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Abstract

Recurrent neural network grammars (RNNGs)
generate sentences using phrase-structure syn-
tax and perform very well in terms of both
language modeling and parsing performance.
However, since dependency annotations are
much more readily available than phrase struc-
ture annotations, we propose two new gen-
erative models of projective dependency syn-
tax, so as to explore whether generative de-
pendency models are similarly effective. Both
models use RNNs to represent the deriva-
tion history with making any explicit indepen-
dence assumptions, but they differ in how they
construct the trees: one builds the tree bot-
tom up and the other top down, which pro-
foundly changes the estimation problem faced
by the learner. We evaluate the two mod-
els on three typologically different languages:
English, Arabic, and Japanese. We find that
both generative models improve parsing per-
formance over a discriminative baseline, but,
in contrast to RNNGs, they are significantly
less effective than non-syntactic LSTM lan-
guage models. Little difference between the
tree construction orders is observed for either
parsing or language modeling.

1 Introduction

Recurrent neural network grammars (Dyer et al.,
2016, RNNGs) are syntactic language models that
use predicted syntactic structures to determine the
topology of the recurrent networks they use to pre-
dict subsequent words. Not only can they learn
to model language better than non-syntactic lan-
guage models, but the conditional distributions
over parse trees given sentences produce excellent
parsers (Fried et al., 2017).

In this paper, we introduce and evaluate two
new dependency syntax language models which
are based on a recurrent neural network (RNN)
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backbone (§2).! Dependency syntax is particu-
larly appealing as many more languages have de-
pendency treebanks (e.g. the Universal Dependen-
cies Project (Nivre et al., 2017)) than have large
numbers of phrase structure annotations.

Like RNNGs, our proposed models predict
structure and words jointly, and the predicted syn-
tactic structure is used to determine the structure
of the neural network that is used to represent the
history of actions taken by the model and to make
a better estimate of the distribution over subse-
quent structure-building and word-generating ac-
tions. Because we use RNNs to encode the deriva-
tion history, our models do not make any explicit
independence assumptions, but instead condition
on the complete history of actions. The two pro-
posed models do, however, differ in the order that
they construct the trees. The first model operates
top down (§2.1), starting at the root and recur-
sively generating dependents until the last modi-
fier has been generated. The second operates bot-
tom up (§2.2), generating words from left to right
and interleaving decisions about how they fit to-
gether to form tree fragments and finally a fully
formed dependency tree.?

Because neither model makes explicit indepen-
dence assumptions, given enough capacity, infi-
nite data, and a perfect learner, both models would
converge to the same estimate. However, in our
limited, finite, and imperfect world, these two
models will impose different biases on the learner:
in one order, relevant conditioning information
may be more local (which could mean the neu-
ral networks have an easier time learning to ex-
ploit the relevant information rather than becom-

'"We release code for these two models, which can
be found at https://github.com/armatthews/
dependency-1m.

?In this work, we limit ourselves to models that are capa-
ble only of generating projective dependency trees.
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Figure 1: Generation process for the same dependency tree under the top-down and bottom-up models. As the
indices of the generation events show, the top-down model generates recursively from the root, whereas the bottom-

up model generates from left to right.

ing distracted by accidental correlations), while in
the other it may be more distant. These differ-
ences thus imply that the two models will have
different structural biases, but it is not at all clear
whether one should out perform the other. We
therefore explore to what extent this choice of con-
struction order affects performance, and we eval-
uate the proposed models on language modeling
and parsing tasks across three typologically differ-
ent languages (§3).

Our findings (§4) show that, like RNNGs, gen-
erative dependency models make good parsers.
Given the small scale of the Universal Depen-
dency corpora, this result is also in line with previ-
ous work which shows that joint generative mod-
els offer very sample-efficient estimates of condi-
tional distributions (Yogatama et al., 2017). Sec-
ond, we find that both dependency models are /ess
effective as language models than phrase structure
RNNGs or than standard LSTM language mod-
els. This negative result is not entirely surprising.
Although information about syntactic dependen-
cies seems intuitively that it would be helpful for
defining good conditioning contexts for language
models, since its earliest days (Tesniere, 1959),
work on dependency syntax has largely focused
on discriminative models of existing sentences. In
contrast, the phrase structure annotations found in,
e.g., the Penn Treebank that were used to demon-
strate improved language modeling performance
with RNNGs are indebted to linguistic theories
(e.g., government and binding theory, X-bar the-
ory) which are broadly concerned with determin-
ing which sentences are grammatical and which
are not—a crucial aspect of language modeling
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(Marcus et al., 1993). Finally, we observe only
minimal differences in language modeling perfor-
mance for top-down and bottom-up models. This
result is surprising in light of how different the es-
timation problems are, but it is a clear demonstra-
tion of the ability of RNNs to learn to extract rel-
evant features from data presented in any different
but consistent orders.

2 Models

We present two models for jointly generating pro-
jective dependency trees and sentences. The pro-
cesses are illustrated in Fig. 1. The first is a top-
down model (§2.1), which starts by generating the
root of the sentence, and then recursively gener-
ating its left and right modifiers. The second is
a bottom-up model (§2.2), which generates ter-
minals in a left to right order. In both cases,
there is a deterministic mapping from well-formed
sequences of generation actions into dependency
trees. Following convention in parsing literature,
we refer to such action sequences as oracles.

Both models both are parameterized with recur-
sively structured neural networks that have access
to the complete history of generation events. Thus,
the factorization of the tree probability is justified
by the chain rule. However, because of the differ-
ence in build orders, the conditional probabilities
being estimated are quite different, and we thus
expect these models might be more or less effec-
tive at either language modeling or (when used in
conjunction with Bayes’ rule) parsing.

To illustrate the different estimation problems
posed by the two models, consider the first gener-
ation event in both cases. In the top-down model,



the root word (usually the main verb of the sen-
tence) is generated first; whereas in the bottom-up
model, the first probability modeled is the prob-
ability of the first word in the sentence. Also,
in the top-down model a verb always generates
its dependentents (which has implications for how
agreement is modeled), whereas in the bottom-up
model, it the left dependents (whatever their func-
tion) will be generated first, and then the verb gen-
eration will be conditional on them. Again, we
emphasize that these differences potentially result
in differences in the difficulty of the estimation
problem (or how much capacity the model needs
to represent accurate conditionals), but do not im-
pact the expressivity or correctness of the models.

2.1 Top-Down

Our first model is a top-down model. The model
begins with an empty root node.® Starting from the
root the model recursively generates child nodes
using its GEN action. When the model chooses the
GEN action it then selects a new head word from
its vocabulary and creates a new node descended
from the most recent open constituent. Each node
created in this way is pushed onto a stack of open
constituents, and begins creating its left children.

To indicate that the current node (i.e. the top
node in the stack) is done generating left chil-
dren the model takes its STOP-L (“stop left”) ac-
tion, after which the current node begins generat-
ing its right children. Analogously, to indicate that
the current node is done generating right children
the model selects its STOP-R (“‘stop right”) action.
With this the current constituent is complete and
thus popped off the stack and attached as a child of
the new top-most constituent. See Figure 2 for ex-
amples of the effects of each of these three actions
on a partially built tree structure and Algorithm 1
for a sketch of their implementation.

At each decision point the model conditions on
the output of an LSTM over the partially com-
pleted constituents on the stack, beginning with
the root and ending with the top-most constituent.
The result is passed through an MLP and then
a softmax that decides which action to take next
(Figure 3). If the model chooses the GEN action,
the hidden vector from the MLP is used to sepa-
rately choose a terminal.

3The root node may never have left children. In this way
it is though the root node has already generated its STOP-L,
though this step is not explicitly modelled
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Algorithm 1 Top-Down Tree Generation

1: procedure EMBEDTREE(node)
2 state = Istm_initial_state
3 for child in node do
4 if child is terminal then
5: state.add(WordEmbs|child])
6 else
7 state.add(EMBEDTREE(child))
8 return state
9: procedure PICKNEXTACTION(stack)
10 h = MLP,on(EmbedTree(stack))
11: action ~ softmax(h)
12: return action
13: procedure PICKWORD(stack)
14: h = MLPy,oa(EmbedTree(stack))
15: word ~ softmax(h)
16: return word
17: procedure GENERATENODE(stack)
18: action = PICKNEXTACTION(stack)
19: if action == GEN then
20: word = PICKWORD(STACK)
21: stack.push(new Node(word))
22: else if action == STOP-L then
23: stack.back().add_child(STOP-L)
24: else if action == STOP-R then
25: stack.back().add_child(STOP-R)
26: child_emb = stack.pop()
27: stack.back().add_child(child_emb)

To embed each subtree on the stack we use an-
other LSTM. First we feed in the head word of the
constituent, followed by the embeddings of each
of the constituent’s children, including the spe-
cial STOP-L and STOP-R symbols. We then addi-
tionally add a gated residual connection from the
head word to final subtree representation to allow
salient information of the head word to be captured
without needing to pass through an arbitrary num-
ber of LSTM steps (Figure 4).

2.2 Bottom-Up

Our second model generates sentences bottom-up,
in the same manner as a shift-reduce parser. A
sentence is modeled as a series of actions (re-
lated to the arc-standard transitions used in pars-
ing (Nivre, 2013)) that manipulate a stack of em-
bedded tree fragments. There are three types of
actions: SHIFT(z), which pushes a new terminal
x onto the stack, REDUCE-L, which combines the
two top elements on the stack into one single sub-
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Figure 2: Examples of the three actions of our top-down model. The dotted arrow indicates where the new word
will go if the GEN action is chosen next. GEN creates a new terminal node and moves the dotted arrow to point to
the left of the new token. STOP-L moves the dotted arrow from the left of the current token to the right thereof.
STOP-R moves the dotted arrow from the right of the current token back up to its parent node.
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Figure 3: To encode the history of generation events in the top-down process, we use an LSTM over subtree
embeddings (See Figure 4). The LSTM proceeds from the root of the tree down to the most recent open node.
Each item in the LSTM is an embedding of a word and its already generated descendants. STOP symbols have
been suppressed for clarity.

tree with the left of the two as the head (i.e. witha  showed that this type of stack-based representation
leftward arrow), and REDUCE-R which again com-  alone is sufficient for language modeling and pars-
bines the top two elements of the stack, this time  ing, and indeed that more involved models actu-
making the right one the head. See Figure 5 forex-  ally damage model performance. See Figure 6 for
amples of how these three actions affect the stack  an example of how this bottom-up model chooses
of partially built tree structures during the parsing  an action.

of an example sentence.

. . 2.3 Marginalization
At each time step the model conditions on the

state of the stack using an LSTM running over en-  Traditionally a language model takes a sentence
tries from oldest to newest. The resulting vector b~ © and assigns it a probability p(zx). Since our
is then passed through an MLP, and then a softmax ~ syntax-based language models jointly predicts the
over the three possible action types. If the SHIFT ~ probability p(z,y) of a sequence of terminals x
action is taken, the vector h is re-used and passed ~ and a tree y, we must marginalize over trees to
through a separate MLP and softmax over the vo-  get the total probability assigned to a sentence x,
cabulary to choose an individual word to generate. p(x) = ZyeT(m) p(x,y), where T (x) represents
If one of the two REDUCE actions is chosen, the  the set of all possible dependency trees over a sen-
top two elements from the stack are popped, con-  tence x. Unfortunately the size of T (x) grows
catenated (with the head-to-be first, followed by ~ exponentially in the length of @, making explicit
the child), and passed through an MLP. The re-  marginalization infeasible.

sult is a vector representing a new subtree that is Instead we use importance sampling to approx-
then pushed onto the stack. Kuncoro et al. (2017)  imate the marginal (Dyer et al., 2016). We use the
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Figure 4: Examples of embedding two subtrees in the
top-down model. A subtree is embedded using an
LSTM over its child subtrees (solid lines) with a gated
residual connection from the root word to the final em-
bedding (dotted lines).

parser of Dyer et al. (2015), a discriminative neu-
ral stack-LSTM-based bottom-up parser, as our
proposal distribution ¢(x, y) and compute the ap-
proximate marginal using N = 1000 samples per

N )
sentence: p(z) ~ & > i, ZE:Z%

2.4 Parsing Evaluation through Reranking

In order to evaluate our model as a parser we
would ideally like to efficiently find the MAP
parse tree given an input sentence. Unfortunately,
due to the unbounded dependencies across the se-
quences of actions used by our models this infer-
ence is infeasible. As such, we instead rerank a list
of 1000 samples produced by the baseline discrim-
inative parser, a combination process that has been
shown to improve performance by combining the
different knowledge learned by the discriminative
and generative models (Fried et al., 2017).

For each hypothesis parse in the sample list
we query the discriminative parser, our top-down
model, and our bottom-up model to obtain a score
for the parse from each. We combine these scores
using weights learned to optimize performance on
the development set (Och, 2003).

3 Experimental Setup

Our primary goal is to discover whether
dependency-based generative neural models
are able to improve the performance of their
discriminative brethren, as measured on parsing
and language modeling tasks. We also seek to
determine the effect construction order and the
biases implicit therein has on performance on
these two tasks. To this end, we test a baseline
discriminative parser, our two models, and all
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combinations of these three models on a parsing
task in several languages, and we test a baseline
and our two models’ performance on a language
modeling task on the same set of languages.

3.1 Data Sets

We use the Universal Dependency corpora (Nivre
et al., 2017) for three languages with very differ-
ent structures: English, Japanese, and Arabic, as
provided for the 2017 CoNLL shared task on uni-
versal dependency parsing. In all languages we
convert all singleton terminal symbols to a special
UNK token. See Table 1 for details regarding the
size of these data sets.

For language modeling we evaluate using the
gold sentence segmentations, word tokenizations,
and part of speech tags given in the data. For pars-
ing, we evaluate in two scenarios. In the first, we
train and test on the same gold-standard data using
in our language modeling experiments. In the sec-
ond, we again train on gold data, but use UDPipe
(Straka and Strakov4, 2017) to segment, tokenize,
and POS tag the dev and test sets starting from raw
text, following the default scenario and most par-
ticipants in the CoNLL 2017 shared task.

3.2 Baseline Models

On the language modeling task we compare
against a standard LSTM-based language model
baseline (Mikolov et al., 2010), using 1024-
dimensional 2-layer LSTM cells, and optimized
using Adam (Kingma and Ba, 2014).

For the parsing task we compare against the
discriminative parser of Dyer et al. (2015), a
bottom-up transition-based parser that uses stack-
LSTMs, as well as the overall top system (Dozat
et al., 2017) from the 2017 CoNLL shared task
on multilingual dependency parsing (Zeman et al.,
2017). That work uses a discriminative graph-
based parser that uses a biaffine scoring function
to score each potential arc. Moreover, it uses
character-level representations to deal with mor-
phology and a PoS tagger more sophisticated than
UDPipe — two major changes from the shared
task’s default pipeline. These two differences af-
ford them a substantial advantage over our ap-
proach which only modifies the parsing step of the
pipeline.

Finally, we show the results of an oracle system
looking at the 1000-best lists used for our rerank-
ing experiments. Note that since this oracle system
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Figure 5: Examples of the three actions of our bottom-up model and their effects on the internal stack. SHIFT adds
a new terminal to the top of the stack. REDUCE-L combines the top two elements of the stack with a left arc from
the head of the top-most element to the head of the second element. REDUCE-R combines the top two elements
with a right arc from the head of the second element to the head of the top-most element.

Train Dev Test Vocab
Language Words Sents Words Sents Words Sents Singletons Non-S’tons
English 204585 12543 25148 2002 25096 2077 9799 9873
Japanese 161900 7164 11556 511 12615 557 13091 9222
Arabic 223881 6075 30239 909 28264 680 9907 13242

Table 1: Statistics of the universal dependency data sets used in this paper. Size of the train, dev, and test sets are
given in tokens. Vocabulary information is number of types.
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Figure 6: Our bottom-up model emulates a shift-
reduce parser and maintains an explicit stack. At each
timestep, we use the output of an LSTM over the stack
to choose the next action, which is then executed to
produce a new stack state.

is constrained to using only this list of samples it
is not able to achieve 100% parsing accuracy.

3.3 Hyperparameters

All models use two-layer 1024-unit LSTMs and
1024-dimensional word/action embeddings. All
other MLPs have a single hidden layer, again with
1024 hidden units. We implement all models us-
ing DyNet (Neubig et al., 2017), and train using
Adam (Kingma and Ba, 2014) with a learning rate
of 0.001, dropout with p = 0.5, and minibatches
of 32 sentences. We evaluate the model on a held
out dev set after 150 updates, and save the model
to disk whenever the score is a new best. All other
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settings use DyNet defaults.

4 Results

Parsing results Results on the parsing task can
be found in Table 2. We observe that in En-
glish with the gold-standard preprocessing our
models perform particularly well, showing an im-
provement of 1.16% UAS F1 for the top-down
and 0.82% UAS F1 for the bottom-up model
when individually combined with our discrimina-
tive parser. Combining all three models together
gives a total of 1.46% absolute improvement over
the baseline, indicating that the models capture
knowledge lacking in the baseline model, and
knowledge that is complementary to each other.
The story is similar in Japanese and Arabic,
though the gains are smaller in Japanese. We
hypothesize that this is due to the fact that pars-
ing Japanese is relatively easy because of its strict
head-final and left-branching nature, and thus our
baseline is already a remarkably strong parser.
This hypothesis is backed up by the fact that the
baseline parser alone is only 3-4% UAS away from
the oracle by itself, compared to about 10% away
on English and Arabic. Thus our relative improve-
ment, measured in terms of the percentage of pos-
sible improvement achieved, is quite consistent
across the three languages, at roughly 13%.
Results on the test set using UDPipe’s noisy
preprocessing also saw encouraging results from



English Japanese Arabic

Gold — Gold Gold — UDPipe Gold — Gold Gold — UDPipe Gold — Gold Gold — UDPipe
Model Reranked? Dev Test Dev Test ‘ Dev Test Dev Test ‘ Dev Test Dev Test
CoNLL Baseline X - - - 79.24 - - - 74.40 - - - 70.14
Dozat et al. (2017) X - - - 84.74 - - - 75.42 - - - 76.59
Disc (Greedy) X 87.00 85.92 78.85 78.12 ‘ 96.16 9520 76.67 75.70 ‘ 82.14 8239 69.74 70.34
Disc (Reranked) v 87.48 8630 78.99  78.23 96.04 95.17 76.66 7558 | 81.70 81.34 69.20 68.79
Top-Down v 82.94 8248 76.73 76.88 19299 9251 7484 74.18 | 80.99 80.85 69.78  69.64
Bottom-Up v 83.11 8270 76.79  77.13 94.56 9325 75.85 74.18 | 80.61 80.70 69.30 69.24
Disc + TD v 88.47 87.46 8046 79.56 | 96.07 9543 76.59 74.62 | 82.87 8237 70.35 70.25
Disc + BU v 88.29 87.12 80.09 79.33 96.17 9554 76.82 7592 | 8248 82.18 70.18 69.99
TD + BU v 84.93 84.56 78.71 78.72 | 94.87 94.03 76.15 7530 | 81.84 81.56 70.52  70.03
Disc + TD + BU v 88.74 87.76 80.49 80.22 | 96.18 95.58 76.86 7598 | 83.06 82.58 70.85 70.40
Oracle v 97.68 97.27 91.07 90.24 ‘ 99.39 99.25 79.67 80.34 ‘ 91.20 89.06 77.75 @ 76.17

Table 2: Results of parsing using our baseline discriminative parser, our two generative

models, combinations

thereof, and two contrastive systems from the CoNLL 2017 shared task. Scores in bold are the highest of our
models. Note that Dozat et al. (2017) use substantially different preprocessing. See §3.2 for details.

p(x,y) p(z)

Lang. Model Dev Test Dev Test
EN RNNLM - - 524 518
Top-Down 5.80 5.72 5.73 5.66
Bottom-Up 5.63 5.56 5.53 547

JA RNNLM - - 441 458
Top-Down 4.82 5.00 4.73 4.93
Bottom-Up 4.83 5.03 4.75 4.95

AR RNNLM - - 542 434
Top-Down 6.08 6.23 598 4.79
Bottom-Up 6.11 6.21 594 4.75

Table 3: Language modeling cross entropy of our
model and an RNNLM baseline. Lower is better. All
scores are expressed in nats.

the three-model ensemble gaining 1.99%, 0.40%,
and 1.61% on English, Japanese, and Arabic re-
spectively, solidly outperforming the 2017 CoNLL
shared task baselines across the board, and beating
Dozat et al. (2017), the overall shared task win-
ner’s, submission on Japanese.

Of particular note is that on both the gold and
non-gold data, and across all three languages, the
performance of the top-down and bottom-up mod-
els is quite similar; neither model consistently out-
performs the other. In Japanese we do find the
bottom-up parser beats the top-down one when
used alone, but when combined with the discrim-
inative model the lead evaporates, and in both of
the other languages there is no clear trend.

These results are consistent with Fried et al.
(2017) that has shown that generative models
are particularly good at improving discriminative
models through reranking, as they have an effect

similar to ensembling dissimilar models.

Language modeling results We find that de-
spite successes on parsing, our dependency mod-
els are not empirically suitable for language mod-
eling. Table 3 shows the performance of our mod-
els on the language modeling task. Across all three
languages, both of our models underperform a
baseline RNNLM by a consistent margin of about
0.5 nats per word.

Again we note that the two models perform re-
markably similarly, despite their completely dif-
ferent construction orders, and thus the completely
different sets of information they condition on at
each time step. Again neither model is a clear
overall victor, and in each individual language the
models are extremely close in performance.

5 Analysis

One of our most intriguing findings is that our two
proposed models perform remarkably similarly in
spite of their differing construction orders. One
would naturally assume that the differing orders,
as well as the wildly different history information
available at each decision point, would lead to per-
formance differences. We seek to hone in on why
the two models’ performances are so similar.
Unfortunately the fact that the models use dif-
ferent conditioning contexts makes direct compar-
ison of sub-sentential scores impossible. The top-
down model, which generates the verb before its
subject noun, may have large entropy when choos-
ing the verb, but an easier time choosing the sub-
ject since it can condition on the verb limiting its
choices to appropriate semantic classes, person,
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Structure  Terminals
Top-Down 4.97 67.9
Bottom-Up 7.42 63.3

Table 4: Our models’ average negative log likelihoods
on the English dev set broken down into structure and
terminal components

number, et cetera. The bottom-up model, on the
other hand, will generate the subject noun from
the entire list of possible nouns first, and then will
focus its probability on relevant and agreeing verb
forms when generating the verb.

To this end we plot the scores (i.e. the nega-
tive log probabilities) the models assign to each
gold tree in the English dev set. The raw scores
between the top-down and bottom-up models are
highly correlated (Pearson’s r = 0.995), largely
due to the fact that longer sentences naturally have
lower probabilities than shorter sentences. As
such, we examine length-normalized scores, di-
viding each sentence’s score by its length. The
results are still largely correlated (r = 0.88), with
a few outliers, all of which are very short (<3 to-
kens) sentences.

We hypothesize that much of this correlation
stems from the fact that for a given sentence both
models must generate the same sequence of ter-
minal symbols. Some sentences will have rare se-
quences of terminals while others have more com-
mon words, leading to an obvious, but perhaps un-
informative, correlation. To examine this possibil-
ity we factor our models’ scores into a terminal
component and a structure component so that the
overall negative log likelihood of a sentence is de-
composed as NLL. = NLLerminais + NLLgtructure-
We then examine the correlation between the two
models’ scores’ terminal components and their
structure components separately. We find that the
terminal components are still strongly correlated
(r = 0.91), while the structure components are
largely uncorrelated (r = 0.09), hinting that in-
formation the two models learned about the cor-
rect structure of English sentences differs. See
Appendix Figure 7 for a visual representation of
these data. Overall the top-down model also as-
signs much higher probabilities to correct struc-
tures, but lower probabilities to the correct termi-
nal sequences (Table 4).
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6 Related Work

Most work on discriminative dependency pars-
ing follows the bottom-up paradigm (Nivre, 2003;
Nivre et al., 2007; Dyer et al., 2015; Kiperwasser
and Goldberg, 2016), but top-down models have
also shown some promise (Zhang et al., 2015).

Generative dependency models go back to Hays
(1964), but most existing such models (Buys and
Blunsom, 2015; Jiang et al., 2016) have relied on
independence assumptions whether used for pars-
ing, unsupervised dependency induction, or lan-
guage modeling. Buys and Blunsom (2015) also
describe a generative bottom-up neural parser, but
use hand-crafted input features and limit the model
to third-order features. Titov and Henderson
(2010) explore a generative parsing model with no
independence assumptions based on sigmoid be-
lief networks (Neal, 1992) instead of RNNss.

The CoNLL 2017 shared task saw many differ-
ent models succeed at parsing Universal Depen-
dencies. Most of the top contenders, including the
best scoring systems on the languages discussed in
this work, use discriminative models.

Kanayama et al. (2017) had tremendous success
on Japanese using a wildly different approach.
They train a model to identify likely syntactic
heads, then assume that all other words simply at-
tach in a left-branching structure, which works due
to the strictly head-final nature of Japanese.

Dozat et al. (2017) train a discriminative neural
parser which uses a BILSTM to generate hidden
representations of each word (Kiperwasser and
Goldberg, 2016). These representations are used
to score arcs, which are greedily added to the tree.

Bjorkelund et al. (2017) perform best on Ara-
bic, using an ensemble of many different types
of bottom-up discriminative parsers. They have
each of twelve parsers score potential arcs, learn
a weighting function to combine them, and use
the Chu-Liu-Edmonds algorithm (Chu, 1965; Ed-
monds, 1967) to output final parses.

All three of these discriminative models are
very effective for analysis of a sentence, none of
them are able to be converted into a similar gener-
ative model. At best, the biaffine model of Dozat
et al. (2017) could generate a bag of dependencies
without order information, which makes it imprac-
tical as the basis for a generative model.

There has been past work on building recurrent
neural models that condition on the buffer to make
parsing decisions in a shift-reduce parser. Hender-



son (2004) was among the first to introduce such
a model. They introduce both a generative and
discriminative model based on Simple Synchrony
Networks (Lane and Henderson, 1998), and use
a pre-cursor to attention mechanisms to choose
which previous states are most relevant at the cur-
rent timestep. More recently Dyer et al. (2015)
created a similar model based on stack LSTMs.

There has also been past work on language
modelling with generation orders other than the
typical left-to-right. Ford et al. (2018) examine a
variety of possibilities, but stop short of syntax-
aware oderings. Buys and Blunsom (2018) inves-
tigate neural language models with latent depen-
dency structure, also concluding that while depen-
dencies perform well on parsing they underper-
form for language modelling.

7 Conclusion

In this paper we test our hypothesis that depen-
dency structures can improve performance on lan-
guage modeling and machine translation tasks, in
the same way that constituency parsers have been
shown to help. We conclude that generative de-
pendency models do indeed make very good pars-
ing models, and, as has been observed in phrase
structure parsing, combining a generative depen-
dency parser with a traditional discriminative one
does indeed improve parsing performance. We
however also find using dependency models in-
formation to structure the intermediate represen-
tations in language modeling does not easily lead
to better outcomes.

This pattern of results suggests that while de-
pendencies may be a useful tool for text analysis,
but are less suited to characterizing a generation
process of sentences than phrase structure gram-
mars area. Finally, we find that the choice of top-
down or bottom-up construction order affects per-
formance minimally on both the parsing and lan-
guage modeling tasks despite the large differences
in the local conditioning contexts of each action
choice.
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Figure 7: Analysis of the structure (top) and terminal (bottom) scores of our two models’ performance on the
English development set. We find that the structure scores are not correlated, while the terminal scores of the two
models are highly correlated.
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