 2009).

Recently, learning to actively-learn (LTAL) has
been proposed (Fang et al., 2017; Bachman et al.,
2017; Liu et al., 2018), where the procedure for se-
lecting unlabeled examples is trained using meth-
ods from reinforcement and imitation learning. In
recent work by Liu et al. (2018), given a labeled
dataset from some domain, active learning is sim-
ulated on this dataset, and a policy is trained to
iteratively select the subset of examples that max-
imizes performance on a development set. Then,
this policy is used on a target domain to select un-
labeled examples for annotation. If the learned

453

policy generalizes well, we can reduce the cost
of learning semantic representations. Liu et al.
(2018) and Vu et al. (2019) have shown that such
learned policies significantly reduce annotation
costs on both text classification and named entity
recognition (NER).

In this paper, we examine the potential of LTAL
for learning a semantic representation such as QA-
SRL. We propose an oracle setup that can be con-
sidered as an upper bound to what can be achieved
with a learned policy. Specifically, we use an or-
acle policy that is allowed to always pick a subset
of examples that maximizes its target metric on a
development set, which has the same distribution
as the test set. Surprisingly, we find that even this
powerful oracle policy does not substantially im-
prove performance compared to a policy that ran-
domly selects unlabeled examples on two seman-
tic tasks: QA-SRL span (argument) detection and
QA-SRL question (role) generation.

To elucidate this surprising finding, we perform
a thorough analysis, investigating various factors
that could negatively affect the oracle policy se-
lection process. We examine possible explanatory
factors including: (a) the search strategy in the
unlabeled data space (b) the procedure for train-
ing the QA-SRL model (c) the architecture of the
model and (d) the greedy nature of the selection
procedure. We find that for all factors, it is chal-
lenging to get consistent gains with an oracle pol-
icy over a random policy.

To further our understanding, we replicate the
experiments of Liu et al. (2018) on NER, and com-
pare the properties of a successful oracle policy in
NER to the less successful case of QA-SRL. We
find that optimization stochasticity negatively af-
fects the process of sample selection in QA-SRL;
different random seeds for the optimizer result in
different selected samples. We propose a mea-
sure for quantifying this effect, which can be used
to assess the potential of LTAL in new setups.

To conclude, in this work, we conduct a thor-
ough empirical investigation of LTAL for learn-
ing a semantic representation, and find that it is
difficult to substantially improve data efficiency
compared to standard supervised learning. Thus,
other approaches should be explored for the im-
portant goal of reducing annotation costs in build-
ing such models. Code for reproducing our exper-
iments is available at https://github.com/
koomri/LTAL_SR/.

2 Learning to Actively Learn

Classic pool-based active learning (Settles, 2009)
assumes access to a small labeled dataset Slab and
a large pool of unlabeled examples Sunlab for a tar-
get task. In each iteration, a heuristic is used to
select L unlabeled examples, which are sent to an-
notation and added to Slab. An example heuristic
is uncertainty sampling (Lewis and Gale, 1994),
which at each iteration chooses examples that the
current model is the least confident about.

LTAL proposes to replace the heuristic with a
learned policy πθ, parameterized by θ. At train-
ing time, the policy is trained by simulating active
learning on a labeled dataset and generating train-
ing data from the simulation. At test time, the pol-
icy is applied to select examples in a new domain.
Figure 1 and Algorithm 1 describe this data col-
lection procedure, on which we build our oracle
policy (§3).

In LTAL, we assume a labeled dataset D which
is partitioned into three disjoint sets: a small
labeled set Slab, a large set Sunlab that will be
treated as unlabeled, and an evaluation set Seval
that will be used to estimate the quality of mod-
els. Then, active learning is simulated for B it-
erations. In each iteration i, a model mi

φ, pa-
rameterized by φ, is first trained on the labeled
dataset. Then, K subsets {Cj}Kj=1 are randomly
sampled from Sunlab, and the model mi

φ is fine-
tuned on each candidate set, producing K mod-
els {mi

φj
}Kj=1. The performance of each model is

evaluated on Seval, yielding the scores {s(Cj)}Kj=1.
Let the candidate set with highest accuracy be Cit .
We can create training examples for πθ, where
(Slab,Sunlab,m

i
φ,{s(Cj)}Kj=1) are the inputs and

Cit is the label. Then Cit is moved from Sunlab to
Slab.

Simulating active learning is a computationally
expensive procedure. In each iteration we need to
train K models over Slab ∪ Cj . However, a trained
network can potentially lead to a policy that is bet-
ter than standard active learning heuristics.

3 An Oracle Active Learning Policy

Our goal is to examine the potential of LTAL for
learning a semantic representation such as QA-
SRL. Towards this goal, we investigate an oracle
policy that should be an upper bound for what can
be achieved with a learned policy πθ.

The oracle policy is allowed to use Algorithm 1

https://github.com/koomri/LTAL_SR/
https://github.com/koomri/LTAL_SR/

454

Figure 1: A single iteration of LTAL, where examples
are sampled from Sunlab, trained with examples in Slab,
and performance on Seval is used to select examples to
annotate. See §2 for details.

Algorithm 1: Simulating active learning
Input: Slab,Sunlab,Seval

1 for i ∈ {1 . . .B} do
2 mi

φ ← Train(Slab)
3 C

i
1, . . . ,C

i
K = SampleCandidates(Sunlab)

4 for j ∈ {1, . . . ,K} do
5 mi

φj
← FineTune(mi

φ,Slab⋃C
i
j)

6 sij ← Accuracy(mi
φj
,Seval)

7 t← argmax
j∈{1,...,K}

sij

8 CreateTrainEx((Slab,Sunlab,m
i
φ,{C

i
j}
K
j=1),C

i
t)

9 Slab ← Slab⋃C
i
t , Sunlab ← Sunlab ∖ C

i
t

10 return Slab

at test time (it does not create training examples
for πθ, thus Line 8 is skipped). Put differently, the
oracle policy selects the set of unlabeled examples
that maximizes the target metric of our model on a
set sampled from the same distribution as the test
set. Therefore, the oracle policy enjoys extremely
favorable conditions compared to a trained policy,
and we expect it to provide an upper bound on
the performance of πθ. Despite these clear advan-
tages, we will show that an oracle policy struggles
to substantially improve performance compared to
a random policy.

While the oracle policy effectively “peeks” at
the label to make a decision, there are various fac-
tors that could explain the low performance of a
model trained under the oracle policy. We now list
several hypotheses, and in §5.4 and §6 method-
ologically examine whether they explain the em-
pirical results of LTAL.

• Training: The models mi
φj

are affected by the
training procedure in Lines 2 and 5 of Alg. 1.
Different training procedures affect the perfor-
mance of models trained with the oracle policy.

• Search space coverage: Training over all unla-
beled examples in each iteration is intractable, so
the oracle policy randomly samples K subsets,
each with L examples. BecauseK ⋅L << ∣Sunlab∣,
it is possible that randomly sampling these sets
will miss the more beneficial unlabeled exam-
ples. Moreover, the parameter L controls the di-
versity of candidate subsets, since as L increases
the similarity between the K different subsets
grows. Thus, the hyper-parameters K and L
might affect the outcome of the oracle policy.

• Model architecture: The model architecture
(e.g., number of parameters) can affect the ef-
ficacy of learning under the oracle policy.

• Stochasticity: The oracle policy chooses an un-
labeled set based on performance after training
with stochastic gradient descent. Differences in
performance between candidate sets might be re-
lated to this stochasticity, rather than to the ac-
tual value of the examples (especially when Slab
is small).

• Myopicity: The oracle policy chooses the set
Cij that maximizes its performance. However,
the success of LTAL depends on the sequence
of choices that are made. It is possible that the
greedy nature of this procedure results in sub-
optimal performance. Unfortunately, improving
search through beam search or similar measures
is intractable in this already computationally-
expensive procedure.
We now describe QA-SRL (He et al., 2015),

which is the focus of our investigation, and then
describe the experiments with the oracle policy.

4 QA-SRL Schema

QA-SRL was introduced by He et al. (2015) as
an open variant of the predefined role schema in
traditional SRL. QA-SRL replaces the predefined
set of roles with the notion of argument ques-
tions. These are natural language questions cen-
tered around a target predicate, where the answers
to the given question are its corresponding argu-
ments. For example, for the sentence “Elizabeth
Warren decided to run for president”, traditional
SRL will label “Elizabeth Warren” as ARG0 of
the run predicate (the agent of the predicate, or
the entity running in this case), while QA-SRL

455

Elizabeth Warren announced her candidacy at a rally in Massachusetts.

Argument QA-SRL role PropBank role
Elizabeth Warren Who announced something? ARG0
her candidacy What did someone announce? ARG1
at a rally in Massachusetts Where did someone announce something? ARGM-LOC

Table 1: Example of QA-SRL versus traditional SRL annotation for a given input sentence (top). Each line
shows a single argument, and its role in QA-SRL (in question form) followed by its traditional SRL role, using
PropBank notation. Roles in QA-SRL have a structured open representation, while SRL assigns discrete roles
from a predefined set.

will assign the more subtle question “who might
run?”, indicating the uncertainty of this future
event. Questions are generated by assigning val-
ues to 7 pre-defined slots (where some of the slots
are potentially empty). See Table 1 for an example
QA-SRL annotation of a full sentence.

Recently, FitzGerald et al. (2018) demonstrated
the scalability of QA-SRL by crowdsourcing the
annotation of a large QA-SRL dataset, dubbed
QA-SRL bank 2.0. It consists of 250K QA pairs
over 64K sentences on three different domains
(Wikipedia, news, and science). Following, this
large dataset has enabled the development a neu-
ral model which breaks QA-SRL into a pipeline of
two tasks, given a target predicate in an input sen-
tence. First, a span detection algorithm identifies
arguments of the predicate as continuous spans in
the sentence (e.g., “Elizabeth Warren” in the pre-
vious example), then a question generation model
predicts an appropriate role question (e.g., “who
might run?”).

We find that QA-SRL is a good test-bed for
active learning of semantic representations, for
several key reasons: (1) it requires semantic un-
derstanding of the sentence, beyond syntactic or
surface-level features (e.g., identifying the factu-
ality of a given predicate), (2) adopting the formu-
lation of FitzGerald et al. (2018), it consists of two
semantic tasks, allowing us to test active learning
on both of them, (3) we can leverage the large QA-
SRL dataset to simulate active learning scenar-
ios, and lastly (4) QA-SRL’s scalability is attrac-
tive for the application of active learning policies,
as they may further reduce costs for researchers
working on developing specialized semantic rep-
resentations in low-resource domains (e.g., medi-
cal, biological, or educational domains).

5 Experimental Evaluation

We now perform a series of experiments compar-
ing the performance of an oracle policy to a ran-

dom policy. We describe the experimental settings
(§5.1), tasks and models (§5.2), present the main
results (§5.3), and conclude by investigating fac-
tors that might affect our empirical findings (§5.4).

5.1 Experimental Settings

We evaluate the potential of the oracle policy on
QA-SRL Bank 2.0 (FitzGerald et al., 2018). We
use the training set of the science domain as D,
randomly split it into Slab, Sunlab, and Seval. We
evaluate the success of a model mi

φ trained with
the oracle policy by periodically measuring per-
formance on the development set of the science
domain. Unless mentioned, all results are an aver-
age of 3 experiments, where a different split of D
was performed. Each experiment used K threads
of a 40-core 2.2GHz Xeon Silver 4114 machine.

We compare the results of a base oracle pol-
icy (BASEORACLE) corresponding to the best pol-
icy we were able to obtain using the architec-
ture from FitzGerald et al. (2018) to the following
baselines:
• RANDOM: One of the candidate sets Cij is chosen

at random and added to Slab.
• LONGEST: The set Cij with the maximal average

number of tokens per sentence is added to Slab.
• UNCERTAINTY: For each candidate set, we use
mi
φ to perform predictions over all of the sen-

tences in the set, and choose the set Cij that has
the maximal average entropy over the set of pre-
dictions.

5.2 Tasks and Models

We now describe the three tasks and correspond-
ing models in our analysis:

Span Detection: Here we detect spans that are
arguments of a predicate in a sentence (see Table
1). We start with a labeled set of size ∣Slab∣ = 50,
and select examples with the oracle policy for
B = 460 iterations. We set the number of candi-
date sets toK = 5, and the size of each set toL = 1,

456

thus the size of the final labeled set is 510 exam-
ples. We train the publicly available span detection
model released by FitzGerald et al. (2018), which
consumes as input a sentence x1, . . . , xn, where
xi is the concatenation of the embedding of the ith
word in the sentence and a learned embedding of
a binary indicator for whether this word is the tar-
get predicate. This input is fed into a multi-layer
encoder, producing a representation hi for every
token. Each span xi∶j is represented by concate-
nating the respective hidden states: sij = [hi;hj].
A fully connected network consumes the span rep-
resentation sij , and predicts a probability whether
the span is an argument or not.

To accelerate training, we reduce the number of
parameters to 488K by freezing the token embed-
dings, reducing the number of layers in the en-
coder, and by shrinking the dimension of both the
hidden representations and the binary predicate in-
dicator embedding. Following FitzGerald et al.
(2018), we use GLoVe embeddings (Pennington
et al., 2014).

Question Generation: We generate the ques-
tion (role) for a given predicate and correspond-
ing argument. We start with a labeled set of size
∣Slab∣ = 500 and perform B = 250 iterations,
where in each iteration we sample K = 5 candi-
date sets each of size L = 10 (lower values were
intractable). Thus, the final size of Slab is 3,000
samples. We train the publicly available local
question generation model from FitzGerald et al.
(2018), where the learned argument representation
sij is used to independently predict each of the 7
question slots. We reduce the number of parame-
ters to 360K with the same modifications as in the
span detector model. As a metric for the quality
of question generation models, we use its official
metric exact match (EM), which reflects the per-
centage of predicted questions that are identical to
the ground truth questions.

Named Entity Recognition: To reproduce the
experiments of Liu et al. (2018) we run the oracle
policy on the CoNLL-2003 NER English dataset
(Sang and De Meulder, 2003), replicating the ex-
perimental settings described in Liu et al. (2018)
(as their code is not publicly available). We run
the oracle policy for B = 200 iterations, start-
ing from an empty Slab, and adding one exam-
ple (L = 1) from K = 5 candidate sets in each
iteration. We use a CRF sequence tagger from

AllenNLP (Gardner et al., 2018), and experiment
with two variants: (1) NER-MULTILANG: A Bi-
LSTM CRF model (20K parameters) with 40 di-
mensional multi-lingual word embeddings (Am-
mar et al., 2016), and (2) NER-LINEAR: A linear
CRF model which was originally used by Liu et al.
(2018).

5.3 Results
Span Detection: Table 2 shows F1 score (the of-
ficial metric) of the QA-SRL span detector mod-
els for different sizes of Slab for BASEORACLE

and the other baselines. Figure 2 (left) shows the
relative improvement of the baselines over RAN-
DOM. We observe that the maximal improvement
of BASEORACLE over RANDOM is 9% given 200
examples, but with larger Slab the improvement
drops to less than 5%. This is substantially less
than the improvements obtained by Liu et al.
(2018) on text classification and NER. Moreover,
LONGEST outperforms BASEORACLE in most of
the observed results. This shows that there exists
a selection strategy that is better than BASEOR-
ACLE, but it is not the one chosen by the oracle
policy.

Question Generation: To check whether the
previous result is specific to span detection, we
conduct the same experiment for question genera-
tion. However, training question generation mod-
els is slower compared to span detection and thus
we explore a smaller space of hyper-parameters.
Table 3 reports the EM scores achieved by BASE-
ORACLE and LONGEST, and Figure 2 (center)
shows the relative improvement. Here, the perfor-
mance of BASEORACLE is even worse compared
to span detection, as its maximal relative improve-
ment over RANDOM is at most 5%.

Named Entity Recognition: Figure 2 (right)
shows the relative improvement of NER-LINEAR

and NER-MULTILANG compared to RANDOM.
We observe that in NER-LINEAR, which is a
replication of Liu et al. (2018), the oracle policy
indeed obtains a large improvement over RAN-
DOM for various sizes of Slab, with at least 9.5%
relative improvement in performance. However, in
NER-MULTILANG the relative gains are smaller,
especially when the size of Slab is small.

5.4 Extended Experiments
Surprisingly, we observed in §5.3 that even an or-
acle policy, which is allowed to pick the examples

457

samples 100 150 200 250 300 350 400 450 500
BASEORACLE 42.7 49.2 52.9 54.2 56.6 57.4 58.4 59.5 59.9
RANDOM 42.8 47.2 48.3 52.4 53.3 56.1 57.0 57.5 58.5
LONGEST 44.1 49.1 53.0 55.5 56.4 57.4 58.7 58.6 60.0
UNCERTAINTY 42.8 47.0 50.1 51.3 52.2 54.4 55.1 55.6 56.9

Table 2: Span detection F1 on the development set for all models across different numbers of labeled examples.

100 200 300 400 500

0

5

10

15

20

Size of Slab

QA-SRL span detection

BASEORACLE

L=5
ORACLESMALLMODEL

500 1,500 2,500

0

5

10

15

20

Size of Slab

QA-SRL question generation

BASEORACLE

LONGEST

50 100 150 200
0
10
20

40

60

Size of Slab

NER

MULTILANG

LINEAR

Figure 2: Relative improvement (in %) of different models compared to RANDOM on the development set. Note
that the range of the y-axis in NER is different from QA-SRL.

that maximize performance on samples from the
same distribution as the test set, does not substan-
tially improve performance over a random policy.
One possibility is that no active learning policy is
better than random. However, LONGEST outper-
formed BASEORACLE showing that the problem
is at least partially related to BASEORACLE itself.

We now examine the possible factors described
in §3 and investigate their interaction with the per-
formance of models trained with BASEORACLE.
All modifications were tested on span detection,
using the experimental settings described in §5.1.

Search space coverage We begin by examining
the effect of the parameters K and L on the oracle
policy. As K increases, we cover more of the un-
labeled data, but training time increases linearly.
As L increases, the subsets {Cj}Kj=1 become more
similar to one another due to the fact that we are
randomly mixing more examples from the unla-
beled data. On the other hand, when L is small,
the fine-tuning process is less affected by the can-
didate sets and more by Slab. In such case, it is
likely that the difference in scores is also affected
by stochasticity.

BASEORACLE uses K = 5, L = 1. We exam-
ine the performance of the oracle policy as these
values are increased in Table 4. We observe that
performance does not improve, and perhaps even
decreases for larger values of K. We hypothesize

that a large K increases the greediness of the pro-
cedure, and may result in selecting an example that
seems promising in the current iteration but is sub-
optimal in the long run, similar to large beam sizes
reducing performance in neural machine transla-
tion (Yang et al., 2018). A moderate K results in
a more random and possibly beneficial selection.

Increasing the size of each candidate set to L =
5 or 20 results in roughly similar performance to
L = 1. We hypothesize that there is a trade-off
where as L increases the similarity between the
different sets increases but training becomes more
stable and vice versa, and thus performance for
different L values does not vary substantially.

Training In Lines 2 and 5 of Alg. 1 we train on
Slab and then fine-tune on the union Slab ∪ Cij un-
til sij does not significantly improve for 5 epochs.
It is possible that fine-tuning from a fixed model
reduces the efficacy of training, and training on
Slab ∪ Cij from random weights will improve per-
formance. Of course, training from scratch will
substantially increase training time. We run an ex-
periment, termed INDEP., where Line 2 is skipped,
and in Line 5 we independently train each of the
candidate models from random weights. We find
that this modification does not achieve better re-
sults than BASEORACLE, possibly because train-
ing a model from scratch for each of the candidates
increases the stochasticity in the optimization.

458

samples 550 750 1000 1250 1500 1800 2100 2500 3000
BASEORACLE 18.9 21.7 24.4 26.4 27.1 28.4 29.1 30.6 31.1
RANDOM 18.1 21.4 23.7 25.2 27.3 27.9 28.6 29.9 31.3
LONGEST 17.8 20.9 22.8 25.7 27.1 28.0 29.1 30.4 31.3

Table 3: Question generation scores (exact match) on the development set across different numbers of labeled
examples.

samples 110 150 210 290 370 510
RANDOM 45.2 47.2 50.5 53.1 55.8 58.5
BASEORACLE 43.3 49.2 52.9 56.8 57.8 60.3
K = 10 46.6 48.8 51.4 55.8 57.6 58.6
K = 20 44.8 47.4 52.1 55.9 — —
L = 5 44.2 48.3 52.5 55.5 58.0 59.8
L = 20 45.2 47.5 51.9 55.1 56.7 58.7
LOSS-SCORE 30.0 38.2 41.0 51.5 53.7 57.2
INDEP.* 40.9 44.6 50.1 54.1 — —
EPSILON-GREEDY-0.3 45.1 48.6 52.4 55.6 57.1 59.8
ORACLE-100 44.9 48.8 51.4 53.9 57.0 59.2
RANDOMSMALLMODEL 51.9 54.8 57.3 59.5 61.4 62.6
ORACLESMALLMODEL 53.8 56.6 58.9 60.3 61.5 63.3

Table 4: Span detection F1 scores on the development
set for different size of Slab. We highlight the best per-
forming policy for the standard span detector architec-
ture. (*) indicates that the results are for a single run.

In addition, we also experiment with fine-tuning
on Cj only, rather than Slab ∪Cj . As we expect, re-
sults are quite poor since the model uses only a few
examples for fine-tuning and forgets the examples
in the labeled set.

Lastly, we hypothesize that selecting a candi-
date set based on the target metric (F1 for span de-
tection) might not be sensitive enough and thus we
run an experiment, termed LOSS-SCORE, where
we select the set Cj that minimizes the loss on the
development set. We find that this modification
achieves lower results than RANDOM, especially
when Slab is small, reflecting the fact that the loss
is not perfectly correlated with our target metric.

Model Architecture In §5.3 we observed that
results on NER vary with the model architecture.
To see whether this phenomenon occurs also for
span detection we perform a modification to the
model – we reduce the number of parameters from
488K to 26K by reducing the hidden state size and
replacing GLoVe embeddings with multi-lingual
embeddings (Ammar et al., 2016). We then com-
pare an oracle policy (ORACLESMALLMODEL)
with a random policy (RANDOMSMALLMODEL).
Table 4 shows that while absolute F1 actually im-
proves in this setup, the oracle policy improves
performance compared to a random policy by no
more than 4%. Thus, contrary to NER, here archi-

tecture modifications do not expose an advantage
of the oracle policy compared to the random one.
We did not examine a simpler linear model for
span detection, in light of recent findings (Lowell
et al., 2019) that it is important to test LTAL with
state-of-the-art models, as performance is tied to
the specific model being trained.

Myopicity We hypothesized that greedily se-
lecting an example that maximizes performance in
a specific iteration might be suboptimal in the long
run. Because non-greedy selection strategies are
computationaly intractable, we perform the fol-
lowing two experiments.

First, we examine EPSILON-GREEDY-P, where
in each iteration the oracle policy selects the set Cj
that maximizes target performance with probabil-
ity 1 − p and randomly chooses a set with prob-
ability p. This is meant to check whether adding
random exploration to the oracle policy might pre-
vent it from getting stuck in local optima. We find
that when p = 0.3 its performance is comparable to
BASEORACLE while reducing the computational
costs.

Second, we observe that most of the gain of
BASEORACLE compared to RANDOM is in the be-
ginning of the procedure. Thus, we propose to use
BASEORACLE in the first b iterations, and then
transition to a random policy (termed ORACLE-
B). We run this variation with b = 100 and find
that it leads to similar performance.

To summarize, we have found that an ora-
cle policy only slightly improves performance for
QA-SRL span detection and question generation
compared to a random policy, and that improve-
ments in NER are also conditioned on the un-
derlying model. Our results echo recent findings
by Lowell et al. (2019), who have shown that gains
achieved by active learning are small and inconsis-
tent when modifying the model architecture.

We have examined multiple factors that might
affect the performance of models trained with
an oracle policy including the training procedure,
model architecture, and search procedure, and
have shown that in all of them the oracle policy

459

struggles to improve over the random one. Thus, a
learned policy is even less likely to obtain mean-
ingful gains using LTAL.

In the next section we analyze the differences
between NER-LINEAR, where LTAL works
well, and BASEORACLE, in order to better under-
stand the underlying causes for this phenomenon.

6 When does LTAL Work?

A basic underlying assumption of active learning
(with or without a learned policy), is that some
samples in Sunlab are more informative for the
learning process than others. In LTAL, the infor-
mativeness of a candidate example set is defined
by the accuracy of a trained model, as evaluated on
Seval (Line 6 in Alg. 1). Thus, for active learning to
work, the candidate set that is selected should not
be affected by the stochasticity of the training pro-
cess. Put differently, the ranking of the candidate
sets by the oracle policy should be consistent and
not be dramatically affected by the optimization.

To operationalize this intuition, we use Alg. 1,
but run the for-loop in Line 4 twice, using two dif-
ferent random seeds. Let Cit be the chosen or refer-
ence candidate set according to the first run of the
for-loop in iteration i. We can measure the con-
sistency of the optimization process by looking at
the ranking of the candidate sets Ci1, . . .CiK accord-
ing to the second fine-tuning, and computing the
mean reciprocal rank (MRR) with respect to the
reference candidate set Cit across all iterations:

MRR = 1

B

B

∑
i=1

1

rank(Cit)
, (1)

where rank(Cit) is the rank of Cit in the second
fine tuning step. The only difference between the
two fine-tuning procedures is the random seed.
Therefore, an MRR value that is close to 1 means
that the ranking of the candidates is mostly af-
fected by the quality of the samples, while a small
MRR hints that optimization plays a large role.
We prefer MRR to other correlation-based mea-
sures (such as Spearman’s rank-order correlation),
because the oracle is only affected by the candi-
date set that is ranked first. We can now examine
whether the MRR score correlates with whether
LTAL works or not.

We measure the MRR in 3 settings: (1)
NER-LINEAR, a linear CRF model for NER
which replicates the experimental settings in (Liu

et al., 2018), where LTAL works, (2) NER-
MULTILANG, a BiLSTM-CRF sequence tagger
from AllenNLP (Gardner et al., 2018) with 40 di-
mensional multi-lingual word embeddings of Am-
mar et al. (2016), and (3) BASEORACLE, the base-
line model for span detection task. In all experi-
ments the initial Slab was empty and B = 200, fol-
lowing the experimental settings in which LTAL
has shown good performance (Liu et al., 2018;
Fang et al., 2017; Vu et al., 2019). Since the MRR
might change as the size of Slab is increasing, we
compute and report MRR every 10 iterations.

Figure 3 (left) presents the MRR in the three
experiments. We observe that in NER-LINEAR

the MRR has a stable value of 1, while in NER-
MULTILANG and BASEORACLE the MRR value
is substantially lower, and closer to an MRR value
of a random selection (∼.46). The right side of Fig-
ure 3 shows that NER-LINEAR oracle policy out-
performs a random policy by a much larger mar-
gin, compared to the other 2 experiments.

These results show that the ranking in NER-
LINEAR is not affected by the stochasticity of op-
timization, which is expected given its underlying
convex loss function. On the other hand, the opti-
mization process in the other experiments is over
a non-convex loss function and a small Slab, and
thus optimization is more brittle. Interestingly,
we observe in Figure 3 that the gains of the ora-
cle policy in NER-LINEAR are higher than NER-
MULTILANG, although the task and the dataset
are exactly same in the two experiments. This
shows that the potential of LTAL is affected by
the model, where a more complex model leads to
smaller gains by LTAL.

We view our findings as a guideline for future
work: by tracking the MRR one can assess the po-
tential of LTAL at development time – when the
MRR is small, the potential is limited.

7 Related Work

Active learning has shown promising results on
various tasks. The commonly used uncertainty
criteria (Lewis and Catlett, 1994; Culotta and Mc-
Callum, 2005) is focused on selecting the sam-
ples on which the confidence of the model is
low. Among other notable approaches, in query
by committee (Seung et al., 1992) a disagreement
between a set of trained models on the prediction
of an example is used to select what samples to
label.

460

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Size of Slab

MRR

50 100 150 200

0

20

40

60

80

Size of Slab

Relative improvement (in %)

NER-LINEAR NER-MULTILANG BASEORACLE

Figure 3: MRR (on the left) and relative improvement (in %) of different models compared to RANDOM on the
development set.

In a large empirical study, Lowell et al. (2019)
have recently shown other limitations in active
learning. They investigate the performance of ac-
tive learning across NLP tasks and model archi-
tectures, and demonstrate that it does not achieve
consistent gains over supervised learning, mostly
because the collected samples are beneficial to a
specific model architecture, and does not yield bet-
ter results than random selection when switching
to a new architecture.

There has been little research regarding active
learning of semantic representations. Among the
relevant work, Siddhant and Lipton (2018) have
shown that uncertainty estimation using dropout
and Bayes-By-Backprop (Blundell et al., 2015)
achieves good results on the SRL formulation.
The improvements in performance due to LTAL
approaches on various tasks (Konyushkova et al.,
2017; Bachman et al., 2017; Fang et al., 2017;
Liu et al., 2018) has raised the question whether
learned policies can be applied also to the field of
learning semantic representations.

8 Conclusions

We presented the first experimentation with LTAL
techniques in learning parsers for semantic rep-
resentations. Surprisingly, we find that LTAL, a
learned method which was shown to be effective
for NER and document classification, does not do
significantly better than a random selection on two
semantic representation tasks within the QA-SRL
framework, even when given extremely favourable
conditions. We thoroughly analyze the factors

leading to this poor performance, and find that the
stochasticity in the model optimization negatively
affects the performance of LTAL. Finally, we pro-
pose a metric which can serve as an indicator for
whether LTAL will fare well for a given dataset
and model. Our results suggest that different ap-
proaches should be explored for the important task
of building semantic representation models.

Acknowledgements

We thank Julian Michael and Oz Anani for their
useful comments and feedback. This research was
supported by The U.S-Israel Binational Science
Foundation grant 2016257, its associated NSF
grant 1737230 and The Yandex Initiative for Ma-
chine Learning.

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (ucca). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 228–238.

Waleed Ammar, George Mulcaire, Yulia Tsvetkov,
Guillaume Lample, Chris Dyer, and Noah A Smith.
2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925.

Philip Bachman, Alessandro Sordoni, and Adam
Trischler. 2017. Learning algorithms for active
learning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
301–310. JMLR. org.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin

461

Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad
Huang, Peter Clark, and Christopher D Manning.
2014. Modeling biological processes for reading
comprehension. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Charles Blundell, Julien Cornebise, Koray
Kavukcuoglu, and Daan Wierstra. 2015. Weight
uncertainty in neural networks. arXiv preprint
arXiv:1505.05424.

Aron Culotta and Andrew McCallum. 2005. Reduc-
ing labeling effort for structured prediction tasks. In
AAAI, volume 5, pages 746–751.

Meng Fang, Yuan Li, and Trevor Cohn. 2017. Learning
how to active learn: A deep reinforcement learning
approach. EMNLP.

Nicholas FitzGerald, Julian Michael, Luheng He, and
Luke Zettlemoyer. 2018. Large-scale qa-srl parsing.
arXiv preprint arXiv:1805.05377.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language pro-
cessing platform. arXiv preprint arXiv:1803.07640.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven semantic role labeling: Us-
ing natural language to annotate natural language.
In Proceedings of the 2015 conference on empirical
methods in natural language processing, pages 643–
653.

Luheng He, Julian Michael, Mike Lewis, and Luke
Zettlemoyer. 2016. Human-in-the-loop parsing. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proc. of ACL, pages 373–385.

Edward Kim, Zach Jensen, Alexander van Grootel,
Kevin Huang, Matthew Staib, Sheshera Mysore,
Haw-Shiuan Chang, Emma Strubell, Andrew
McCallum, Stefanie Jegelka, and Elsa Olivetti.
2019. Inorganic materials synthesis planning
with literature-trained neural networks. CoRR,
abs/1901.00032.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview
of bionlp’09 shared task on event extraction. In
Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared
Task. Association for Computational Linguistics.

Ksenia Konyushkova, Raphael Sznitman, and Pascal
Fua. 2017. Learning active learning from data.
In Advances in Neural Information Processing Sys-
tems, pages 4225–4235.

David D Lewis and Jason Catlett. 1994. Heteroge-
neous uncertainty sampling for supervised learning.
In Machine learning proceedings 1994, pages 148–
156. Elsevier.

David D. Lewis and William A. Gale. 1994. A sequen-
tial algorithm for training text classifiers. In SIGIR.

Ming Liu, Wray Buntine, and Gholamreza Haffari.
2018. Learning how to actively learn: A deep im-
itation learning approach. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1874–1883.

David Lowell, Zachary C. Lipton, and Byron C. Wal-
lace. 2019. Practical obstacles to deploying active
learning. In Proceedings of EMNLP.

Sheshera Mysore, Edward Kim, Emma Strubell,
Ao Liu, Haw-Shiuan Chang, Srikrishna Kompella,
Kevin Huang, Andrew McCallum, and Elsa Olivetti.
2017. Automatically extracting action graphs from
materials science synthesis procedures. CoRR,
abs/1711.06872.

Claire Nédellec, Robert Bossy, Jin-Dong Kim, Jung-
Jae Kim, Tomoko Ohta, Sampo Pyysalo, and Pierre
Zweigenbaum. 2013. Overview of bionlp shared
task 2013. In Proceedings of the BioNLP Shared
Task 2013 Workshop, pages 1–7.

Joakim Nivre, Marie-Catherine De Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D
Manning, Ryan McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, et al. 2016. Universal de-
pendencies v1: A multilingual treebank collection.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. Semeval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational linguistics,
31(1):71–106.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

http://aclweb.org/anthology/P18-1035
http://aclweb.org/anthology/P18-1035

462

Erik F Sang and Fien De Meulder. 2003. Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint cs/0306050.

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

H Sebastian Seung, Manfred Opper, and Haim Som-
polinsky. 1992. Query by committee. In Proceed-
ings of the fifth annual workshop on Computational
learning theory, pages 287–294. ACM.

Aditya Siddhant and Zachary C Lipton. 2018. Deep
bayesian active learning for natural language pro-
cessing: Results of a large-scale empirical study.
arXiv preprint arXiv:1808.05697.

Gabriel Stanovsky and Ido Dagan. 2018. Semantics as
a foreign langauge. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), Brussels, Belgium. Associa-
tion for Computational Linguistics.

Thuy Vu, Ming Liu, Dinh Phung, and Gholamreza Haf-
fari. 2019. Learning how to active learn by dream-
ing. In Proceedings of the 57th Conference of the
Association for Computational Linguistics, pages
4091–4101.

Yilin Yang, Liang Huang, and Mingbo Ma. 2018.
Breaking the beam search curse: A study of (re-)
scoring methods and stopping criteria for neural ma-
chine translation. EMNLP.

