
Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection, pages 58–63,
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

The NYU System for the CoNLL–SIGMORPHON 2018 Shared Task on
Universal Morphological Reinflection

Katharina Kann1

kann@nyu.edu

Stanislas Lauly1

stanislas.lauly@nyu.edu

Kyunghyun Cho1,2

kyunghyun.cho@nyu.edu

1Center for Data Science
New York University

New York, USA

2Dept. of Computer Science
New York University

New York, USA

Abstract

This paper describes the NYU submission to
the CoNLL–SIGMORPHON 2018 shared task
on universal morphological reinflection. Our
system participates in the low-resource setting
of Task 2, track 2, i.e., it predicts morphologi-
cally inflected forms in context: given a lemma
and a context sentence, it produces a form of
the lemma which might be used at an indicated
position in the sentence. It is based on the stan-
dard attention-based LSTM encoder-decoder
model, but makes use of multiple encoders to
process all parts of the context as well as the
lemma. In the official shared task evaluation,
our system obtains the second best results out
of 5 submissions for the competition it entered
and strongly outperforms the official baseline.

1 Introduction

The extreme type sparsity in text in a morpho-
logically rich language, i.e., a language which
relies strongly on changes in the surface form
of words to express properties like gender, tense
or number, requires natural language process-
ing (NLP) systems which are able to handle in-
flected words in a systematic way. The SIGMOR-
PHON and CoNLL–SIGMORPHON shared tasks
on morphological reinflection, which have been
held since 2016 (Cotterell et al., 2016, 2017a), en-
courage the development of computational models
for inflection in a large number of languages.

This year’s edition (Cotterell et al., 2018) fea-
tures two different tasks. The datasets for Task
1 consist of triplets of lemma, morphological tag
(also called the “target tag”) and the correspond-
ing inflected form, which is given for training and
should be produced at test time. This is the stan-
dard inflection setup which has also been subject
of the shared tasks in the last years. Task 2, in
contrast, is again split into two different subtasks
(called “tracks”). Both are focused on inflection in

context. Here, a sentence is given, in the context of
which the inflected form of which only the lemma
is known should be used. The setup of the first
subtask assumes that the lemmas and tags of all
surrounding words are available and can be used
for predicting. These might be used as desired,
e.g., the tags of the previous and next words are
often strong indicators for the tag of the form to be
produced, which is unknown. Track 2, on the other
hand, requires systems to produce inflected forms
only from their lemma and the inflected context
words; no tags or lemmas are given for the context.
Thus, track 2 is both a more realistic and a harder
version of track 1. All tasks and tracks feature 3
different settings: a low-resource setting (LOW), a
medium-resource setting (MEDIUM) and a high-
resource setting (HIGH).

In this paper, we describe the New York
University (NYU) submission to the CoNLL–
SIGMORPHON 2018 shared task on universal
morphological reinflection. The system we sub-
mitted was exclusively designed for Task 2, track
2, LOW. Thus, we only focus on this particu-
lar competition and do not report numbers for
other setups (though, in theory, every system
which works for track 2 of Task 2 can also pro-
duce output for track 1; the same holds true for
LOW/MEDIUM/HIGH). Overall, our system ob-
tains the second highest test accuracy out of 5 sub-
mitted systems and outperforms the official shared
task baseline by a wide margin.

2 Morphological Inflection in Context

The system presented in this paper is designed for
morphological inflection in context, i.e., predict-
ing an inflected form which fits an indicated posi-
tion in a sentence, given its lemma. Here, we will
describe the task in a more formal way.

Let T be the set of morphological tags being

58



expressed in a language and w a lemma in the
same language. We then define the morphologi-
cal paradigm π of w as follows:

π(w) =
{(
fk[w], tk

)}
k∈T (w)

(1)

Here, fk[w] denotes the inflected form which cor-
responds to tag tk, and both w and fk[w] are
strings consisting of letters from an alphabet Σ.
Note that, even though we follow the convention to
describe word forms as functions of the lemma, in
the huge majority of the cases, each inflected form
is uniquely defined given any other word form of
the same paradigm together with its morphologi-
cal tag.

The task of morphological inflection consists of
predicting a target form fi[w] from a paradigm,
given the lemma w, as well as the tag ti of the
target form.

Building on this, the task of morphological in-
flection in context consists of predicting a target
form fi[w] from the lemma w, as well as the con-
text c, i.e., the sentence surrounding the target
form. For the track of the shared task we are inter-
ested in, the context consists of inflected forms.
Further, this task is ambiguous: for many lan-
guages, usually several morphological tags and,
thus, inflected forms are acceptable for any given
context.

3 Model Description

Our model is based on the standard LSTM
encoder-decoder model with an attention mecha-
nism (Bahdanau et al., 2015). Following several
previous approaches (cf. Section 5), we apply it
at the character level, i.e., the input to the system
is the character sequence of the input lemma, rep-
resented by embeddings. The output is the (pre-
dicted) character sequence of the inflected form.

Additionally, we include the sentence con-
text as follows: Given a sentence s =
[w1, w2, . . . , wi−1, l, wi+1, . . . , wn], where l is the
lemma of the inflected form of interest, and
w1, . . . , wn with n 6= i are the surrounding con-
text words, we split the past context cprev =
[w1, w2, . . . , wi−1] and the future context cfut =
[wi+1, . . . , wn] into subword units using byte pair
encoding (BPE, Sennrich et al. (2016)). We then
use two additional encoders to encode the se-
quences of subword units of both contexts.

Using bidirectional encoders, the final hidden
states produced by each encoder are concatena-

tions of the respective forward and backward hid-
den states:

hi = [
−→
hi ,
←−
hi ] (2)

with
−→
hi = LSTM(emb1, . . . , embi), and (3)
←−
hi = LSTM(embz, . . . , embi) (4)

emb = emb1, . . . , embz represents the respective
sequence of embeddings, i.e., either the embed-
dings of the lemma’s characters or the embeddings
of the subword units of either context.

Our model then uses 3 attention mechanisms—
one for each encoder—to produce a context vector
for each output position: Ht for the lemma, Hp

t

for the past context and Hf
t for the future context.

The input to the decoder LSTM at each timestep
is the concatenation of all contexts and the em-
bedding of the last output character. Embeddings
are shared between the character encoder and the
decoder, BPE embeddings are shared between the
two context encoders.

An overview of our model architecture is shown
in Figure 1. Our final system in an ensemble of 5
random restarts of the model, combined via ma-
jority voting.

3.1 Training and Hyperparameters
Using the shared task development sets, we de-
cide on the following hyperparameters: We em-
ploy 100-dimensional BPE and character embed-
dings, and the encoder and decoder hidden states
are 300-dimensional. Dropout (Srivastava et al.,
2014) is used with a probability of 0.5 for all hid-
den states when used as input to the next layer, as
well as for the embedding layer. For training, we
employ ADAM (Kingma and Ba, 2014). When-
ever performance does not improve for 20 steps,
we halve the learning rate and restart from the best
performing model. Training stops when the learn-
ing rate gets below 0.0001; the best performing
model is used for the final predictions. We do not
use batching, since it hurts performance in our ex-
periments on the development sets.

For decoding, we apply beam search with a
beam of width 5.

4 Official System Evaluation

4.1 Datasets
The data for Task 2, track 2, LOW consists of
sentences taken from the Universal Dependencies
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Figure 1: Overview of our employed model architecture.

(UD) treebanks (Nivre et al., 2017). All context
forms, as well as the lemma of the target inflected
form are given for each sentence. Training and
development sets feature exactly one correct tar-
get form, while, for the test set, additional plausi-
ble target forms have been manually given by the
shared task organizers (Cotterell et al., 2018).

The languages we experiment on are German,
English, Spanish, Finnish, French, Russian and
Swedish.

4.2 Baseline System
The official baseline system of the shared task is
a character-level LSTM encoder-decoder model
with attention (Bahdanau et al., 2015). The main
input to the system is the lemma of the inflected
form which is to be generated. Further, the con-
text is taken into account: each character of the
lemma is concatenated with 7 additional embed-
dings representing (i) the lemma of the word at the
previous position in the sentence, (ii) the previous
word itself, (iii) the tag of the previous word, (iv)

the lemma of the word at the next position in the
sentence, (v) the next word itself, (vi) the tag of the
next word, (vii) the lemma of the inflected form to
generate and given to the encoder. Note that, since
no tags or lemmas are available for track 2 of Task
2, but the architecture is identical to that used for
track 1 of the same task, all embeddings but those
for the previous and the next word, as well as the
lemma are set to default vectors.

Given the character embedding-context repre-
sentations produced by the encoder, the LSTM de-
coder generates the character sequence of the out-
put inflected form, using an attention mechanism.

More details on the shared task baseline system
can be found in Cotterell et al. (2018).

4.3 Official Test Results
Two official results are reported. First, system
performance is calculated by just taking the gold
solution into account, i.e., all generated inflected
forms that do not match the UD gold standard are
counted as wrong. Second, performance is com-
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BL BME-HAS CPH CUB NYU UZH

de 0.10 27.81 18.91 11.02 44.08 59.15
en 2.22 56.90 59.42 58.91 66.57 68.08
es 8.98 27.77 31.84 27.91 27.49 32.68
fi 0.38 8.89 12.33 7.88 15.37 24.40
fr 0.00 9.57 29.53 23.01 26.48 25.05
ru 2.71 19.68 22.69 21.08 22.09 28.11
sv 0.96 22.34 30.96 16.49 31.60 32.77

av. 2.19 24.71 29.38 23.76 33.38 38.60

Table 1: Test accuracies when considering only the
gold solution; BL = BASELINE; CPH = COPEN-
HAGEN; CUB = CUBoulder. Best results per language
in bold; our results in italic.

BL BME-HAS CPH CUB NYU UZH

de 0.10 31.14 21.54 11.53 48.43 61.38
en 2.92 62.64 66.87 66.36 72.21 74.02
es 11.08 33.52 37.31 31.42 31.98 37.17
fi 0.89 11.18 16.14 10.04 18.68 28.21
ru 2.71 21.29 24.40 22.59 23.29 30.42
sv 0.96 27.34 36.38 19.04 37.13 39.36

av. 3.11 31.18 33.77 26.83 38.62 45.09

Table 2: Test accuracies when counting all plausible
forms as correct; BL = BASELINE; CPH = COPEN-
HAGEN; CUB = CUBoulder. Best results per language
in bold; our results in italic.

puted by taking all plausible target inflected forms
into account, i.e., all forms that could be correct
in any way of reading the sentence are accepted as
correct. The final results for all systems are shown
in Tables 1 and 2, respectively.

As can be seen, the baseline performs poorly
in the low-resource setting we consider here. In
particular, its accuracy is far worse than that of any
participating system.

Looking at our system’s performance, we can
see that it is the second best one for German, En-
glish, Finnish, French, and Slovene, as well as on
average, when only considering the gold solution.
Taking all plausible forms into account, our sys-
tems obtains the second highest accuracy for Ger-
man, English, Finnish, and Slovene, as well as on
average.1

The best performing system on average is UZH,
and CPH outperforms our model for Spanish,
French and Russian for gold solutions, and Span-
ish and Russian for all plausible forms. BME-
HAS and CUB perform worse than our system for
all languages.

A final observation is that the accuracy differ-
1No results with all plausible forms are available for

French.

ence between the evaluation with the gold solu-
tion and the evaluation with all plausible forms is
0.92− 6.49, depending on the system.

5 Related Work

Most recent work on morphological reinflec-
tion was done in the context of the SIGMOR-
PHON 2016 and the CoNLL–SIGMORPHON
2017 shared tasks.

The first edition of the shared task in 2016 (Cot-
terell et al., 2016) resulted in 3 different types
of systems: “pipeline approaches” (unsupervised
alignment algorithms applied to the source-target
pairs, followed by a model which predicts edit
operations), “neural approaches”, and “linguisti-
cally inspired systems”. The winning system was
a neural network, namely a character-based RNN
encoder-decoder model with attention, similar to
the one we use here (Kann and Schütze, 2016).
Hence, neural models gained popularity in the
2017 edition of the shared task (Cotterell et al.,
2017a). In 2017, explicit low-resource settings
were first introduced to the shared task. These
settings demonstrated the effectiveness of hard at-
tention in neural sequence-to-sequence models if
training data are limited (Makarov et al., 2017).

Research not immediately done for the shared
tasks included papers on multi-source reinflec-
tion (Cotterell et al., 2017b; Kann et al., 2017a),
cross-lingual transfer for reinflection (Kann et al.,
2017b), or first intents of neural inflection sys-
tems which make use of context for lemmatization
(Bergmanis and Goldwater, 2018).

Older work on morphological inflection in-
cludes Ahlberg et al. (2014); Durrett and DeNero
(2013); Nicolai et al. (2015); Faruqui et al. (2016),
inter alia.

6 Conclusion

We presented the NYU system for Task 2, track
2, LOW of the CoNLL–SIGMORPHON 2018
shared task on universal morphological reinflec-
tion. The system was designed for the task of
morphological inflection in context: it predicts an
inflected form for an indicated position in a sen-
tence, given the sentence context and the lemma.
In the official evaluation, which consisted of ex-
periments in German, English, Spanish, Finnish,
French, Russian and Slovene, our system was the
second best performing one out of 5 submissions.
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