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Abstract

In this paper, we propose a new linguistically-
based approach to answering non-factoid
open-domain questions from unstructured
data. First, we elaborate on an architecture
for textual encoding based on which we in-
troduce a deep end-to-end neural model. This
architecture benefits from a bilateral attention
mechanism which helps the model to focus on
a question and the answer sentence at the same
time for phrasal answer extraction. Second,
we feed the output of a constituency parser
into the model directly and integrate linguistic
constituents into the network to help it concen-
trate on chunks of an answer rather than on its
single words for generating more natural out-
put. By optimizing this architecture, we man-
aged to obtain near-to-human-performance re-
sults and competitive to a state-of-the-art sys-
tem on SQuAD and MS-MARCO datasets re-
spectively.

1 Introduction

Reading, comprehending and reasoning over texts
and answering a question about them (i.e. Ques-
tion Answering) is a fundamental aspect of com-
putational intelligence. Question Answering
(QA), as a measure of intelligence, has been even
suggested to replace Turing test (Clark and Et-
zioni, 2016).

The development of large datasets of QA in
recent years (Hermann et al., 2015; Hill et al.,
2015; Bordes et al., 2015; Rajpurkar et al., 2016)
advanced the field especially for two significant
branches of QA namely factoid (Aghaebrahimian
and Jurčı́ček, 2016a,b) and non-factoid QA1 (Ra-
jpurkar et al., 2016). Non-factoid QA or QA over
unstructured data is a somewhat new challenge in

1While the answer to a non-factoid question is a chunk of
one or more adjacent words, the answer to a factoid question
is only an entity.

open-domain QA. A non-factoid QA system an-
swers questions by reading and comprehending a
context. The context in which we assume the an-
swer is mentioned may have different granulari-
ties from a single sentence or paragraph to larger
units of text. A QA system is supposed to extract
a phrase answer from the provided paragraph or
sentence depending on its granularity level.

The context for answering questions is usually
extracted using an Information Retrieval (IR) tech-
nique. Then, a QA system should extract the best
answer sentence. There are many studies about ex-
tracting answer sentences including but not limited
to (He et al., 2015; He and Lin, 2016; Yih et al.,
2013; Yu et al., 2016; Rao et al., 2016; Aghae-
brahimian, 2017a).

Extracting the final or shortest possible answer
from a set of candidate answer sentences is ad-
dressed in many studies as well (Zhang et al.,
2017; Gong and Bowman, 2017; Shen et al., 2016;
Weissenborn et al., 2017a). Instead of reasoning
over and making inference on linguistic symbols
(i.e., words or characters), almost all of these mod-
els use a neural architecture to encode contexts and
questions into a vector representation and to rea-
son over them.

A typical pattern in most of the current mod-
els is the use of a variant of uni- or bi-directional
attention schemes (question to context and vice-
versa) to encode the semantic content of ques-
tions’ words with a focus on their context’s
words (Seo et al., 2016; Xiong et al., 2016; Weis-
senborn et al., 2017b; Chen et al., 2017; Wang
et al., 2017). Compared to these models the nov-
elty of our work is in explicitly conducting atten-
tion over both the context and the question for each
candidate constituent2 answer (every constituent

2Form now on and for the sake of brevity by constituents
we mean linguistic constituents as they are referred to in
Phrase Structure Grammar (Chomsky, 1957).



434

Constituents Type Training set Development set
NP 59 % 62 %
ROOT 8 % 6 %
NNP 5 % 4 %
NN 4 % 2 %
JJ 3 % 1 %
VP 3 % 4 %
CD 3 % 2 %
PP 2 % 4 %
S 2 % 2 %
others 11 %(each < 2%) 13 %(each < 2%)

Table 1: The distribution of constituent types of
answers in SQuAD training and development sets.
For constituency parsing, we used the Standford
CoreNLP tool (Manning et al., 2014). To see
the full list of available constituency types in the
dataset, please refer to Appendix A.

in the context). The fact that this is better than
attending only to the question words is investi-
gated and proved according to the results reported
in Section 7.

Another observation is that a majority of recent
studies are purely based on data science where one
can barely see a linguistic intuition towards the
problem. We show that a pure linguistic intuition
could help neural reasoning and attention mech-
anisms to achieve quantitatively and qualitatively
better results in QA.

By analyzing a human-generated QA dataset
called SQuAD (Rajpurkar et al., 2016), we real-
ized that people tend to answer questions in units
called constituents (Table 1). We expect an answer
to a question to be a valid constituent otherwise it
would probably not be grammatical.

Constituents and Constituency relations are the
bases of Phrase Structure Grammar first proposed
by Noam Chomsky (Chomsky, 1957). Phrase
Structure Grammar and many of its variants in-
cluding Government and Binding theory (Chom-
sky, 1993) or Generalized and Head-driven Phrase
Structure Grammar (Gazdar et al., 1994; Pollard
and Sag, 1994) define hierarchical binary relations
between the constituents of a text, and hence help
to realize an exact and natural answer boundary
for answer extraction.

Having these two points in mind and inspired
by attentive pooling networks by Santos et al.
(2016), we designed an attentive bilateral model
and trained it on the constituents of questions and
answers. We attempted to use some information
from the parser, so to go beyond a simple word-
based or vector-based representations. The results

obtained by the model are near to human perfor-
mance on SQuAD dataset and competitive to a
state-of-the-art system on MS-MARCO dataset.
The contributions of our work are:

• A bilateral linguistically-based attention
model for Question Answering

• Integrating linguistic constituents into a DNN
architecture for the QA task.

In the next section, we review some of recent
QA systems with a focus on unstructured QA.
In Section 3, we briefly explain the constituency
types. Then in Section 4, we discuss the details
of our system architecture. In Section 5, we talk
about the datasets and the way we prepared them
for training. In Sections 6 and 7, we describe the
training details and present the results of our ex-
periments. Finally, we explain some ablation stud-
ies and error analysis in Section 8 before we con-
clude in Section 9.

2 Related work

In recent years, QA has been largely benefited
from the development of Deep Neural Network
(DNN) architectures largely in the form of Con-
volution Neural Networks (CNN) (LeCun et al.,
1998) or Recurrent Neural Networks (RNN) (El-
man, 1990). QA systems based on semantic
parsing (Clarke et al., 2010; Kwiatkowski et al.,
2010), IR-based systems (Yao and Durme, 2014),
cloze-type (Kadlec et al., 2016; Hermann et al.,
2015), factoid (Aghaebrahimian and Jurčı́ček,
2016b; Bordes et al., 2015) and non-factoid sys-
tems (Aghaebrahimian, 2017a; Rajpurkar et al.,
2016) are some of the QA variants that have been
improved by DNNs. Among all of these varieties,
factoid and non-factoid are two most widely stud-
ied branches of QA systems.

In Factoid QA like air traffic information sys-
tems (ATIS) or dialogue systems, we answer the
questions by extracting an entity from a structured
database like relational databases or knowledge
graphs. In contrast, in non-factoid systems, an-
swers are extracted mostly from unstructured data
like Wikipedia.

Unstructured QA in recent years has been stud-
ied with a few distinguishable different settings
such as answer selection, answer trigging, and
answers extraction. In answer selection (Aghae-
brahimian, 2017a; Wang et al., 2016; Yu et al.,
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2016) and answer trigging (Jurczyk et al., 2016)
the goal is to find the best answer sentence given
each question. These answer sentences may
be non-existent in the provided context for an-
swer triggering. In answer extraction (Shen and
Klakow, 2006; Sultan et al., 2016), we extract a
chunk of a sentence as the shortest possible an-
swer.

Answer selection can be used as a measure
of machine comprehension (Kadlec et al., 2016;
Hermann et al., 2015). In this setting, a typ-
ical QA system reads a text and then answers
either multiple-answer (cloze-type) or free-text
questions. Cloze-type answers are limited to mul-
tiple distinct entities (usually 4 or 5) while a span
of words answers free-text questions.

The performance of cloze-type systems is a
good indication of machine comprehension. How-
ever, in QA systems for a real-life application like
in dialogue systems or scientists’ assistants, the
answers, their boundaries and their types (e.g.,
proper noun, adjective or noun phrase) are not
known in advance, and it makes this type of QA
more challenging. In this setting, free-text QA
or QA over unstructured data (Aghaebrahimian,
2017b; Rajpurkar et al., 2016; Cui et al., 2016)
is advocated where answers are spans of multiple
consecutive words in large repositories of textual
data like Wikipedia.

Many successful studies have been performed
for free-text (i.e., phrase) answer extraction from
SQuAD since its release in 2016. Almost all of
these models benefited from a form of DNN ar-
chitecture and a majority of them integrated a kind
of the attention mechanism. Some of these stud-
ies integrated attention to predicting the physical
location of answers (Xiong et al., 2016; Cui et al.,
2016; Hu et al., 2017; Seo et al., 2016). Others
made an effort to find a match between queries
and their contexts (Cui et al., 2016) or to compute
a global distribution over the tokens in the con-
text given a query (Wang and Jiang, 2016). Still,
some other models integrated other mechanisms
like memory networks (Pan et al., 2017) or rein-
forcement learning (Shen et al., 2016) to enhance
their attention performance.

To add to these efforts, we intend to propose a
new perspective on using attention and to enhance
it by using linguistic constituents as a linguisti-
cally motivated feature.

3 Linguistic Constituents

There is hardly a universal agreement upon the
definition of the term ‘constituent’. In general,
a constituent is an inseparable unit that can ap-
pear in different places of a sentence. Instead of
defining what a constituent is, linguists define a
set of experiments such as replacement or expan-
sion to distinguish between constituents and non-
constituents.

For instance, let’s consider the sentence ‘Plans
for the relay were announced on April 26, 2007, in
Beijing, China.’ We can replace or expand some
of its constituents and rephrase the sentence as ‘on
April 26, 2007, plans for the relay were announced
, in Beijing, China.’ or ‘Plans for the great and im-
portant relay were announced on April 26, 2007,
in Beijing, China.’ while we are sure that these
rephrases are not only both syntactically and se-
mantically correct but also convey the same mean-
ing as the original sentence. Some of the earli-
est works which tried to integrate more linguis-
tic structures into QA are (Zhang et al., 2017; Xie
and Eric, 2017). Using TreeLSTM, Zhang et al.
(2017) tried to integrate linguistic structure into
QA implicitly. At the prediction step, they used
pointer network (Vinyals et al., 2017) to detect
the beginning and the end of answer chunks. In
contrast, (Xie and Eric, 2017) explicitly modeled
candidate answers as sequences of constituents by
encoding individual constituents using a chain of-
trees LSTM (CT-LSTM) and tree-guided attention
mechanism. However, their formulation of con-
stituents is more complicated than ours and as we
will see, a direct use of constituents as answer
chunk is much less complicated and yields better
results.

4 System Architecture

In this section, we describe how to represent ques-
tions, sentences and answers in vector space in
Subsection 4.1 and then we train the vectors in
Subsection 4.2 using a specific loss function and
distance measure.

4.1 Representation Learning
Our goal is to extract constituent answers by load-
ing their vector representations with the semantic
content of their question and their containing an-
swer sentence. To achieve this end, we integrated
a bilateral attention mechanism into our model
which lets us estimate a joint vector representation
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between answers when they are attending to ques-
tions’ constituents and when they are attending to
sentences’ constituents.

To encode the semantic information in ques-
tions and sentences, we used a simple encoding
unit (see Equations 1 to 6 and Figure 1). In this
unit,Wk ∈ R|V | are words in one-hot vector repre-
sentations where kth element of each vector is one
and others are 0. V are all vocabularies in training
questions and answers. E ∈ R|V |×de is the em-
bedding matrix and de is the embedding dimen-
sion. The product of the multiplication in Equa-
tion 1 is the word embeddings in which each cell
Wi,t is the word in time step t in sample i. Wi,t

is the input of forward and backward RNN cells in
Equations 2 and 4.

As RNN cell, we used Long Short-Term Mem-
ory architecture (LSTM) (Hochreiter and Schmid-
huber, 1997). Pan et al. (2017) and Hu et al.
(2017) show that bi-directional LSTM architec-
tures provide more accurate representations of tex-
tual data. The common practice to form a bidirec-
tional LSTM is to concatenate the last vectors in
forward and backward LSTMs. Instead, we used a
stepwise max pooling (SWMP) mechanism which
takes the most important vectors from forward and
backward LSTMs in Equations 3 and 5 and con-
catenate them in Equations 6.

Wi,t = E>Wk (1)
−→enci,t = LSTM(−→enci,t−1,Wi,t) (2)
−→enci = SWMP (−→enci,t) (3)
←−enci,t = LSTM(←−enci,t+1,Wi,t) (4)
←−enci = SWMP (←−enci,t) (5)

enci = [−→enci;←−enci] (6)

Using our encoding unit we encode questions
and sentences and then concatenate the resulted
vectors to generate a joint representation of ques-
tions and their answer sentences in Equation 7.

encQS
i = [encQi ; enc

S
i ] (7)

In the next step, we need to encode the con-
stituent answers. Our answer encoding unit has
two modules, one with attention on questions
encQi (equations 8-15) and the other with atten-
tion on sentences encSi (equations 16-23). In both
modules, we used an architecture similar to the
one in the encoding unit with an additional atten-
tion unit.

In the answer encoding unit, again the input to
LSTM cells are word embeddings generated by
lookup tableWA

i,t. Two attention layers in this unit
receive the output sequences of the forward and
backward LSTM cells and focus once on ques-
tions and once on sentences. This is done using an
attention mechanism similar to the one proposed
by Santos et al. (2016).

In the end, the vectors generated by these two
modules are concatenated in hAQS

i = [h
AQ

i ;hAS
i ]3

to form a general attentive representation of con-
stituents with respect to their corresponding ques-
tions and sentences.

At training time, we try to learn the vector rep-
resentations of questions, sentences, and their con-
stituents jointly. However, we like to learn the vec-
tors in a way that leads to a small distance between
questions and their true constituents and a long
distance between them and their false constituents.
For this purpose, for each pair of question and sen-
tence, we compute one true answerA+

QS and some
false answer A−QS vectors.

We generated these vectors by passing a correct
constituent A+ and a random wrong constituent
A− through question-attentive (see equations 8-
15) and sentence-attentive (see equations 16-23)
modules and by concatenating the outputs.

4.2 Training

In this section, we train our model. Given a ques-
tion and the constituents associated with its answer
sentence, the model generates a score for each
constituent. The score is an estimate of how sim-
ilar the constituent to the gold answer is. Taking
the argmax over the scores, the model returns the
id of its true predicted constituent.

To train the model, we need to compute the dis-
tance between questions and their true constituents
and to contrast it with the distance between ques-
tions and their false constituents.

There are various measures of distance or simi-
larity between two vectors each with its own mer-
its. Feng et al. (2015) did an exhaustive study on
different distance measures for text classification
and proposed some new measures including the
Geometric mean of Euclidean and Sigmoid Dot
product (GESD) (Formula 1) which outperformed
other measures in their study.

We integrated GESD in our work to estimate

3All concatenations are performed on the last layer (i.e.
data dimensions).
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Figure 1: The encoding unit. The Embed-
ding lookup uses pre-trained Glove word
vectors (Pennington et al., 2014) and up-
dates them through training. The output
is the concatenation of max-pooled vec-
tors of LSTM encoders.

Figure 2: Question-aware (equations 16-23) and sentence-aware (equations 8-15) encoding

the distance between questions and their true and
false constituents. GESD linearly combines two
other measures called L2-norm and inner product.
L2-norm is the forward-line semantic distance be-
tween two sentences and inner product measures
the angle between two sentence vectors.

DIS(Q,A) = 1
1+exp(−(Q.A)) ∗

1
1+||Q−A||

Formula 1: The distance between Question (Q)
and Answer (A) vectors.

Now everything is ready to train the model. The
overall system architecture is illustrated in Fig-
ure 3. We use Hinge loss function (Formula 2)
to estimate the loss on each question-answer com-
bination. Hinge function increases the loss with
the distance between a question and its true con-
stituents while decreases it with the distance be-
tween a question and its false constituents. In
Equation 2, encQS is the joint vector representa-

tion of questions and their answer sentences, h
A−

QS

i

is the vector of false answers, hA
+
QS is the vectors

of true answers. Finally, m is the margin between
positive and negative answers. It makes a trade-

off between the mistakes in positive and negative
classes.

L =
∑

imax(0,m+DIS(encQS
i , h

A+
QS

i )−DIS(encQS
i , h

A−
QS

i ))

Formula 2: Hinge function. m is the margin, A−QS

are false and A+
QS are true answers.

5 Datasets

The Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) is a dataset
for sentence-level (i.e. answer selection) and
word-level (i.e. answer extraction) QA. It in-
cludes 107,785 question-answer pairs synthesized
by crowd workers on 536 Wikipedia articles.
The dataset is randomly shuffled and divided
into training (80%), development (10%) and test
(10%) sets. Due to its large number of questions
compared to previous datasets (Hirschman et al.,
1999; Richardson et al., 2013), it is considered a
good testbed for data-intensive QA methods. The
answers in SQuAD are categorized into ten types
including Person, Date, Location, etc (Rajpurkar
et al., 2016). However, there are no statistics
available on the constituent type of each answer.
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Figure 3: The system architecture. Two answer modules, one with attention on questions and the other
on sentences, provide a joint representation containing all required information with respect to questions
and sentences for making inference on true constituents.

To control the vocabulary size we needed to elim-
inate redundant numeric values, but at the same
time, we wanted to parse the contents, and we
needed to keep the semantic values of numeric
tokens. Hence to preprocess the questions and
sentences in the dataset, we removed all non-
alphanumeric characters from all contents and
then replaced numeric values with ‘9’. Then we
used CoreNLP tool (Manning et al., 2014) to tok-
enize and to perform constituency parsing on the
contents.
After extracting constituents from the tree of sen-
tences and comparing them with gold answers, we
realized that 72% of the answers are constituents.
Other 21% of the answers had slight divergences
from a constituent, like lacking or having a deter-
miner or punctuation mark which were eventually
going to be disregarded in the official evaluation
script. The remaining 7% was a combination of
two smaller constituents or a part of a larger one.
In the training set, to use constituents as answers,
we replaced non-matching answers with the small-
est and most similar constituents. Since at the

evaluation time, we needed the gold answers and
not their replaced constituents, we did not change
the answers in the development set.
We extracted a total number of 48 different con-
stituents types including both terminal and non-
terminal ones from SQuAD. The percentage of
each constituent type in training and development
sets are presented in Table 1. The figures for de-
velopment set are computed only based on exact
match answers.
We used SQuAD’s development set for testing
the system and reporting the results. To prepare
the dataset for training and evaluating our system
we used a state-of-the-art answer sentence selec-
tion system (Aghaebrahimian, 2017a) to extract
the best answer sentences. The system provides us
the best sentence with 94.4 % accuracy given each
question. After pre-processing the sentence as ex-
plained above, we extracted its constituents and
trained the model using the correct constituents as
true and other constituents as negative samples.
At test time, we used the same procedure to extract
the constituents, but we used gold answers as they
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are without substituting non-matching answer-
constituents. Then, we added other constituents
as negative samples.
For evaluation purpose, we used SQuAD’s offi-
cial evaluation script which computes the exact
match and the F1 score. The exact match is the
percentage of predictions which exactly match the
gold answer and the F1 (Macro-averaged) score
is the average overlap between the prediction and
ground truth answer while treating them both as
bags of tokens, and computing their F1.
To experiment our model furthermore, we used
MS-MARCO dataset (Nguyen et al., 2015). As
a machine comprehension dataset, MS-MARCO
has two fundamental differences with SQuAD.
Every question in MS-MARCO has several pas-
sages from which the best answer should be re-
trieved. Moreover, the answers in MS-MARCO
are not necessarily sub-spans of the provided con-
texts so that BLEU and ROUGE are used as the
metrics in the official tool of MS-MARCO evalu-
ation. During training we used the highest BLEU
scored constituent as the answer and in the evalua-
tion, we computed the BLEU and ROUGE scores
of the constituents selected by the system. As the
results in Table 7 show, our system obtained com-
petitive results to another state-of-the-art system
trained on the same dataset.

6 Experiment

To evaluate our new architecture and to see how
integrating linguistic constituents affects its per-
formance we set up two settings. We designed
one setting for evaluating the effect of using con-
stituents instead of words (constituent-base vs.
word-base) and another to evaluate the effect of
using attention mechanism on top of vector train-
ing modules (uni- vs. bi-attention). Therefore we
conducted four experiments on both datasets or
eight experiments in total.
In the constituent-base setting, we generated the
training and test data as described in Section 5.
In word-base however, we replaced constituents
with the tokens in answer sentences for both train
and test sets and trained our model to compute
two scores for initial and final positions of answer
chunks. In the constituent-base setting at test time,
we directly used the predicted constituent as the
final answer. In the word-base setting, however,
we got the final answer using the highest-scored
words for initial and final positions.

We also investigated the effect of bilateral atten-
tion on the model performance. In the bi-attention
model, we used the model as described in Sec-
tion 4. In the uni-attention model, we eliminated
the attention on sentences and only used the mod-
ule for attention on questions.
For training our model, we used 300-dimensional
pre-trained Glove word vectors (Pennington et al.,
2014) to generate the embedding matrix and kept
the embedding matrix updated through training.
We used 128-dimensional LSTMs for all recur-
rent networks and used ’Adam’ with parameters
learning rate=0.001, β1 = 0.9, β2 = 0.999 for
optimization. We set batch size to 32 and dropout
rate to 0.5 for all LSTMs and embedding layers.
We performed the accuracy check only on the first
best answer.

7 Result

The results of our experiments are summarized
in Table 2. By contrasting the results of uni-/bi-
attention and word/constituent-base models, we
can see that the proposed bi-attention mecha-
nism with linguistic constituents integrated into it
makes a significant improvement on answer ex-
traction. Another interesting observation is that
the Exact Match metric benefits from restric-
tion to constituents as answers. Concerning the
MS-MARCO dataset, the results are competitive
to a state-of-the-art system tested on the same
dataset (Wang et al., 2017).

8 Ablation and Error Analysis

In this section, we analyze the SQuAD concern-
ing answer distribution over different query types.
Table 1 shows that the NP type constituents are
the most prominent type among all other an-
swers. However, to investigate the importance of
other types in overall system performance, we per-
formed an ablation study where we studied the in-
fluence of each constituent type on overall accu-
racy. The results are presented in Figure 4. We
also studied how much the model succeeded in re-
trieving answers from each type. The results are
presented in the same figure. This table also shows
how often does the method succeed in cases where
the correct answer is, in fact, a constituent span.
As seen in Figure 4, the answers are mostly singu-
lar noun phrases after which with a significant dif-
ference are proper nouns, verb phrases, and prepo-
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SQuAD Development set MS-MARCO Evaluation set
Exact-match(%) F1(%) BLEU ROUGE

Logistic Regression (Rajpurkar et al., 2016) 40.00 % 51.00 % - -
Uni-Attention Word-base (this work) 55.12 % 57.98 % 35.6 35.1
Bi-Attention Word-base (this work) 59.84 % 63.08 % 38.1 38.4
Uni-Attention Constituency-base (this work) 73.82 % 77.43 % 39.6 39.9
TreeLSTM (Zhang et al., 2017) 69.10 % 78.38 % - -
BIDAF (Seo et al., 2016) 72.6 % 80.7 % - -
CCNN (Xie and Eric, 2017) 74.1 % 82.6 % - -
R-net (Wang et al., 2017) 75.60 % 82.80 % 42.2 42.9
Bi-Attention Constituency-base (this work) 80.72 % 83.25 % 42.1 42.7
Human Performance (Rajpurkar et al., 2016) 82.30 % 91.22 % - -

Table 2: The performances of different models in the exact match and F1 metrics for SQuAD and BLEU
and ROUGE for the MS-MARCO dataset.

NP ROOT NNP NN JJ VP CD PP S Others
Constituent Type

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce

Model Performance
Type Contribution

Figure 4: Blue lines are the contribution of each
type in the overall system performance using the
best model and at the convergence time. Red
bars represent the performance of the model in re-
trieving each constituent type when the model is
converged. Performance is expressed in the ex-
act match metric (%). As a guide to how to read
the chars, the first blue line for NP type says that
50% of all correctly extracted answers by the sys-
tem are NP type-answers. The red line of the
same type says that our system managed to re-
trieve about 87% of all NP-type answers in the
dataset.

sitional phrases. We can also see how the model
performed for each constituent. It seems that ex-
tracting cardinal numbers is much easier for the
model than retrieving roots or full sentences.
An analysis of the errors shows that false answer
sentence, non-constituent answers, parsing errors,
overlapping constituents and unknown words are
the primary reasons for the mistakes made by our
system. The sentence selection process brought
about six percent incorrect answers. The next
primary reason for making mistakes is the con-
stituents which contain other smaller constituents.
While in all cases we extract the smallest con-
stituent, in about three percent of overlapping con-
stituents the more extended ones are the correct
answer. Parsing errors where the constituents are
not retrieved correctly and unknown words where
the embeddings are not trained properly are re-
sponsible for other four percent of the errors. Fi-
nally, non-constituent answers led to around eight
percent false answers in the system output.

9 Conclusion and Future Work

We described a new linguistically-based end-to-
end DNN for Question Answering from unstruc-
tured data. This model is a neural formulation in
which linguistic constituents are explicitly mod-
eled. It operates an LSTM over the constituents
and uses the resulting hidden states to attend both
to question and to the encompassing context sen-
tence, thereby enriching the constituents represen-
tation with both. The use of constituents instead of
an arbitrary string of words in answers improves
the system performance in three ways.
First, it increases the precision of the system. By
looking at the small gap between the F1 and the
exact match metrics in our system and compare it
to the ones for the other systems, we can see that
the ratio of exact-match answers in our system is
higher than that of the other ones.
Second, it helps an answer to look more like a
human-generated one. Considering prediction and
ground truth as bags of tokens, the F1 (Macro-
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averaged) metric computes the average overlap
between the prediction and ground truth answer.
While a predicted answer may have a full overlap
with the ground truth hence gains a high F1 score,
due to the irrelevant words it contains, it poses an
incoherent answer to users. The longer the gap
between exact match and F1 measures, the more
inappropriate words appear in answers. This is
primarily an essential factor in the overall quality
of dialogue QA systems where users expect to re-
ceive a natural and human-generated-like answer.
Last but not least, imposing constraints on the can-
didate space, limit errors and make the system
more efficient by decreasing the search space and
weeding out non-relevant answers. In the future,
we plan to integrate dependency relations into the
model by designing a larger model and evaluating
it on other QA datasets.
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A Full Constituent types

Other constituent types include: NP, ROOT, NNP,
NN, JJ, VP, CD, PP, S, NNS, ADJP, SBAR, NP-
TMP, QP, ADVP, VBG, DT, VBN, IN, NNPS, VB,
RB, VBD, VBZ, JJR, VBP, UCP, X, CC, FRAG,
WHNP, JJS, NAC, NX, FW, TO, RBR, PDT, PRN,
INTJ, PRT, WHPP, PRP, SINV, WHADJP, MD,
RRC, WHADVP
For a description of each type please refer to
(Manning et al., 2014)


