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Abstract

Universal Conceptual Cognitive Annotation
(UCCA; Abend and Rappoport, 2013) is
a typologically-informed, broad-coverage se-
mantic annotation scheme that describes
coarse-grained predicate-argument structure
but currently lacks semantic roles. We argue
that lexicon-free annotation of the semantic
roles marked by prepositions, as formulated
by Schneider et al. (2018), is complementary
and suitable for integration within UCCA. We
show empirically for English that the schemes,
though annotated independently, are compati-
ble and can be combined in a single semantic
graph. A comparison of several approaches to
parsing the integrated representation lays the
groundwork for future research on this task.

1 Introduction

A common thread in many approaches to mean-
ing representation is the idea that abstract struc-
tures can describe semantic invariants that hold
across paraphrasing or translation: for example,
semantic dependency relations capturing predicate-
argument structures or other types of semantic
relations that can be annotated within sentences
(e.g., Bohmova et al., 2003; Oepen et al., 2015;
Banarescu et al., 2013). These annotation schemes
can be distinguished by various design principles
such as language-specificity; the level of granu-
larity of meaning elements; the reliance on mor-
phosyntactic criteria to define the units of semantic
annotation; the extent to which human annotators
specify semantics from scratch; and many others
(Abend and Rappoport, 2017).

In this work, we seize an opportunity to unite
two previously unrelated—yet complementary—
meaning representations in NLP. On the one
hand, Universal Conceptual Cognitive Annotation
(UCCA; Abend and Rappoport, 2013) provides
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Figure 1: Semantic parse illustrating the integrated rep-
resentation proposed here. Solid edges are the UCCA
parse’s primary edges, and the dotted edge is a re-
mote edge. Dashed arrows show how SNACS labels
(green small caps) have been mapped onto edges of the
UCCA structure from the prepositions on which they
were originally annotated. The following UCCA cat-
egories are abbreviated: A = Participant, R = Relator,
H = Parallel scene, Q = Quantifier, Fxn = Function.

a skeletal structure of semantic units and rela-
tions, with typologically-based criteria for mark-
ing predicate-argument structures, based on “Basic
Linguistic Theory”, an established framework for
typological description (Dixon, 2010/2012). On
the other hand, a recent approach to annotation
of English prepositions and possessives (SNACS;
Schneider et al., 2018) provides an inventory of
labels that characterize semantic relations. UCCA
and SNACS follow similar design principles: they
are both language-neutral, with general-purpose
coarse-grained labels rather than lexically-specific
senses or roles; and they are both designed for
direct semantic annotation, without requiring a syn-
tactic parse as a foundation. The philosophy is that
these properties will facilitate annotation in many
languages and domains that may lack detailed lexi-
cons. But UCCA makes only the most rudimentary
role distinctions, while SNACS annotations thus far
have not made explicit which elements are being
brought into a semantic relation (§2).

We propose a design that achieves the best of
both worlds, as illustrated for an English example
in figure 1. Taking advantage of an English corpus
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that has been separately annotated for both UCCA
and SNACS, as well as dependency syntax, we
show that the SNACS role labels can be automat-
ically integrated within UCCA structures over a
range of syntactic constructions (§3). Then, we use
this corpus to test pipelined, multitask, and joint
approaches to parsing the integrated representation
(§4). Our findings (§5) set the stage for future En-
glish parsers as well as multi- and cross-lingual
extensions. §6 situates this work in the broader
landscape of computational meaning representa-
tions.
Our main contributions are:

a typologically-oriented broad-coverage lin-
guistic representation that captures predicate-
argument structure and semantic roles, without
reference to any lexicon;

a procedure to integrate UCCA and (token-
level) SNACS annotations for particular sen-
tences, mapping the SNACS labels to the ap-
propriate edge in the UCCA structure, by which
we create an integrated gold standard; and
initial results for the integrated parsing task,
comparing several alternatives that couple the
learning/prediction of UCCA and SNACS in var-
ious ways. We find that optimizing for the two
objectives jointly works best.

Data and code from these experiments are open-
sourced to facilitate future work on this task.!

2 Background

To better understand the distinctions that we expect
to be captured by such a framework, consider the
following examples:

(1) a. Her picture was on the wall.
b. Her speech was on security.

Despite parallel syntax and overlapping vocabulary,
the sentences above vary in numerous aspects of
meaning:

* The NPs her picture and the wall denote entities
that stand in a certain locative relation to each
other, as signaled by the preposition on.

* In contrast, the relation between her speech
(which is an event, not an entity) and security is
a different one, TOPIC, despite being signaled by

lIntegrated data: https://github.com/jakpra/
ucca-streusle; parser code: https://github.com/
jakpra/tupa; the integration routine and evaluation scripts
are being released as part of the UCCA PyPI package and
under https://github.com/jakpra/ucca.
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the same preposition.

This is made explicit in the German translations
of these sentences:

(2) a. Ihr Bild hing an der Wand .
Her picture hung at the wall

b.

Thre Rede war iiber Sicherheit .
Her speech was over security

In addition, the possessive pronoun her (ihr/ihre)
signals a prototypical POSSESSION relation in (1a)/
(2a), but the core role of AGENT in (1b)/(2b).

As we can see, the natural lexical choices for
expressing the LOCATION relation between the pic-
ture and the wall and the TOPIC relation in German
have diverging literal translations to English. Thus,
the empirical study of cross-linguistic commonal-
ities and differences between form and meaning
calls for a common metalanguage to describe the
relations between mentioned events and entities, as
marked by case and adpositions.

Our approach to such a representation consists
of utilizing two existing semantic representations.
UCCA (§2.1) captures the structure of predicate-
argument and head-modifier relations at a high
level, crucially distinguishing units that evoke a
scene (event or state) from other units. SNACS
(§2.2) disambiguates semantic roles as signaled by
adpositions and possessives, but only directly an-
notates a function word, without formalizing the
semantic relation that it mediates.” Both of these
schemas have the guiding principle to be language-
independent, eschewing a lexicon and defining a
closed inventory of semantic categories.

2.1 UCCA

UCCA is a semantic annotation scheme rooted
in typological and cognitive linguistic theory. It
aims to represent the main semantic phenomena
in the text, abstracting away from syntactic forms.
UCCA'’s foundational layer, which is the only layer
annotated over text so far,’ reflects a coarse-grained
level of semantics that has been shown to be pre-
served remarkably well across translations (Sulem
et al., 2015). It has also been successfully used for
improving text simplification (Sulem et al., 2018b),

ZNote that mapping between syntactic and semantic re-
lations varies by construction: in She spoke on security, the
semantic head of the relation between spoke and security corre-
sponds to the syntactic head (the verb), whereas in Her speech
was on security, UD treats security as the syntactic head (§3).

3Prange et al. (2019) have proposed and piloted a corefer-
ence layer that sits above the foundational layer.
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as well as to the evaluation of a number of text-
to-text generation tasks (Birch et al., 2016; Sulem
et al., 2018a; Choshen and Abend, 2018).

Formally, UCCA structures are directed acyclic
graphs over units (nodes covering a subset of to-
kens). Atomic units are the leaves of the graph:
individual tokens or unanalyzable MWEs. Nonter-
minal units represent larger semantic constituents,
such as scenes and compositional participants/
modifiers. The example in figure 1 has 5 nonter-
minal units. Each unit (save for the root) has a
single incoming primary edge, and may also have
incoming reentrant remote edges to express shared
argumenthood. The primary edges of a UCCA
structure thus form a tree, which along with the
remote edges, forms a DAG.*

Edges are labeled with one or more categories
indicating a kind of semantic relationship. The
small set of categories includes State and Process
for static or dynamic scene predicates, respectively;
Participant, Time, and Adverbial for dependents
of scenes; Center for the head of a non-scene unit
(usually an entity); and Elaborator and Quantity
for modifiers of entities. Scenes can be semantic
dependents (Participant of another scene, Elabora-
tor of a non-scene). Multiple scenes at the same
level are called Parallel Scenes, and connectives
between them are Linkers.

UCCA makes a distinction between different
functions of prepositions, the most common cases
of which are: (1) phrasal verbs (e.g., “give up”),
annotated as internally unanalyzable; (2) linkers be-
tween scenes; €.g., in figure 1, “after” links the go-
ing to ohm scene, and the reading scene); (3) main
relations in scenes (e.g., “The apple tree is in the
garden”); and (4) case markers within a scene or
a participant, or Relators in UCCA terms (e.g., in
figure 1, “to” and “of”” are such markers).

However, apart from distinguishing temporal
modifiers, the UCCA scheme does not provide any
semantic role information: thus the analyses of
“the dark wizard defeated by Gandalf” and “the dark
wizard’s defeat of Gandalf” are nearly isomorphic—
obliterating the distinction between agents and pa-
tients in the semantics—though the grammatical en-
coding of the noun phrases in question (subject, by-
PP, possessive, of-PP) leaves no ambiguity about
the intended roles to a human reader.

“There is also the capability to annotate implicit units, but
these are ignored in the standard evaluation and we do not
address them here.

2.2 SNACS

SNACS is an inventory of 50 roles/relations used to
disambiguate adpositions and possessives in multi-
ple languages, including English (Schneider et al.,
2018, 2019), Mandarin Chinese (Zhu et al., 2019),
and to a lesser extent, Korean, Hindi, and Hebrew
(Hwang et al., 2017). Many of the SNACS labels,
such as AGENT, THEME, and TOPIC, are derived
from VerbNet’s (Kipper et al., 2008) core roles
of predicates. (Others, such as QUANTITY and
WHOLE, are for entity modification.) But unlike
VerbNet, FrameNet (Fillmore and Baker, 2009),
and PropBank (Palmer et al., 2005), SNACS does
not require a language-specific predicate lexicon
(hence Schneider et al. (2018) use the term ““super-
senses”’, which we adopt in the remainder of this
paper)—and is therefore compatible with UCCA’s
design principle of crosslinguistic applicability.’

Currently, SNACS labels are applied directly
to lexical items, without marking up underlying
structure on either the subword (morphological) or
the sentence-structure level.

3 Automatically Integrating Semantic
Roles with UCCA

With the benefit of a jointly annotated corpus, we
examined the data and determined that the proper
placement of adpositional semantic role labels is
fairly deterministic given certain syntactic patterns
and their structural counterparts in UCCA. Here
we present a rule-based method for automatically
integrating token-based semantic role annotations
from SNACS into an UCCA graph as edge refine-
ments. We use these rules to construct a gold
standard for analysis and parsing of the integrated
representation. The rules we use, though empiri-
cally grounded in the English Web Treebank cor-
pus (Bies et al., 2012), make no specific assump-
tions about language or lexicon, as they solely de-
pend on UCCA, SNACS, and Universal Depen-
dencies (UD; Nivre et al., 2016) annotation, all
of which are frameworks designed to be cross-
linguistically applicable. Thus, we expect the rules
could be adapted to other languages with only mi-
nor changes if the underlying annotations are ap-
plied consistently, though this will require testing
in future work.

SSNACS also annotates the function of a preposition
token—its lexical semantics which may be distinct from its
semantic role (Hwang et al., 2017). Only scene roles are taken
into account in the present analysis.
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scene non-scene train dev test total
verb I went [ to ohm | Quit | with the sentences 2,723 554 535 3,812
overstatements ] ! tokens 44,804 | 5,394 | 5,381 | 55,579
Wonderful service | Cheapest drinks SNACS-annotated 4,522 453 480 5,455
noun | [for large group ] | [inKeene] | successful integ. 4,435 447 473 5,355
[ 10 minutes | of [ No amount | of sugar matches synt. obj 3,924 403 438 4,765
paperwork and milk can mask it .

Table 1: Syntactic and semantic dimensions of canon-
ical adpositional phrase constructions. The adposi-
tion is bolded, the semantic head is italicized, and the
semantic dependent is [ bracketed ]. Rows indicate
whether the semantic head is nominal or verbal, while
columns differentiate between scene-evoking and non-
scene-evoking heads. Scene-evokers are underlined.

3.1 Data

We use the STREUSLE 4.0 corpus (Schneider and
Smith, 2015; Schneider et al., 2018), which covers
the reviews section from the English_ EWT tree-
bank of UD 2.3, and lexical semantic annotations
for the same text.® The same corpus has been an-
notated with UCCA by Hershcovich et al. (2019a).
We use the standard train/dev/test split for this
dataset (table 2). §3.3 shows the distribution of
linguistic phenomena at issue here.

3.2 Procedure

Given an UCCA graph with annotated terminals,
the integration routine projects a SNACS annota-
tion of a token onto the appropriate edge repre-
senting a semantic relation. This is illustrated by
dashed arrows in figure 1. The procedure starts
with a single terminal node, traversing the graph
upwards until it finds an edge that satisfies the crite-
ria given by the rules. The rules concern canonical
prepositional phrase modifiers, plus a variety of
syntactically or otherwise anomalous constructions,
such as copulas and adverbs.

3.2.1 Canonical PPs

The adpositional constructions annotated in
STREUSLE can be adnominal or adverbial mod-
ifiers and arguments, where both the nouns and
verbs that are being elaborated on can evoke ei-
ther scenes or non-scene units in UCCA (table 1).
First, we take a look at expressions marked with
Relators in UCCA, which generally correspond to
prototypical syntactic PPs.

Modifiers of scenes. In general, if the adposition
marks a modifier of a scene—i.e., the adposition

‘UD: https://github.com/UniversalDependencies/
UD_English-EWT; however, as described in §5.1, we use
automatic dependency parses in all experiments, to emphasize
generalizability.

Table 2: Quantitative analysis of adpositional construc-
tions in the corpus.

is the first or last terminal in the modifier unit’s
yield—the supersense should refine the role of that
dependent. The adposition’s parent unit is refined
by the supersense (“to ohm” in figure 1 and table 1;
“for large group” in table 1).

Modifiers of non-scenes. Where the adposition
relates a modifying (elaborating or quantifying)
unit to a non-scene unit, the supersense refines the
modifying unit. If the adposition is the first or last
terminal in a non-Center unit, that unit gets refined
(“in Keene” in table 1). This includes the case
when the adposition marks the predicate evoking
the scene of which the syntactic governor is a mod-
ifier (“‘with the overstatements”: “Quit” is treated
as an aspectual modifier of the “overstatements”
event).

For partitive constructions like “the top of the
mountain”, both the syntactic governor and object
of the adposition are marked as UCCA Centers,
indicating that they are on a semantically equal
level—neither one is clearly only modifying or
being modified by the other. In this case, the super-
sense refines the syntactic object of the adposition.

Quantities. Another special case is where the
adposition is labeled as QUANTITY, in which case
the unit for its syntactic governor’ (“10 minutes” in
table 1) receives the refinement: e.g., “[ some ] of
the reviews” in figure 1; in table 1, “[ 10 minutes ]
of paperwork™ and “[ no amount ] of sugar” (the
bracketed expression is the QUANTITY).

3.2.2 Non-canonical phenomena

For other, less prototypical constructions involving
SNACS-annotated expressions, such as copulas,
linked parallel scenes, possessive pronouns, and id-
iomatic PPs, we have additional rules, summarized
in supplementary material (appendix A).

"We determine the head noun of the syntactic gov-
ernor and object using a script released together with
the STREUSLE corpus: https://github.com/nert-nlp/
streusle/blob/master/govobj.py. Since semantic UCCA
units do not always align with syntactic phrases, we choose
the UCCA unit containing the head token of the syntactic
governor or object in its yield.
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train dev test total
total primary edges | 54,204 | 6,628 | 6,623 | 67,455
total remote edges 2,881 349 387 3,617
refined 4,473 449 479 5,401
> 1 edge refined 38 2 6 46
remote edges 33 2 5 40
canonical 2,468 242 270 2,980
scene mod 2,124 219 254 2,597
non-scene mod 344 23 16 383
| non-canonical | 2,005 | 207 |” 209 | 2,421 |

predication 167 19 23 209
linkage 461 54 41 556
intransitive adp. 261 19 23 303
scn-mod nscn-mod 189 72 14 5 20 3 223 80
approximator 14 0 1 15
possessive pron. 897 81 95 1,073
scn-mod nscn-mod 774 123 72 9 87 8 933 140
infinitival 66 18 11 95
scn-mod nscn-mod 15 51 0 18 1 10 16 79
PP idiom 139 16 15 170

Table 3: Refined UCCA edges by construction type,
according to our heuristic. (The non-canonical subcat-
egories are mutually exclusive.)

3.3 Quantitative Analysis

We run the integration routine on our dataset and
report statistics in tables 2 and 3. The heuristic
rules have a coverage of 98% — 99% (row ‘success-
ful integ.” divided by row ‘SNACS-annotated’ in
table 2). 88.5% (train) — 92.6% (test) of refined
units contain the syntactic complement® (table 2),
indicating that while syntax may often give a good
approximation to the semantic relations marked by
adpositions, a direct mapping from syntactic into
semantic structure is not always trivial.

In table 3, we see that among the canonically ad-
positional SNACS targets, the vast majority mark
scene modifiers (including participants). The vari-
ous non-canonical targets modify both scenes and
non-scenes, except for linkages and predications,
which naturally only operate at the scene-level,
and approximators, which only elaborate on non-
scenes. Similar to canonical adpositional construc-
tions, possessive pronouns and intransitive adposi-
tions have a tendency to modify scenes rather than
non-scenes. Those infinitivals that are not inter-
scene Linkers (which are counted under linkage)
are mostly non-scene modifiers.

Remote edges are only rarely affected by the
SNACS integration, so we exclude them from eval-
uation in §5.

8We use the term ‘syntactic complement’ to include head
tokens of prepositional objects and subordinate clauses, as
determined by the script mentioned above. If no prepositional
object is given in the STREUSLE corpus, we consider the
adposition itself and only count towards this metric if the
refined edge is its incoming preterminal edge.

3.4 Difficult Cases & Limitations

Our heuristics are based solely on universal seman-
tic and syntactic annotations, with no assumptions
about the grammar or lexicon of any specific lan-
guage. However, there are some limitations to the
rules that deserve discussion. Most importantly, as
many rules are highly sensitive to UCCA structure
and categories, errors or inconsistencies in human
and automatic UCCA annotation are likely to throw
the system off. This can be mitigated with strict
constraints and careful reviewing during manual
annotation, but cannot be fully avoided when ap-
plying the rules to automatically generated UCCA.

Multiword expressions (MWEs) are another
source of difficulty. Both UCCA and STREUSLE
mark idiomatic MWEs, but follow slightly differ-
ent guidelines. The heuristic rules actually recover
from most MWE misalignments; however, con-
structions that are MWEs in UCCA and contain
multiple SNACS targets, such as as-as compara-
tives, are not fully resolved by our heuristic, as we
cannot assign individual edge refinements for the
adpositions’ competing supersenses, given that we
start traversing the UCCA graph from the shared
preterminal node.

4 Models

We hypothesize that our combined (lexical and
structural) semantic representation is not only lin-
guistically plausible, but also useful in practice, as
the annotations on both levels should be informa-
tive predictors for each other. That is, we expect
that knowing what semantic role is signaled by an
adposition informs the underlying semantic struc-
ture of the sentence, and vice versa.

In order to test this hypothesis, we use our anno-
tated corpus to parse into the integrated representa-
tion. We consider several different ways of orches-
trating the prediction of the foundational UCCA
structure and the prediction of SNACS roles: mod-
eling SNACS and UCCA in (i) a pipeline, (ii) a
multitask setup with shared parameters, (iii) a sin-
gle joint model.

4.1 Baseline: TUPA

We choose the neural transition-based graph parser
TUPA (Hershcovich et al., 2017, 2018) as a strong
baseline for UCCA parsing. It was the official base-
line in the recent SemEval shared task on UCCA
parsing (Hershcovich et al., 2019b).

TUPA’s transition system is defined to address
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Figure 2: Average F1-score on the test set over 5 random restarts with error bars indicating standard deviation. fer
stands for terminal-level and rel for relation-level SNACS refinement (prediction or features).

the different formal structural phenomena exhib-
ited by UCCA structures, notably reentrancies and
discontiguous units. There are transitions for cre-
ating nonterminal nodes, and for attaching termi-
nal and nonterminal nodes to a primary or remote
(reentrant) parent with an UCCA category label on
the edge. The transition system is general enough
to be able to tackle parsing into a variety of for-
malisms, including SDP (Oepen et al., 2015) and a
simplified form of AMR (Banarescu et al., 2013);
Hershcovich et al. (2018) take advantage of this
flexibility in their multitask learning framework.
TUPA’s learning architecture largely follows that
of Kiperwasser and Goldberg (2016). It encodes
the parser’s configuration (buffer, stack and inter-
mediate graph structure) using BiLSTMs, and pre-
dicts the next transition using an MLP, stacked on
top of them. Token-based features, including POS
tags, dependency parses, as well as NER and or-
thographic features, are embedded in the BiLSTM.
Another set of features, taking into account the par-
tially constructed graph and previously predicted
transition types, is fed into the MLP directly.

4.2 Pipeline

We extend TUPA by providing the SNACS label as
a feature on the adposition token.” This is added
in preprocessing in the same way as the syntactic
features listed above (including the BiLSTM en-
coding). At testing time, we obtain SNACS labels
for automatically identified targets from the SVM
model of Schneider et al. (2018).

4.3 Multitask

Hershcovich et al. (2018) showed that UCCA pars-
ing performance can be improved with multitask

“We report here only results for the setting in which a
supersense is added as a feature of the preposition token. We
also experimented with using it as a feature of the syntactic
object token—which often, but not always, heads the semantic
object (cf. table 2)—but got similar or worse results.

learning (MTL; Caruana, 1997) on several se-
mantic and syntactic parsing tasks. We examine
whether alternately optimizing two objectives, one
for UCCA and one for SNACS, leads to mutually
favorable biases via shared parameters. There are
multiple ways the two tasks can be orchestrated:
Independent MTL. This is the multitask learn-
ing (MTL) setup from Hershcovich et al. (2018),
where separate transition classifiers are trained on
different tasks simultaneously, sharing and mutu-
ally updating the BiLSTM encoding.' We con-
sider as auxiliary tasks (a) SNACS scene role clas-
sification and (b) the decision of which UCCA
unit is refined by a SNACS-annotated token. We
encode these tasks as parsing tasks analogous to
UCCA parsing as follows: for each training item
in (a), we create a graph consisting of a root and
up to 4 children: the syntactic governor (if avail-
able), the preposition token, the syntactic object (if
available)—all of which have dummy edge labels—
as well as a dummy terminal carrying the SNACS
supersense. For each training item in (b), we con-
sider the full UCCA structure, but the edge labels
are simply boolean values indicating whether an
edge is refined or not.

We also train a separate model with SNACS clas-
sification as the primary task and UCCA parsing
and SNACS integration as auxiliary tasks, whose
predictions are integrated in postprocessing for the
combined evaluation (table 4), and which is evalu-
ated independently in table 5.
Dependent MTL. Here we train the SNACS task
in direct interaction with the UCCA parsing task.

1Note that our setup differs from that of Hershcovich et al.
(2018) in two key points: In contrast to the auxiliary tasks used
in the aforementioned work, SNACS prediction as formulated
by Schneider et al. (2018) is not a structured, but a (per-token)
classification task (however, as described above, we transform
it into an artificially structured task to make it conform with
the input format expected by TUPA). Furthermore, we are
interested in both UCCA and SNACS performance, expect-

ing both tasks to benefit from each other’s complementary
semantic content.
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system Refined: exact  Refined: SNACS Refined: UCCA Refined: unlabeled Full

setup ref P R F P R F P R F P R F P R F
BL 302 29.7 30.0(39.3 387 389|457 451 454574 56.6 57.0 |682 676 67.8
(oracle SNACS) | | 454 451 452 | 627 623 625 | 489 486 487 | 627 623 62.5 69.5 689 692
pipeline ter 329 324 326(42.0 413 41.6|49.1 482 48.6[609 599 604 |68.8 68.6 68.7
(oracle SNACS) 535 532 533 | 704 700 702 | 570 567 569 | 704 700 702 | 7.0 707 708
indep MTL | ter | 26.0 222 239|343 293 31.6|53.1 454 49.0 | 68.7 586 632 |67.1 66.6 668
dep MTL ter | 34.4 303 322 |43.1 38.0 404539 475 505(669 59.1 627 | 684 68.1 68.2
rel | 32.7 30.6 31.6|39.6 372 383|51.8 486 50.1 640 60.1 619 |683 67.6 679
.. ter | 34.5 343 342 | 44.6 443 444|539 535 53.7(69.0 68.5 68.7 | 69.5 68.7 69.1
Joint rel | 34.0 28.1 30.8 |404 334 365|561 464 50.7|703 582 63.7 |69.1 683 68.7

Table 4: Experimental results, averaged over 5 random restarts. The baseline system (BL) for UCCA is TUPA
version 1.3.9 without any modifications, retrained on our data. For the sake of generalizability and consistency
with our own preprocessing, we use system-predicted SNACS categories from the auto-id/auto-syntax setting from
(Schneider et al., 2018) in the BL and pipeline setups. Results where the system has access to gold SNACS
annotations on adposition tokens are shown in small font.

We enhance TUPA with a separate MLP that, given
an edge, classifies its supersense refinement (a null
category can be chosen to indicate an unrefined
edge). This network is run after each edge-creating
transition. Its input features are the same as for
the transition classifier, including the BiLSTM en-
coding. Since the two classifiers alternate in mak-
ing forward passes and updating the shared BiL-
STM, they indirectly contribute to each other’s in-
put. Here we have an option of where in the UCCA
structure to initially predict the supersense label. In
the terminal-level (ter) setting, we predict super-
sense refinements only on preterminal edges, and
then apply the integration rules (§3) as postprocess-
ing. In the relation-level (rel) setting, we parse
directly into the integrated representation. To do
this, we preprocess the training data with our inte-
gration routine. However, during parsing, there is
no explicit restriction that supersense-refined edges
must have an adposition token in their yield—thus
the model could, in theory, learn to predict ade-
quate role supersenses even when it is not signaled
by a lexical marker (though it will get penalized for
that in our current evaluation).

4.4 Joint

Finally, we train a single classifier on the integrated
data, concatenating UCCA and SNACS categories,
to predict parsing transitions using the new com-
pound categories. We revisit the terminal-level and
the relation-level settings introduced in §4.3.

5 Experiments

5.1 Experimental Setup

Preprocessing. We follow Hershcovich et al.
(2018) in obtaining automatic POS and NE tags,
as well as syntactic dependency relations using

SpaCy 2.0, and pretrained word vectors from fast-
Text.'! For all setups that use or predict SNACS
supersenses, we include the gold standard scene
role categories for pre-identified targets from the
STREUSLE 4.0 corpus in our training and devel-
opment data. In the test data we identify adposition
targets using the heuristics introduced in Schneider
et al. (2018). For the joint prediction setup (§4.3),
we also include the head terminal of the syntactic
governor and object for each adposition as features,
using the same heuristics as in §3.

Architecture and hyperparameters. For classi-
fying the next transition, TUPA uses a multi-layer
perceptron (MLP) with 2 hidden layers and a soft-
max output layer, on top of a 2-layer BiLSTM
(Kiperwasser and Goldberg, 2016). Building on
previous work, we train for 100 epochs, using the
stochastic gradient descent optimizer for the first
50, and AMS-grad (Reddi et al., 2018) for the re-
maining 50 epochs,'? and apply early stopping
post-hoc by keeping the model with the highest
performance on the dev set as the final model.
Evaluation. For our main evaluation in §5.2, we
compare our systems along five new metrics: a full
structure score which evaluates precision and re-
call of all units and requires both the UCCA and
SNACS categories to be correct, where applica-
ble; and refined UCCA, SNACS, exact, and unla-
beled scores which only consider SNACS-refined
units. Here, the integrated representation obtained
via the rule-based integration (§3.2) serves as the
ground truth. We also report the standard labeled
and unlabeled UCCA scores.!? In addition, for sys-

11https://spacy.io/;https://fasttext.cc/
12Except for the independent MTL setting, where we stop
training after the first 50 epochs.

13 All of the above metrics are F-scores over the edges, as
in Hershcovich et al. (2017).
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system UCCA labeled UCCA unlabeled SNACS
setup ref P R F P R F P R F
[ BL [ - [725+006 71.9:4 722:04][885:03 87.6=5 880=3] 585 583 584 ]
pipeline tor 72.4 203 T72.0=06 722 :04 | 88302 878:06 88.1=4 - - -
(oracle SNACS) 73.0 £04  72.6+7 728405 | 888+02 883+7  885+.4 - - -
indep MTL | ter | 71.0 x1.2 70.2+9 70.6 1.0 | 879 +1.0 869 +8 873 +7 || 48.2+56 41448 44.6+52
dep MTL ter | 71.8 04 713 +2 71.5:03 | 88.1+04 87.6+2 87.8+2| 60.1 1.8 533220 56.5+19
rel | 71.8 203 71.0+1 714 :0.1 | 88.0+03 87.0+:4 87.5:3 - - -
.. ter | 72.8 :03 71.9 +4 723103 | 88.7 03 87.6+4 882 -3 60.5:30 603:34 60.4:32
jomnt rel | 72.5 204 71.5+:2 720053 | 88.5:02 872+3 87.8:2 - - -

Table 5: Results on the respective tasks of UCCA parsing and token-level SNACS prediction, averaged over 5
random restarts, with standard deviation reported next to each average. The baseline system (BL) for UCCA is
TUPA version 1.3.9 without any modifications, retrained on our data. The SNACS baseline system is the SVM

classifier of Schneider et al. (2018).

tems which predict a terminal-level SNACS label
(before it is mapped to a higher relation in post-
processing), we compare SNACS disambiguation
performance against (Schneider et al., 2018) in
§5.3.

5.2 Integrated parsing results

Our MTL and joint systems outperform the base-
line and a feature pipeline on refined UCCA units
(figure 2 and table 4). The main benefit from con-
sidering UCCA and SNACS together in training is
that the parser is better at recovering the (unlabeled)
structure of units that should receive a SNACS re-
lation in the integrated representation. This is il-
lustrated in figure 3. This trend is confirmed in the
precision and recall of UCCA units that have a gold
SNACS token in their yield (unlabeled F-score: BL
=93.1, dep-MTL/ter =95.2, indep-MTL = 96.0, see
table 7 in the supplementary material). To the ex-
tent that these units are syntactic constituents (see
table 2), this suggests that multitask learning with
syntactic auxiliary tasks (Swayamdipta et al., 2018;
Hershcovich et al., 2018) might be particularly ben-
eficial for SNACS-augmented UCCA parsing. The
feature pipeline is competitive, but noisy features
from a previous classification step limit its perfor-
mance on refined units. The upper bounds given by
the oracle setting indicate that SNACS features are
generally beneficial. Indep-MTL and systems that
parse directly into the relation-refined representa-
tion struggle with predicting the correct SNACS
refinements—and thus also exact UCCA+SNACS
combinations—while the joint/ter model is consis-
tently the most accurate.

However, there is little effect on overall labeled
and unlabeled UCCA scores (table 5). Predict-
ing SNACS simultaneously or interactively with
UCCA (joint/rel and dep-MTL) apparently makes
the parsing task harder. Note that particularly in
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Figure 3: Simplified sample output. The joint/ter sys-
tem (top) generates the intended scene structure and
PURPOSE modifier attachment. The BL system (bot-
tom) does not, and misses the PURPOSE role altogether.

setup ref # params
[ BL [ -] 78.9M ]

pipeline ter 78.9M

. UCCA SNACS

indep MTL | ter 82.8M | 81.8M
ter 79.4M
depMTL | 79.4M
oint ter 79.2M
Jor rel 79.2M

Table 6: Number of parameters of each model.

the dep-MTL setting, erroneous decisions in one
task could negatively affect the other.

5.3 Token-based SNACS prediction results

Since some of our systems predict SNACS labels
at the terminal level, they are directly comparable
to previous work on SNACS classification. We
compare against the auto-id/auto-syntax baseline
from Schneider et al. (2018) in table 5.'* Both the
dep MTL and joint systems outperform the baseline
in precision; and the joint system also in recall,
leading to the overall best performance. The indep-
MTL system does not reach baseline performance.

54

We examine whether the differences in perfor-
mance can really be attributed to the linguistic in-

Model capacity

“Due to the diverging guidelines on multiword units in
UCCA (§3.4), we ignore MWE boundaries.



formation in our data or merely to more powerful
models by inspecting the number of each model’s
parameters (table 6). While we observe some vari-
ance in model capacity, we consider these to be
minor differences. An exception is the indepen-
dent MTL setup, which consists of two independent
models, each dedicated to a specific task. However,
this does not seem to give it an advantage in terms
of final performance. The baseline has the fewest
parameters, and the overall best condition, joint/ter,
is neither the smallest nor the largest model, sug-
gesting that the particular linguistic signals and the
method of using them have a genuine effect on
performance.

6 Related Work

The benefits of integrating lexical analysis and sen-
tence semantic or syntactic structure have been pur-
sued by a vast body of work over the years. Com-
positional approaches to the syntax-semantics in-
terface, such as CCG (Steedman, 2000) and HPSG
(Pollard and Sag, 1994), usually integrate the lex-
icon at the leaves of the syntactic parse, but prop-
agate grammatically-relevant features up the tree.
A different approach is taken by OntoNotes (Hovy
et al., 2006), which consists of a number of sepa-
rate, albeit linked tiers, including syntactic and ar-
gument structure, but also the lexical tiers of word
senses and coreference.

Role semantics frequently features in structured
semantic schemes. Some approaches, such as Prop-
Bank and AMR (Palmer et al., 2005; Banarescu
et al., 2013), follow a lexical approach. The
Prague Dependency Treebank tectogrammatical
layer (Bohmova et al., 2003) uses a few lexicon-
free roles, but their semantics is determined by
virtue of their linkage to a lexicalized valency lexi-
con. Universal Decompositional Semantics (White
et al., 2016) instead defines roles as a bundle of
lexicon-free features, elicited by crowdsourcing.

The specific inventory for preposition/possessive
relations that we use is SNACS, but there is a wider
history of disambiguation of these items, especially
in English: disambiguation systems have been de-
scribed for possessives (Moldovan et al., 2004;
Badulescu and Moldovan, 2009; Tratz and Hovy,
2013), prepositions with lexicalized sense defini-
tions (e.g., Litkowski and Hargraves, 2007; Tratz
and Hovy, 2011), and prepositions with coarse-
grained classes (O’Hara and Wiebe, 2003, 2009;
Srikumar and Roth, 2013; Gonen and Goldberg,

2016). Such disambiguation has also been inves-
tigated in tandem with semantic role labeling and
parsing (Dahlmeier et al., 2009; Srikumar and Roth,
2011; Gong et al., 2018). Preliminary work sug-
gests that SNACS may be applicable to subjects
and objects, not just PPs, and thus in the future
this framework could be extended to all UCCA
participants (Shalev et al., 2019).

State-of-the-art results on UCCA parsing and
SNACS disambiguation are described in contem-
poraneous work by Jiang et al. (2019); Liu et al.
(2019), who achieve substantial gains using the
ELMo and BERT contextualized word embeddings
(Peters et al., 2018; Devlin et al., 2019). This is an
orthogonal direction to the one we pursue here, and
combining the two is left to future work.

7 Conclusion

We have introduced a new representation combin-
ing UCCA semantic structures and SNACS adpo-
sitional semantic roles; automatically merged ex-
isting annotations to create a gold standard; and
experimented with several alternatives for parsing
the integrated representation. Our results show that
models profit from having access to both structural
and lexical semantic information, confirming our
hypothesis that UCCA and SNACS are comple-
mentary and compatible.

Based on preliminary results from a German
corpus, we conjecture that this approach is appli-
cable to other languages with no or only minimal
changes—a direction we will explore further in
future work. In addition, we plan to investigate
the utility of the enhanced representation for down-
stream tasks involving meaning-preserving linguis-
tic variation.
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