What can we gain from language models for morphological inflection?
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Abstract

This paper investigates the attempts to augment
neural-based inflection models with character-
based language models. We found that in most
cases this slightly improves performance, how-
ever, the effect is marginal. We also propose
another language-model based approach that
can be used as a strong baseline in low-resource
setting.

1 Introduction

Morphological inflection is a task of automatic
reconstruction of surface word form given its
source form, called lemma, and morphological
characteristic of required form. For example, in
Spanish the input word contar together with fea-
tures v;fin;ind;imp;pst;3;pl should be transformed
to contaban. The obvious way to solve such a
task is to handcode transformations using finite-
state rules. However, this approach requires an
expert knowledge of the language under consid-
eration and can be extremely time-consuming for
the languages with complex morphology. There-
fore a machine learning algorithm should be devel-
oped to efficiently solve this task for any language.
Such an algorithm must be able to generalize from
known lemma-features-word triples to previously
unseen ones, mimicking human behaviour when
inflecting a neologism in its native language or
an unknown word in a foreign one. In this set-
ting automatic inflection becomes an instance of
string transduction problem, which makes condi-
tional random fields a natural baseline model as
suggested in (Nicolai et al., 2015). Another pop-
ular approach is to predict transformation pattern,
either as a pair of prefix and suffix changes as
used in the baseline model for Sigmorphon 2018
Shared Task (Cotterell et al., 2018). For example,
consider a Czech adjective krdsny and its superla-
tive form nejkrdsnejsi. The inflection pattern can
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be encoded as a pair of prefix rule $ — $nej and
a suffix rule y — ¢js7. Such encoding is, however,
too weak to deal with infixation and root vowel al-
terations, required, for example, for Spanish verb
volver and its +Pres+Sg+1 form vuelvo. An ab-
stract paradigm approach (Ahlberg et al., 2015;
Sorokin, 2016) compresses this transformation to
1+o+2+er#1+ue+2+0, where digits stand for vari-
ables (the parts of verb stem), and constant frag-
ments define the paradigm. In both cases in order
to predict the inflected word form one suffices to
guess the transformation pattern, thus solving a
standard classification problem. Both mentioned
models (CRFs and abstract paradigms) were quite
successful in Sigmorphon 2016 Shared Task (Cot-
terell et al., 2016), however, they were clearly out-
performed by neural network approaches.

Indeed, string transduction problems are suc-
cessfully solved using neural methods, for exam-
ple, in machine translation. The work of (Kann and
Schiitze, 2016) adopts the seq2seq model with soft
attention of (Bahdanau et al., 2014). It defeated
not only non-neural systems mentioned earlier, but
also other neural approaches. It shows that at-
tention mechanism is crucial for word inflection.
However, in contrast to machine translation, a sym-
bol of output word is less prone to depend from
multiple input symbols, than a translated word
from multiple source words. Consequently, the at-
tention weight is usually concentrated on a single
source symbol, being more a pointer than a dis-
tributed probability mass. Moreover, this pointer
traverses the source word from left to right in order
to generate the inflected form. All that motivated
the hard attention model of (Aharoni and Gold-
berg, 2017), which outperformed the soft attention
approaches. The key feature of this model is that
it predicts not only the output word, but also the
alignment between source and target using an ad-
ditional step symbol which shifts the pointer to the
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next symbol. This model was further improved
by (Makarov et al., 2017), whose system was the
winner of Sigmorphon 2017 evaluation campaign
(Cotterell et al., 2017). The approach of Makarov
et al. was especially successful in low and medium
resource setting, while in high resource setting it
achieves an impressive accuracy of over 95%!.
Does it mean that no further research is re-
quired and hard attention method equipped with
copy mechanism is the final solution for auto-
matic inflection problem? Actually, not, since the
quality of the winning approach was much lower
on medium (about 85%) and low (below 50%)
datasets. This lower quality is easy to explain
since in low resource setting the system might
even see no examples of the required form?> or
observe just one or two inflection pairs which do
not cover all possible paradigms for this partic-
ular form. For example, Russian verbs has sev-
eral tens of variants to produce the +Pres+Sg+1
form. Consequently, to improve the inflection ac-
curacy the system should extract more information
from the whole language, not only the instances
of the given form. This task is easier for aggluti-
native languages with regular inflection paradigm:
to predict, say, the +Pres+Sg+1 form in Turkish,
the system has just to observe several singular verb
form (not necessarily of the first person) to extract
the singular suffix and several first person form
(of any number and tense). In presence of fusion,
like in Russian and other Slavonic languages, the
decomposition is not that easy or even impossible.
However, this decomposition is already realised
in model of (Makarov et al., 2017) since the gram-
matical features are treated as a list of atomic ele-
ments, not as entire label. A new source of infor-
mation about the whole language are the laws of
its phonetics. For example, to detect the vowel in
the suffix of the Turkish verb one do not need to
observe any verbs at all, but to extract the vowel
harmony patterns from the inflection of nouns. A
natural way to capture the phonetic patterns are
character language models. They were already
applied to the problem of inflection in (Sorokin,
2016) and produced a strong boost over the base-
line system. The work of Sorokin used simple
ngram models, however, neural language models

! Averaged over all languages of (Cotterell et al., 2017)
dataset

%it was provided with 100 inflection pairs for entire lan-
guage, which is often several times lower than the number of
possible grammeme combinations
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(Tran et al., 2016) has shown their superiority over
earlier approaches for various tasks.

Summarizing, our approach was to enrich the
model of (Makarov et al., 2017) with the language
model component. We followed the architecture
of (Gulcehre et al., 2017), whose approach is sim-
ply to concatenate the state of the neural decoder
with the state of the neural language model before
passing it to the output projection layer. We ex-
pected to improve performance especially in low
and medium resource setting, however, our ap-
proach does not have clear advantages: our joint
system is only slightly ahead the baseline system of
(Makarov et al., 2017) for most of the languages.
We conclude that the language model job is already
executed by the decoder. However, given the vi-
tality of language model approach in other areas
of modern NLP (Peters et al., 2018), we describe
our attempts in detail to give other researchers the
ideas for future work in this direction.

2 Model structure

2.1 Baseline model

As the state-of-the-art baseline we choose the
model of Makarov et al. (Makarov et al., 2017),
the winner of previous Sigmorphon Shared Task.
This system is based on earlier work of Aharoni
and Goldberg (Aharoni and Goldberg, 2017). We
briefly describe the structure of baseline model (we
call it AGM-model further) and refer the reader to
these two papers for more information. AGM-
model consists of encoder and decoder, where an
encoder is just a bidirectional LSTM. Each ele-
ment of the input sequence contains a 0-1 encod-
ing of a current letter and two LSTMs traverse this
sequence in opposite directions. After encoding,
each element of obtained sequence contains infor-
mation about current letter and its context.

The main feature of the encoder is that it operates
on the level on alignments, not on the level of letter
sequences. Assume a pair volver-vuelvo appears in
the training set. The natural alignment is

(o)

€

r

It is transformed to the source-target pair in Fig-
ure 1. Here the step symbol denotes pointer shift,
for precise algorithm of transformation see (Aha-
roni and Goldberg, 2017):

The decoder is one-directional LSTM. It obtains
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Figure 1: Transformation of alignment to source-target pair.

as input the lower string of Figure 1. Let ¢ be the
number of current timestep and j be current posi-
tion in the input string. On ¢-th step the decoder
takes a concatenation of 3 vectors: x; — the j-th
element in the output of the encoder, f = Wyearf
— the embedding of the grammatical feature vec-
tor and g; = We,pyi—1 — the embedding of previ-
ous output symbol. The feature vector is obtained
as 0/1-encoding of the list of grammatical features.
We actually take the concatenation of output vec-
tors for d > 1 previous output symbols as y;_1, in
our experiments d was set to 4.

On each step the decoder produces a vector z;
as output and propagates updated hidden state vec-
tor h; to the next timestep. z; is then passed to a
two-layer perceptron with ReLLU activation on the
intermediate layer and softmax activation on the
output layer, which produces the output distribu-
tion p; over output letters, formally:

zi = max (Wpz + by, 0),
p; = softmax(W,z; + b,),
Yi = argmaxy pik

If y; is the index of step symbol, we move the
pointer to the next input letter. We also use the copy
gate from (Makarov et al., 2017): since the neural
network copies the vast majority of its symbols,
the output distribution pj; is obtained as a weighted
sum of singleton distribution which outputs current
input symbol and the preliminary distribution p;
specified above. The weight o; is the output of
another one-layer perceptron:

o; = sigmoid(Wyz; + bs),
]/9\1' = O‘l'I(k? = Cj) + (1 — O‘i)pi,
yi = argmaxy D

2.2 Character-based model

Our proposal is to explicitly equip the decoder with
the information from the character-based language
model. We suppose it will help the model to avoid
outputting phonetically implausible sequences of
letters. We choose the simplest possible architec-
ture of the language model, namely, on each step it
takes a concatenation of d previous symbol embed-
dings u; = [gi—d,- - -, gi—1] and applies an LSTM
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cell to obtain a vector v; and update LSTM hid-
den state h;. v; is propagated through a two-layer
perceptron to predict the next output symbol anal-
ogously to the output layer of the baseline model:

u; = max (WM +b5M,0),
pEM = softmax(WEMG; + bEM),
y; = argmaxphM

The model is trained to predict next output sym-
bol separately from the basic model. In principle,
one can use more complex neural architectures,
for example, a multilayer LSTM or apply atten-
tion mechanism. However, our preliminary ex-
periments have shown that attention over recent
history as in (Tran et al., 2016) leads to slightly
worse performance.

To join the baseline model and the language
model we concatenate the decoder output z; with
the analogous vector from the language model
ziLM . The language model is conditioned over
previously output vectors (excluding step symbol).
That is the fusion mechanism as used in (Gulcehre
et al., 2017). We also experimented with concate-
nating the pre-output vectors z;, Z-* however, the
former variant leads to slightly better performance.
To avoid exposure bias we mask language model
state with all zeros with the probability of 0.4 (it
teaches the model to recover from language model
errors).

3 Data and implementation

3.1 Implementation

The initial alignment was obtained using longest
common subsequence (LCS) method. Then this
alignment was optimized using Chinese Restau-
rant process as in (Cotterell et al., 2016). The
optimization phase did 5 passes over training data.
The aligner trained on the training set was also
used to align the validation data.

We implemented our model using Keras library
with Tensorflow backend?. For all the setting we
used the encoder with 96 hidden units in each di-
rection, the decoder contained 128 units and the

*https://github.com/AlexeySorokin/
Sigmorphon2018SharedTask



pre-output projection layer was of dimension 96.
Morphological features were embedded to 48 di-
mensions. We used batch size of 32 when training,
the batches contained the words of approximately
the same size to reduce the amount of padding. We
trained the model for 100 epochs with Adam opti-
mizer, training was stopped when the accuracy on
the validation data did not improve for 15 epochs.
During decoding, the beam search of width 10 was
applied.

When learning the weights of a language model,
we used the same training and validation sets as for
inflection network. The language model used his-
tory of 5 symbols and contained 64 units in LSTM
layers. The number of layers was set to 2. The
rate of dropout was the same as for basic model.
The model was trained for 20 epochs, training was
stopped when perplexity on validation set did not
improve for 5 epochs.

3.2 Dataset

We tested our model in Sigmorphon 2018 Shared
Task (Cotterell et al., 2018). For an extended de-
scription we refer the reader to this papers. The
dataset contained three subsets: high, medium and
low. The size of the training dataset was 10000
words in the high subset*, 1000 in medium and
100 in low. The dataset also contained a devel-
opment set containing 1000 instances most of the
time, for all languages we used this subset as val-
idation data. Overall, there were 86 languages in
the high setting, 102 in medium and 103 in low.

4 Results and discussion

We submitted three systems, one replicating the
algorithm of (Makarov et al., 2017), the second
equipped with language models. The third one
used only the language models: we extracted all
possible abstract inflection paradigms for a given
set of grammatical features and created a set of pos-
sible candidate forms applying all paradigms to the
lemma. For example, consider the word derameo
and paradigms l1+atp#l+er, 1+are#l+ur, 1+p#l1
and 1+up#1+xer; the first three produce the forms
deaaem, deaum, deaam, while the fourth yields
nothing since the given word does not end in -uo.
Then all these forms are ranked using sum of log-
arithmic probabilities from forward and backward
language models.

“For several languages it was smaller, but exceeded 1000
instances
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Our results are mostly negative, since our
language-model based architecture produced only
marginal improvement over the model of Makarov
et al. which it is based on. Moreover, for the low-
resource setting the performance of both system
was mediocre, even our third paradigm-based sys-
tem was able to overperform them despite its obvi-
ous weakness. The results are presented in Table
13, M1 stands for the baseline model and M2 — for
the LM-based one. The numbers in brackets count
the number of large gaps (more than 2% for high
dataset, 3% for medium and 5% for low).

We observe that the influence of language mod-
els is marginal, the strength of this effect grows
with the size of training data, which contradicts
our expectations. In low and medium setting we
expected slightly higher performance, which prob-
ably implies that our choice of hyperparameters is
suboptimal. We made several observations when
comparing our two models: first, the LM-based
one demonstrates the highest quality after reduc-
ing output history of the baseline model from 4 to
2 and setting LM state dropout to 0.4. It shows
that memory containing last output symbols plays
the role of a language model for local dependencies
and the memory of LSTM encoder — for global and
often there is no need to duplicate them. However,
most of the time LM-based variant converges much
faster which implies that language model learns to
throw out incorrect sequences of letters, but seems
to overfit in the same time. In any case, these
questions require future investigation.

However, language models demonstrate its util-
ity even when little training data is available. The
results for low subtask (see 2) demonstrate that
they are powerful enough to discriminate between
correct and incorrect variants proposed by the ab-
stract paradigm generator. This is especially im-
pressive since this method simply returns the input
form in case it has not seen the given set of gram-
matical features. So it cannot recover the value
of missing paradigm cells generalizing other ele-
ments of the paradigm table, which clearly limits
its performance. Moreover, even for an observed
grammatical values a small training set does not
cover all possible inflection patterns, either due to
their irregularity and multiplicity, like in case of
Arabic or Latin, or complex phonetic rules as in
case of Navajo. Nevertheless, this approach clearly

>We measured accuracy on the test subset of the dataset
and averaged the scores over all languages.



Dataset Ml M2 | M1>M2 M2>M1
high 9423 94.56 27(2) 45(6)
medium | 79.37 79.51 40(8) 47(12)
low 39.13 39.18 49(7) 50(10)

Table 1: Comparison of baseline and LM-equipped models

beats our neural models since it requires less data
when the number of possible inflection patterns is
small.

So language models are actually good in rank-
ing inflection variants even in case of little data
available. What remains is to generate enough
candidate forms to improve their recall. We tried
to solve this problem by adding top 10 candidates
proposed by the neural network model to the list
of possible outputs. However, this approach fails:
for most languages the results fall below the level
of neural models themselves. Doing a quick error
analysis, we found that in low setting neural net-
works often are not able to discriminate between
different forms, predicting a correct variant for an-
other tense or person. The language model also
does not learn enough well to distinguish differ-
ent inflectional affixes due to the same lack of data.
Therefore it favors either a shorter form or the end-
ings it has observed more frequently, even if these
endings does not refer to the set of features under
consideration. On the contrary, abstract paradigms
simply do not produce these variants, making the
choice more easy. A possible workaround may be
to predict the set of grammatical features for the
generated form, however, we have not implemented
this method due to the lack of time.

This reranking approach appears to be less suc-
cessful for medium and high datasets. In this case
the number of proposed candidate paradigms be-
comes too high. Some of these paradigms gener-
ate phonetically plausible forms but are applicable
only in particular conditions not satisfied by a given
word. For example, consider the Russian input
Odenamb;v;prs;ind;3;sg; the paradigm 1+atp#1+uT
produces the form deaum, which is correct, but
for another verb deaumw. Therefore the applica-
tion of language models in case of more training
data looks problematic: we tried to use them to fil-
ter out forms generated by neural models without
reranking remaining candidates. That marginally
improved performance for complex languages like
Navajo and Latin but had a slight negative effect in
most other cases.
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5 Conclusion

We investigated the applications of character lan-
guage models to automatic reinflection. Despite
their usefulness for other task, they do not pro-
duce significant boost, though improve the quality
for all the settings. However, reranking-based ap-
proach, which also uses language models, reaches
slightly higher scores in case of low amount of
training data. In case of larger training sets the
phonetic plausibility is effectively checked by the
neural decoder itself without applying additional
mechanisms. The relative success of paradigm-
based approach in low-resource setting implies that
neural networks lack control mechanism provided
by abstract paradigms. Therefore the combina-
tion of neural networks with finite state techniques
seems a perspective direction of study. Another
promising direction not touched in the current work
are different methods of data augmentation, either
by training on data from related languages, or by
generating additional training instances. At least
for the second approach character language mod-
els seem useful to check the quality of generated
source-target pairs.
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