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Abstract

Recent work has shown how to learn better
visual-semantic embeddings by leveraging im-
age descriptions in more than one language.
Here, we investigate in detail which conditions
affect the performance of this type of grounded
language learning model. We show that multi-
lingual training improves over bilingual train-
ing, and that low-resource languages benefit
from training with higher-resource languages.
We demonstrate that a multilingual model can
be trained equally well on either translations or
comparable sentence pairs, and that annotating
the same set of images in multiple language en-
ables further improvements via an additional
caption-caption ranking objective.

1 Introduction

Multimodal representation learning is largely mo-
tivated by evidence of perceptual grounding in hu-
man concept acquisition and representation (Barsa-
lou et al., 2003). It has been shown that visually
grounded word and sentence-representations (Kiela
et al., 2014; Baroni, 2016; Elliott and Kádár, 2017;
Kiela et al., 2017; Yoo et al., 2017) improve perfor-
mance on the downstream tasks of paraphrase iden-
tification, semantic entailment, and multimodal ma-
chine translation (Dolan et al., 2004; Marelli et al.,
2014; Specia et al., 2016). Multilingual sentence
representations have also been successfully applied
to many-languages-to-one character-level machine
translation (Chung et al., 2016) and multilingual
dependency parsing (Ammar et al., 2016).

Recently, Gella et al. (2017) proposed to learn
both bilingual and multimodal sentence represen-
tations using images paired with captions indepen-
dently collected in English and German. Their
results show that bilingual training improves image-
sentence ranking performance over a monolingual

∗Work carried out at the University of Edinburgh.

baseline, and it improves performance on semantic
textual similarity benchmarks (Agirre et al., 2014,
2015). These findings suggest that it may be benefi-
cial to consider another language as another modal-
ity in a monolingual grounded language learning
model. In the grounded learning scenario, descrip-
tions of an image in multiple languages can be
considered as multiple views of the same or closely
related data. These additional views can help over-
come the problems of data sparsity, and have prac-
tical implications for efficiently collecting image-
text datasets in different languages. In real-life
applications, many tasks and domains can involve
code switching (Barman et al., 2014), which is
easier to deal with using a multilingual model. Fur-
thermore, it is more convenient to maintain a single
multilingual system than one system for each con-
sidered language. However, there is a need for
a systematic exploration of the conditions under
which it is useful to add additional views of the
data. We investigate the impact of the following
conditions on the performance of a multilingual
grounded language learning model in sentence and
image retrieval tasks:

Additional languages. Multilingual models have
not been explored yet in a multimodal set-
ting. We investigate the contribution of adding
more than one language by performing bilin-
gual experiments on English and German
(Section 5) as well as adding French and
Czech captioned images (Section 6).

Data alignment: We assess the performance of a
multilingual models trained using either cap-
tions that are translations of each other, or
captions that are independently collected in
different languages for the same set of im-
ages. The two scenarios are illustrated in Fig-
ure 1. Additionally we consider the setup
when non-overlapping sets of images and their
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En: A group of people are eating noodles.
De: Eine Gruppe von Leuten isst Nudeln.
Fr: Un groupe de gens mangent des nouilles.
Cs: Skupina lidí jedí nudle.

(a) A translation tuple

En: Several asian people eating around a table.
De: Drei Männer und zwei Frauen südostasiatischen
Aussehens sitzen, aus Schälchen essend, an einem
schwarzen, Tisch, auf dem sich u.a. auch Pappbecher
und eine Tasche befinden, im Hintergrund sind
weitere Personen und Tische.1

(b) A comparable pair

Figure 1: An example taken from the Translation and Comparable portions of the Multi30K dataset. The
translation portion (a) contains professional translations of the English captions into German, French, and
Czech. The comparable portion (b) consists of five independently crowdsourced English and German
descriptions, given only the image. Note that the sentences in (b) convey different information from the
English–German translation pair in (a).

captions are collected in different languages.
Such disjoint settings have been explored in
pivot-based multimodal representation learn-
ing (Funaki and Nakayama, 2015; Rajendran
et al., 2015) or zero-shot multi-modal machine
translation (Nakayama and Nishida, 2017).
We compare translated vs. independently col-
lected captions in Sections 5.2 and 6.1, and
overlapping vs. disjoint images in Section 5.3.

High-to-low resource transfer: In Section 6.2
we investigate whether low-resource lan-
guages benefit from jointly training on larger
data sets from higher-resource languages.
This type of transfer has previously been
shown to be effective in machine translation
(e.g., Zoph et al., 2016).

Training objective: In addition to learning to map
images to sentences, we study the effect of
also learning relationships between captions
of the same image in different languages Gella
et al. (2017). We assess the contribution
of such a caption–caption ranking objective
throughout our experiments.

Our results show that multilingual joint train-

ing improves upon bilingual joint training, and
that grounded sentence representations for a low-
resource language can be substantially improved
with data from different high-resource languages.
Our results suggest that independently-collected
captions are more useful than translated captions,
for the task of learning multilingual multimodal
sentence embeddings. Finally, we recommend to
collect captions for the same set of images in multi-
ple languages, due to the benefits of the additional
caption–caption ranking objective function.

2 Related work

Learning visually grounded word-representations
has been an active area of research in the fields of
multi-modal semantics and cross-situational word-
learning. Such perceptually-grounded word repre-
sentations have been shown to lead to higher corre-
lation with human judgements on word-similarity
benchmarks such as WordSim353 (Finkelstein
et al., 2001) or SimLex999 (Hill et al., 2015) com-
pared to uni-modal representations (Kádár et al.,

1Gloss: Three men and two women with a South-East
Asian appearance eat out of bowls at a black table, on which
there are, among other things, paper cups and a bag; in the
background there are other people and tables.
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2015; Bruni et al., 2014; Kiela and Bottou, 2014).

Grounded representations of sentences that are
learned from image–caption data sets also improve
performance on a number of sentence-level tasks
(Kiela et al., 2017; Yoo et al., 2017) when used as
additional features to skip-thought vectors (Kiros
et al., 2015). The model architectures used for
these studies have the same overall structure as our
model and coincide with image–sentence retrieval
systems (Kiros et al., 2014; Karpathy and Fei-Fei,
2015): a pre-trained CNN is fixed or fine-tuned
as image feature extractor, followed by a learned
transformation, while sentence representations are
learned by a randomly initialized recurrent neural
network. These models are trained to push the true
image–caption pairs closer together, and the false
image–caption pairs further from each other, in a
joint embedding space.

In addition to learning grounded representations
for image-sentence ranking, joint vision and lan-
guage systems have been proposed to solve a wide
range of tasks across modalities such as image cap-
tioning (Mao et al., 2014; Vinyals et al., 2015; Xu
et al., 2015), visual question answering (Antol et al.,
2015; Fukui et al., 2016; Jabri et al., 2016), text-to-
image synthesis (Reed et al., 2016) and multimodal
machine translation (Libovicky and Helcl, 2017;
Elliott and Kádár, 2017).

Our work is also closely related to multilingual
joint representation learning. In this scenario, a sin-
gle model is trained to solve a task across multiple
languages. Ammar et al. (2016) train a multilin-
gual dependency parser on the Universal Depen-
dencies treebank (Nivre et al., 2015) and show that
on average the single multilingual model outper-
forms the monolingual baselines. Johnson et al.
(2016) present a zero-shot neural machine transla-
tion model that is jointly trained on language pairs
A ↔ B and B ↔ C and show that the model is
capable of performing well on the unseen language
pairA↔ C. Lee et al. (2017) find that jointly train-
ing a many-languages-to-one translation model on
unsegmented character sequences improves BLEU
scores compared to monolingual training. They
also show evidence that the model can handle intra-
sentence code-switching. Peters et al. (2017) train
a multilingual sequence-to-sequence translation ar-
chitecture on grapheme-to-phoneme conversion us-
ing more than 300 languages. They report better
performance when adding multiple languages, even
those which are not present in the test data. Finally,

Require: p: task switching probability.
Dc2i: datasets D1 . . . Dk of image-caption pairs

< c, i > for all k languages.
Dc2c: data set of all possible caption pairs

< ca, cb > for all k languages.
φ(c, θφ): caption encoder
ψ(i, θφ): image encoder

while not stopping criterion do
T ∼ Bern(p)
if T = 1 then

Dn ∼ Dc2i
< c, i >∼ Dn

a← φ(c, θφ)
b← ψ(i, θψ)

else
< ca, cb >∼ Dc2c

a← φ(ca, θφ)
b← φ(cb, θφ)

end if
[θφ; θψ]← SGD(∇[θφ;θψ ]J (a,b))

end while

Figure 2: Pseudo-code of the training procedure
used to train our multilingual multi-task model.

massively multilingual language representations
trained on over 900 languages have been shown
to resemble language families (Östling and Tiede-
mann, 2016) and can successfully predict linguistic
typology features (Malaviya et al., 2017).

In the vision and language domain, multilingual-
multimodal sentence representation learning has
been limited so far to two languages. The joint
training of models on English and German data has
been shown to outperform monolingual baselines
on image-sentence ranking and semantic textual
similarity tasks (Gella et al., 2017; Calixto et al.,
2017). Recently Harwath et al. (2018) also showed
the benefit of joint bilingual training in the domain
of speech-to-image and image-to-speech retrieval
using English and Hindi data.

3 Multilingual grounded learning

We train a standard model of grounded language
learning which projects images and their textual
descriptions into the same space (Kiros et al., 2014;
Karpathy and Fei-Fei, 2015). The training pro-
cedure is illustrated by the pseudo-code in Fig-
ure 2. Images i are encoded by a fixed pre-trained
CNN followed by a learned affine transformation
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ψ(i, θψ), and captions c are encoded by a randomly
initialized RNN φ(c, θφ). The model learns to min-
imize the distance between pairs <a, b> using a
max-of-hinges ranking loss (Faghri et al., 2017):

J (a, b) = max
<â,b>

[max(0, α− s(a, b) + s(â, b))] +

max
<a,b̂>

[max(0, α− s(a, b) + s(a, b̂))]

where < a, b > are the true pairs, and < a, b̂ >
and < â, b > are all possible contrastive pairs in
the mini-batch. The pairs either consists of image-
caption pairs < i, c >, where the model solves a
caption-image c2i ranking task, or pairs of captions
in multiple languages belonging to the same im-
age < ca, cb >, where the model solves a caption-
caption c2c ranking task (Gella et al., 2017). Our
monolingual models are trained to minimize the
caption-image ranking objective c2i on the training
set. The multilingual models are trained to mini-
mize the ranking loss for the set of all languages
L in the collection: at each iteration the model is
either updated for the c2i objective or the caption-
caption c2c objective given either < cl, i > or a
< cka, c

m
b > pair in languages l, k,m, . . . ∈ L. All

models are trained by first selecting a task, either
c2i or c2c. In the c2i case, a language is sampled
at random followed by sampling a random batch;
in the c2c case, all possible < ca, cb > pairs across
all languages are treated as a single data set. All
of the model parameters are shared across all tasks
and languages.

Implementation. We build our model on the Py-
Torch implementation of the VSE++ model (Faghri
et al., 2017). Images are represented by the 2048D
average-pool features extracted from the ResNet50
architecture (He et al., 2016) trained on ImageNet
(Deng et al., 2009); this is followed by a trained
linear layer WI ∈ R2048×1024. Other implementa-
tion details follow (Faghri et al., 2017): sentences
are represented as the final hidden state of a GRU
(Chung et al., 2014) with 1024 units and 300 di-
mensional word-embeddings trained from scratch.
We use a single word embedding matrix containing
the union of all words in all considered languages.
The similarity function s in the ranking loss is co-
sine similarity. We `2 normalize both the caption
and image representations. The model is trained
with the Adam optimizer (Kingma and Ba, 2014)
using default parameters and learning-rate of 2e-4.
We train the model with an early stopping crite-

En De Fr Cz

En 1.0 0.04 0.06 0.02

De – 1.0 0.03 0.01

Fr – – 1.0 0.01

Cz – – – 1.0

Table 1: Vocabulary overlap as measured by the
Jaccard coefficient between the different languages
on the translation portion of the Multi30K dataset.

rion, which is to maximise the sum of the image–
sentence recall scores R@1, R@5, R@10 on the
validation set with patience of 10 evaluations. In
the monolingual setting the stopping criterion is
evaluated at the end of each epoch, whereas in the
multilingual setup it is evaluated every 500 itera-
tions. The probability of switching between the
c2i and c2c tasks is set to 0.5. Batches from all
data sets are sampled by shuffling the full dataset,
going through each batch and re-shuffling when
exhausted. The sentence-pair dataset used to train
the c2c ranking model for ` languages is generated
as follows. For a given image i, a set of languages
1 · · · `, and a set of captions Ci1, . . . , C

i
` associated

with an image i, we generate the set of all possible
combinations of size 2 from caption sets Ci and add
the Cartesian product between all resulting pairs
Cim × Cin in Ci to the training set.

4 Experimental setup2

Datasets. We train and evaluate our models on
the translation and comparable portions of the
Multi30K dataset (Elliott et al., 2016, 2017). The
translation portion (a low-resource dataset) con-
tains 29K images, each described in one English
caption with German, French, and Czech transla-
tions. The comparable portion (a higher-resource
dataset) contains the same 29K images paired with
five English and five German descriptions collected
independently. Figure 1 presents an example of the
translation and comparable portions of the data.
We used the preprocessed version of the dataset,
in which the text is lowercased, punctuation is nor-
malized, and the text is tokenized3. To reduce the
vocabulary size of the joint models, we replace all
words occurring fewer than four times with a spe-

2Code to reproduce our results is available at
https://github.com/kadarakos/mulisera.

3https://github.com/multi30k/dataset

https://github.com/kadarakos/mulisera
https://github.com/multi30k/dataset
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cial “UNK” symbol. Table 1 shows the overlap be-
tween the vocabularies of the translation portion of
the Multi30K dataset. The total number of tokens
across all four languages is 17,571, and taking the
union of the tokens in these four languages results
in vocabulary of 16,553 tokens – a 6% reduction
in vocabulary size. On the comparable portion of
the dataset, the total vocabulary between English
and German contains 18,337 tokens, with a union
of 17,667, which is a 4% reduction in vocabulary
size.

Evaluation. We evaluate our models on the 1K
images of the 2016 test set of Multi30K either using
the 5K captions from the comparable data or the
1K translation pairs. We evaluate on image-to-text
(I→ T) and text-to-image (T→ I) retrieval tasks.
For most experiments we report Recall at 1 (R@1),
5 (R@5) and 10 (R@10) scores averaged over 10
randomly initialised models. However, in Section 6
we only report R@10 due to space limitations and
because it has less variance than R@1 or R@5.

5 Bilingual Experiments

5.1 Reproducing Gella et al. (2017)

We start by attempting to reproduce the findings
of Gella et al. (2017). In these experiments
we train our multi-task learning model on the
comparable portion of Multi30K. Our models re-
implement their setups used for VSE (Monolin-
gual) and bilingual models Pivot-Sym (Bilin-
gual) and Parallel-Sym (Bilingual + c2c). The
OE, Pivot-Asym and Parallel-Asym mod-
els are trained using the asymmetric similarity mea-
sure introduced for the order-embeddings (Vendrov
et al., 2015). The main differences between our
models and Gella et al. (2017) is that they use
VGG-19 image features, whereas we use ResNet50
features, and we use the max-of-hinges loss instead
of the more common sum-of-hinges loss.

Table 2 shows the results on the English compa-
rable 2016 test set. Overall our scores are higher
than Gella et al. (2017), which is most likely due
to the different image features (Faghri et al. (2017)
also report a large performance gain when they use
the ResNet instead of the VGG image features).
Nevertheless, our results show a similar trend to
the symmetric cosine similarity models from Gella
et al. (2017): our best results are achieved with
bilingual joint training with the added c2c objective.
Their models trained with an asymmetric similarity

measure show a different trend: the monolingual
model is stronger than the bilingual model, and the
c2c loss provides no clear improvement.

Table 3 presents the German results. Once again,
our implementation outperforms Gella et al. (2017),
and this is likely due to the different visual features
and max-of-hinges loss. However, our Bilingual
model with the additional c2c objective performs
the best for German, whereas Gella et al. (2017)
reports the overall best results for the monolingual
baseline VSE. Their models that use the asymmet-
ric similarity function are clearly better than the
Monolingual OE model. In general, the results
from Gella et al. (2017) indicate the benefits of
bilingual joint training, however, they do not find
a clear pattern between the model configurations
across languages. In our implementation, we only
focused on the symmetric cosine similarity func-
tion and found a systematic pattern across both
languages: bilingual training improves results on
all performance metrics for both languages, and
the additional c2c objective always provides fur-
ther improvements.

5.2 Translations vs. independent captions

We now study whether the model can be trained
on either translation pairs or independently col-
lected bilingual captions. Gella et al. (2017) only
conducted experiments on independently collected
captions. However, it is known that humans have
equally strong preference for translated or indepen-
dently collected captions of images (Frank et al.,
2018), which has implications for the difficulty
and cost of collecting training data. Our baseline
is a Monolingual model trained on 29K single-
captioned images in the translation portion of
Multi30K. The Bi-translation model is trained on
both German and English, with shared parame-
ters. Table 4 shows that there is a substantial im-
provement in performance for both languages in
the bilingual setting. However, the additional c2c
loss degrades performance here. This could be
because we only have one caption per image in
each language and it is easier to find a relationship
between these views of the translation pairs.

In the Bi-comparable setting, we randomly select
an English and a German sentence for each image
in the comparable portion of Multi30K. We only
find a minor difference in performance between
the Bi-translation and Bi-comparable models for
English, but the German results are improved. Cru-
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I→T T→I

R@1 R@5 R@10 R@1 R@5 R@10

Sy
m

m
et

ri
c VSE 31.6 60.4 72.7 23.3 53.6 65.8

Pivot-Sym 31.6 61.2 73.8 23.5 53.4 65.8
Parallel-Sym 31.7 62.4 74.1 24.7 53.9 65.7

A
sy

m
m

et
ri

c OE 34.8 63.7 74.8 25.8 56.5 67.8

Pivot-Asym 33.8 62.8 75.2 26.2 56.4 68.4
Parallel-Asym 31.5 61.4 74.7 27.1 56.2 66.9

Monolingual 42.4 69.9 79.8 30.5 57.8 67.9

Bilingual 42.7 70.7 80.1 30.6 58.1 68.3

+ c2c 43.8 71.8 81.4 32.3 59.9 70.2

Table 2: English Image-to-text (I→T) and text-to-image (T→I) retrieval results on the comparable part
of Multi30K, measured by Recall at 1, 5 at 10. Typewriter font shows performance of two sets of
symmetric and asymmetric models from Gella et al. (2017).

I→T T→I

R@1 R@5 R@10 R@1 R@5 R@10

Sy
m

m
et

ri
c VSE 29.3 58.1 71.8 20.3 47.2 60.1

Pivot-Sym 26.9 56.6 70.0 20.3 46.4 59.2

Parallel-Sym 28.2 57.7 71.3 20.9 46.9 59.3

A
sy

m
m

et
ri

c OE 26.8 57.5 70.9 21.0 48.5 60.4

Pivot-Asym 28.2 61.9 73.4 22.5 49.3 61.7

Parallel-Asym 30.2 60.4 72.8 21.8 50.5 62.3

Monolingual 34.2 63.0 74.0 23.9 49.5 60.5

Bilingual 35.2 64.3 75.3 24.6 50.8 62.0

+ c2c 37.9 66.1 76.8 26.6 53.0 64.0

Table 3: German Image-to-text (I→T) and text-to-image (T→I) retrieval results on the comparable part
of Multi30K, measured by Recall at 1, 5 at 10. Typewriter font shows performance of two sets of
symmetric and asymmetric models from Gella et al. (2017).

cially, it is still better than training on monolingual
data. In the Bi-comparable setting, the c2c loss
does not have a detrimental effect on model per-
formance, unlike in the Bi-translation experiment.
Overall we find that the comparable data leads to
larger improvements in retrieval performance.

5.3 Overlapping vs. non-overlapping images

In a bilingual setting, we can improve an image-
sentence ranking model by collecting more data in

a second language. This can be achieved in two
ways: by collecting captions in a new language
for the same overlapping set of images, or by us-
ing a disjoint set of images and captions in a new
language. We compare these two settings here.

In the Bi-overlap condition, we collect captions
for the existing images in a new language, i.e. we
use all of the English and German captions paired
with a random selection of 50% of the images in
comparable Multi30K. This results in a training
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English German

I→T T→I I→T T→I

Monolingual 56.3 40.1 39.5 20.9

Bi-translation 67.4 55.1 58.3 44.6

+ c2c 58.2 47.7 51.0 39.6

Bi-comparable 67.9 55.7 62.0 48.1

+ c2c 67.6 56.0 61.9 49.1

Table 4: R@10 retrieval results on the comparable
part of Multi30K. Bi-translation is trained on 29K
translation pair data; bi-comparable is trained by
downsampling the comparable data to 29K.

dataset of 14.5K images with 145K bilingual cap-
tions. In the Bi-disjoint condition, we collect cap-
tions for new images in a new language, i.e. we use
all of the English captions from a random selection
of 50% of the images, and all of the German cap-
tions for the remaining 50% of the images. This
results in a training dataset on 29K images with a
total of 145K bilingual captions.

Table 5 shows the results of this experiment. The
upper-bound is to train a Monolingual model on the
full comparable corpus. For the lower bound, we
train Half Monolingual models by randomly sam-
pling half of the 29K images and their associated
captions, giving 72.5K captions over 14.5K images.
Unsurprisingly, the Half Monolingual models per-
form worse than the Full Monolingual models. In
the Bi-overlap experiment, the German model is
improved by collecting captions for the existing
images in English. There is no difference in the
performance of the English model, echoing the
results from Section 5.1. The Bi-overlap model
also benefits from the added c2c objective. Finally,
the Bi-disjoint model performs as well as the Bi-
overlap model without the c2c objective. (It was
not possible to train the Bi-disjoint model with the
additional c2c objective because there are no cap-
tion pairs for the same image.)

Overall, these results suggest that it is best to
collect additional captions in the original language,
but when adding a second language, it is better
to collect extra captions for existing images and
exploit the additional c2c ranking objective.

English German

I→T T→I I→T T→I

Full Monolingual 79.8 67.9 74.0 60.5

Half Monolingual 73.7 61.6 66.4 53.9

Bi-overlap 73.6 62.2 67.6 54.9

+ c2c 76.0 65.9 71.2 59.1

Bi-disjoint 73.1 62.1 67.9 54.9

Table 5: R@10 retrieval results on the compara-
ble part of Multi30K. Full model trained on the
29K images of the comparable part, Half model on
14.5K images using random downsampling. For
Bi-overlap, both English and German captions are
used for 14.5K images. For Bi-disjoint, 14.5K im-
ages are used for English and the remaining 14.5K
images for German.

6 Multilingual experiments

We now turn out attention to multilingual learning
using the English, German, French and Czech anno-
tations in the translation portion of Multi30K. We
only report the text-to-image (T→I) R@10 results
due to space limitations.

We did not repeat the overlapping vs. non-
overlapping experiments from Section 5.3 in a mul-
tilingual setting because this would introduce too
much data sparsity. In order to conduct this exper-
iment, we would have to downsample the already
low-resource French and Czech captions by 50%,
or even further for multi-way experiments.

6.1 Translation vs. independent captions

Table 6 shows the results of repeating the trans-
lations vs. comparable captions experiment from
Section 5.2 with data in four languages. The
Multi-translation models are trained on 29K im-
ages paired with a single caption in each language.
These models perform better than their Monolin-
gual counterparts, and the German, French, and
Czech models are further improved with the c2c ob-
jective. The Multi-comparable models are trained
by randomly sampling one English and one Ger-
man caption from the comparable dataset, along-
side the French and Czech translation pairs. These
models perform as well as the Multi-translation
models, and the c2c objective brings further im-
provements for all languages in this setting.
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En De Fr Cz

Monolingual 50.4 39.5 47.0 42.0

Multi-translation 58.7 51.2 57.0 51.0

+ c2c 56.3 52.2 55.0 51.6

Multi-comparable 59.2 49.6 57.2 50.8

+ c2c 61.8 52.7 59.2 55.2

Table 6: The Monolingual and joint Multi-
translation models trained on translation pairs, and
the Multi-comparable trained on the downsampled
comparable set with one caption per image.

These results clearly demonstrate the advantage
of jointly training on more than two languages.
Text-to-image retrieval performance increases by
more than 11 R@10 points for each of the four
languages in our experiment.

6.2 High-to-low resource transfer

We now examine whether the lower-resource
French and Czech models benefit from training
with the full complement of the higher-resource
English and German comparable data. Therefore
we train a joint model on the translation as well
as comparable portions of Multi30K, and examine
the performance on French and Czech.

Table 7 shows the results of this experiment. We
find that the French and Czech models improve by
8.8 and 5.5 R@10 points respectively when they
are only trained on the multilingual translation pairs
(compared to the monolingual version), and by an-
other 2.2 and 2.8 points if trained on the extra 155K
English and German comparable descriptions. We
also find that the additional c2c objective improves
the Czech model by a further 4.8 R@10 points (this
improvement is likely caused by training the model
on 46 possible caption pairs). Our results show
the impact of jointly training with the larger En-
glish and German resources, which demonstrates
the benefits of high-to-low resource transfer.

6.3 Bilingual vs. multilingual

Finally, we investigate how useful it is to train on
four languages instead of two. Figure 3 presents
the image-to-text and text-to-image retrieval results
of training Monolingual, Bilingual, or Multilingual
models. The Monolingual and Bilingual models are
trained on a random single-caption-image subsam-

French Czech

Monolingual 47.0 42.0

Multilingual 56.3 51.3

+ Comparable 58.9 52.4

+ c2c 61.6 57.2

Table 7: Multilingual is trained on all translation
pairs, + Comparable adds the comparable data set.

ple of the comparable dataset with the additional
c2c objective, as this configuration provided the
overall best results in Sections 5.2 and 6.1. The
Multilingual models are trained with the additional
French and Czech translation data. As can be seen
in Figure 3, the performance on both tasks and for
both languages improves as we move from using
data from one to two to four languages.

7 Conclusions

We learn multilingual multimodal sentence em-
beddings and show that multilingual joint training
improves over bilingual joint training. We also
demonstrate that low-resource languages can bene-
fit from the additional data found in high-resource
languages. Our experiments suggest that either
translation pairs or independently-collected cap-
tions improve the performance of a multilingual
model, and that the latter data setting provides fur-
ther improvements through a caption–caption rank-
ing objective. We also show that when collecting
data in an additional language, it is better to col-
lect captions for the existing images because we
can exploit the caption–caption objective. Our re-
sults lead to several directions for future work. We
would like to pin down the mechanism via which
multilingual training contributes to improved per-
formance for image-sentence ranking. Addition-
ally, we only consider four languages and show the
gain of multilingual over bilingual training only for
the English-German language pair. In future work
we will incorporate more languages from data sets
such as the Chinese Flickr8K (Li et al., 2016) or
Japanese COCO (Miyazaki and Shimizu, 2016).
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