
Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 11–20
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

11

Continuous Word Embedding Fusion via Spectral Decomposition

Tianfan Fu
Georgia Institute of Technology

Atlanta, GA, USA
tfu42@gatech.edu

Cheng Zhang
Microsoft Research Cambridge

Cambridge, CB1 2FB, UK
cheng.zhang@microsoft.com

Stephan Mandt
Los Angeles, CA, USA

stephan.mandt@gmail.com

Abstract

Word embeddings have become a mainstream
tool in statistical natural language processing.
Practitioners often use pre-trained word vec-
tors, which were trained on large generic text
corpora, and which are readily available on the
web. However, pre-trained word vectors often-
times lack important words from specific do-
mains. It is therefore often desirable to extend
the vocabulary and embed new words into a
set of pre-trained word vectors. In this paper,
we present an efficient method for including
new words from a specialized corpus, contain-
ing new words, into pre-trained generic word
embeddings. We build on the established view
of word embeddings as matrix factorizations
to present a spectral algorithm for this task. Ex-
periments on several domain-specific corpora
with specialized vocabularies demonstrate that
our method is able to embed the new words
efficiently into the original embedding space.
Compared to competing methods, our method
is faster, parameter-free, and deterministic.

1 Introduction

There has been a recent surge of neural word em-
bedding models (Mikolov et al., 2013a,b). These
models have been shown to perform well in a va-
riety of NLP problems, such as word similarity
and relational analogy tasks. Word embeddings
play a crucial role in diverse fields such as com-
puter vision (Hwang and Sigal, 2014), news clas-
sification (Kenter and De Rijke, 2015; Phung and
De Vine, 2015), machine translation (Zou et al.,
2013; Wu et al., 2014), and have been extended
in various ways (Rudolph et al., 2016; Bamler and
Mandt, 2017; Peters et al., 2018).

Instead of training word embeddings from
scratch, practitioners often resort to high-quality,

pre-trained word embeddings which can be down-
loaded from the web. These embeddings were
trained on massive corpora, such as online news.
The downside is that their vocabulary is often re-
stricted, and by nature, is very generic. An open
question remains of how to optimally include new
words from highly specialized text corpora into an
existing word embedding fit. Such transfer learning
has several advantages. First, one saves the com-
putational burden of learning high-quality word
vectors from scratch. Second, one can already
rely on the fact that the majority of word embed-
ding vectors are semantically meaningful. Third,
as we show in this paper, there are deterministic
and parameter-free approaches that fulfill this goal,
making the scheme robust and reproducible.

For a practical application, imagine that we are
given a small corpus, such as a collection of sci-
entific articles, and our goal is to include the as-
sociated vocabulary into a pre-trained set of word
vectors which were learned on Google Books or
Wikipedia. The scientific corpus contains both
common words (e.g., “propose”, “experiment”)
and domain-specific words, such as “submodular”
and “sublinear”. However, this specialized cor-
pus can be safely assumed to be too small to train
a word embedding model from scratch. Alterna-
tively, we could merge the domain-specific corpus
with a large generic corpus and train the entire
word-embedding from scratch, but this would be
computationally demanding and non-reproducible
due to the non-convexity of the underlying opti-
mization problem. In this paper, we show how to
include the specialized vocabulary into the generic
set of word vectors without having to re-train the
model on the large vocabulary, simply relying on
linear algebra.

A naive baseline method is to fix the pre-trained

12

word vectors and only update the new ones. We
found that this approach suffers from local optima
and sensitive to hyper-parameters; therefore it is
not reliable in practice. In contrast, our approach is
not based on gradient descent and therefore more
robust, deterministic, and parameter-free.

In this paper, we propose a Spectral Online Word
Embedding (SOWE) algorithm for integrating new
words into a pre-trained word embedding fit. Our
approach is based on online matrix factorization. In
more detail, our main contributions are as follows:

• We propose a Spectral Online Word Embed-
ding (SOWE) method to include new words
into a pre-trained set of word vectors. This
approach does naturally not suffer from opti-
mization problems, such as initialization, pa-
rameter tuning, and local optima.

• Our approach approximately reduces to an
online matrix factorization problem. We pro-
vide a bound on the approximation error and
show that this error does not scale with the
vocabulary size (Theorem 1).

• The complexity of proposed method scales lin-
early with the size of vocabulary and quadrat-
ically with embedding dimension, making the
approach feasible in large-scale applications.

• We evaluate our method on two domain spe-
cific corpora. Experimental results show that
our method is able to embed new vocabulary
faster than the baseline method while obtain-
ing more meaningful embeddings. It is also
parameter-free and deterministic, making the
approach easily reproducible.

2 Related Work

Our paper departs from word embeddings learned
via the skip-gram method, and shows how the vo-
cabulary can be extended in an online fashion, us-
ing methods from linear algebra. As such, our ap-
proach relates to word embeddings, online learning,
and the singular value decomposition (SVD).

Skip-Gram Model Our model builds on word
embeddings trained via the skip-gram model with
negative sampling (SGNS), proposed by Mikolov
et al. (2013a,b). These papers proposed a scalable
training algorithm based on negative sampling.

The model predicts a target word in the mid-
dle of a sentence based on its surrounding words

(contexts). Each target word / context word is asso-
ciated with a feature vector whose entries are latent,
and are treated as parameters to be learned. This
model is efficient to train via stochastic gradient
descent; its resulting word vectors provide state-of-
the-art results on various linguistic tasks (Liu et al.,
2015; Pickhardt et al., 2014). The skip-gram model
was influential both in the machine learning and
related communities.

Levy and Goldberg (2014) showed that
word2vec can be viewed as an implicit matrix
factorization of the pointwise mutual information
matrix (PMI) of word distributions. The authors
present a closed-form solution based on a singular
value decomposition of a sparse version of this ma-
trix, termed SPPMI. In this paper, we extend on this
view and present an efficient online learning algo-
rithm based on a decomposition of SPPMI matrix
which departs form pre-trained word embeddings.

Online Word Embeddings Kiros et al. (2015)
propose adding new words into an existing embed-
ding space using a projection method to warm-start
learning the new words. The authors assumed that
there already exist well-trained word vectors from a
large underlying vocabulary, and present a method
that projects word vectors from an old space to a
new space, where the projection matrix is learned
from known words.

Bojanowski et al. (2016) exploited character-
level features. Concretely, they train a character-n-
gram model to locate the new word vector near the
existing word with similar root. Le and Mikolov
(2014) introduced paragraph-level vectors (instead
of word-level), a fixed-length feature representa-
tions for variable-length texts. When embedding
new paragraphs, old paragraph vectors are frozen,
and the new ones are updated. Furthermore, Luo
et al. (2015) proposed an efficient online method to
address the memory issue encountered when learn-
ing word embeddings based on nonnegative matrix
factorization.

Online SVD We already discussed word embed-
dings via implicit matrix factorization (IMF) above.
This method is based on a truncated SVD on a
square matrix whose size is the vocabulary size. As
this paper combines this idea with online learning,
we review related word on online singular value
decompositions.

Online SVD (incremental SVD) is a classical
problem in numerical linear algebra (Datta, 2010),

13

and is intensively used in recommendation sys-
tems (Sarwar et al., 2002; Brand, 2003) and sub-
space learning (Li, 2004). Online SVD only pos-
sesses an approximate solution. Recently some
methods have been proposed to reduce the involved
approximation error (Shamir, 2015; Allen-Zhu and
Li, 2016) based on iterative learning. In this paper,
we use the same online SVD method as in Sarwar
et al. (2002), which owns a closed-form solution.

3 Method

We present our spectral word embedding method
to efficiently insert new words from an extended
vocabulary into pre-trained word embeddings, with-
out having to re-train the model on the extended
vocabulary. We first introduce some relevant back-
ground with respect to word embedding via implicit
matrix factorization (Section 3.1) before presenting
our method (Section 3.2) and theoretical considera-
tion (Section 3.3).

Notation In this paper, the vocabulary of the ex-
isting pre-trained word embedding is called base
vocabulary, whose size is m. After adding new
words, we call the whole vocabulary the extended
vocabulary; its size is n ≡ m + m′, where m′

is the number of unique new words. We assume
m′ � m, so O(n) = O(m). Furthermore, let
d denote the embedding dimension. As will be
explained below, let S0, Sfull denote the SPPMI
matrices of the base and extended vocabularies, re-
spectively. The subscript “full”, thus, always refers
to the extended vocabulary.

3.1 Background: Word Embedding via
Implicit Matrix Factorization (IMF)

The basis of our approach is the skip-gram
model with negative sampling (SGNS), also called
word2vec (Mikolov et al., 2013a,b). Let D denote
the set of all observed of word-context pairs. Fur-
thermore, #(w, c) denotes the number of times the
pair (w, c) appears in D, and ~w and ~c are the word
and context embeddings.

The objective that SGNS minimizes is

L =
∑
w∈Vw

∑
c∈Vc

{
#(w, c) log σ(~w · ~c)

+ k · EcN∼pD [log σ(−~w · ~cN)]
}
.

(1)

In the limit of large d, Levy and Goldberg
(2014) found the following closed-form solution
to Eq 1: x = ~w · ~c = log

(
#(w,c) ·|D|
#(w) #(c)

)
− log k.

S0 = WC> x′

y′ z′

m

m′

m m′

Figure 1: Block-structure of the Pointwise Mutual
Information Matrix considered in this paper, and
its block-structure for extended vocabulary. It cor-
responds to Equation (6).

The first term can be seen as an empirical es-
timate of Pointwise Mutual Information (PMI):
PMI(w, c) = log

(
P (w,c)

P (w)P (c)

)
. Thus, the matrix

M that SGNS factorizes can be constructed from
Mij = PMI(wi, cj) − log k. For computational
convenience, Levy and Goldberg (2014) suggested
a sparse and consistent alternative called Shifted
Positive PMI (SPPMI):

SPPMI(w, c) = max(PMI(w, c)− log k, 0).
(2)

Levy and Goldberg (2014) showed that using such
sparse representation, word and context embed-
dings could be efficiently obtained using a trun-
cated singular value decomposition.

As will be explained in the next section, our ap-
proach builds on the intuition that word2vec implic-
itly factorizes the SPPMI matrix. Given pre-trained
word and context vectors, we ask for an efficient
way of extending the vocabulary and re-adjusting
these vectors accordingly.

3.2 SOWE: Spectral Online Word
Embedding

Our method takes advantages of the implicit ma-
trix factorization method for efficiently embedding
previously unseen words. Given a pre-trained word
embedding, we firstly transform it to the SVD
form. Using such form, under mild approxima-
tion, we can utilize efficient online SVD (Sarwar
et al., 2002) to obtain the word embeddings for the
extended vocabulary.

Figure 1 presents a sketch of the problem that we
want to solve. We start from a (m+m′)×(m+m′)
matrix in the extended vocabulary space, for which

14

A = U(ΣV >) a U

ΣV > b Us
Σs

Vs

Figure 2: A sketch of the matrix manipulations carried out in online SVD (Algorithm 2). Given the
truncated SVD of A ≈ UΣV > and new columns a, we first compute b, the projection of a on U , i.e.,
b = U>a. Then we concatenate Z = ΣV > and b via V ′ = [Z, b]>. Finally, we do rank-d truncated SVD
on V ′, i.e, [Vs,Σs, Us] = tSVD(V ′, d). Final result is [UUs,Σs, Vs] = tSVD([A, a], d).

Algorithm 1 Spectral Online Word Embedding
(SOWE)
Input: Old word/context vectors W and C with

S0 ≡WC>, co-occurrence matrices involving
new vocabulary x′, y′, and z′ (see Fig. 1).

Output: Word/context vectors Wfull, Cfull for ex-
tended vocabulary.

1: SVD of WC> via QR decomposition.
2: U,R1 ← QR(W) // O(md2)
3: V,R2 ← QR(C) // O(md2)
4: U0,Σ, V0 ← SVD(R1R

>
2) // O(d3)

5: U ← UU0 // O(md2)
6: V ← V V0 // O(md2)
7: Horizontal and vertical Online SVD.
8: U ′,Σ′, V ′ ← OSVD([UΣV >, x′])

9: Ufull,Σfull, Vfull ← OSVD(
[
U ′Σ′V ′>

[y′,z′]

]
).

10: Return new embeddings.
11: Wfull ← Ufull ·

√
Σfull,

12: Cfull ← Vfull ·
√

Σfull

we seek an approximate factorization. We assume
that we already have a factorization of the upper-
left submatrix of size m×m, implicitly obtained
from word2vec or related word embedding algo-
rithms. We seek an efficient linear algebra algo-
rithm that, given the block-structure, results in a
factorization of the whole matrix in linear time in
m. This will be detailed below.

Overview The following steps summarize our
overall proposed procedure.

• We start by assuming that our word embed-
ding algorithm came from a factorization of
the pointwise mutual information matrix of
word frequencies. Thus, S0 ≈WC>.

• In order to make use of efficient only SVD,
we need to convert this matrix product into

an SVD form. This can be done in O(m)
time and results in WC> = UΣV > (Sec-
tion 3.2.1).

• Next, we need to estimate all elements in the
extended pointwise mutual information ma-
trix, see Figure 1. We first estimate the dom-
inant block (section 3.2.2 (i)), and show that
it can be approximated by our previously ob-
tained SVD. We then estimate the remaining
blocks (section 3.2.2 (ii)). For the latter, we
need to estimate the frequencies of the new
words relative to the old words.

• We are now in a position to efficiently com-
pute a new SVD for the extended pointwise
mutual information matrix, UfullΣfullV

>
full, us-

ing online SVD. The operational costs are still
O(m) ((iii) in Section 3.2.2).

• Finally we define our new embedding ma-
trices as Wfull = Ufull

√
Σfull and Cfull =

Vfull
√

Σfull, which completes our algorithm.

These steps will be explained in more detail below.

3.2.1 SVD from Word-Context Vectors
The first step in our algorithm is to obtain a singular
value decomposition (SVD) of the old vocabulary’s
approximate PMI matrix S0. Our working hypothe-
sis is that our pre-trained word and context embed-
ding matrices W and C are already approximately
factorizing this matrix,

S0 ≈WC>. (3)

Levy and Goldberg (2014) showed that this fac-
torization is correct in the limit of a large enough
embedding dimension d, but is only approximately
true otherwise. In this paper, we will use Eq. 3 as a
working hypothesis.

15

Computing an SVD from S0 would usually be
an operation that costs O(m2), thus would scale
quadratically in the vocabulary size. In such factor-
ization would be not practical, since m is typically
of the order of hundred thousands. Instead, we
show next that, given a low-rank factorization of
S0 in terms of W and C renders this cost linear
in the vocabulary size, making such an approach
practical. The following procedure corresponds to
steps 1-6 in Algorithm 1.

A truncated SVD (tSVD) of S0 with rank d can
be obtained from QR decompositions (Golub and
Loan, 1996) of W and C as follows:

U ′, R1 = QR(W); V ′, R2 = QR(C)

This results in S0 = U ′R1R
>
2 V
′>. In a second

step, we apply an SVD to R1R
>
2 :

U ′′,Σ, V ′′ = SVD(R1R
>
2).

The costs of this are small, as R1,2 are d × d ma-
trices. Since the composition of two orthogonal
matrices is still orthogonal, we obtain the SVD
of S0 as U = U ′U ′′, V = V ′V ′′. Note that
this transformation is exact since in our approx-
imation, S0 = WC> was already of rank d. Thus,
WC> = UΣV >. The complexity of this operation
is O(md2), which concludes the first step.

3.2.2 Utilizing Online SVD to Embed
Extended Vocabulary

The next steps amout to adding new words to the
old embeddings by adding rows and columns to the
original SPPMI matrix, and efficiently factorizing
it via online SVD.

Given a representation of the old block of the
PMI matrix in terms of an SVD, our next task is
to compute the new elements of this matrix that
correspond to the extended vocabulary ofm′ words,
with m′ � m. We denote this matrix Sfull ∈
R(m+m′)×(m+m′), and it has the following block
structure (see also Fig. 1):

Sfull ,

(
S′ x′

y′> z′

)
. (4)

In the following three steps, we describe how to
estimate and efficiently factorize this matrix.

(i) Approximating the main block In a first
step, we approximate the main block S′ of the
SPPMI matrix (Eq. 4). We show that to a first
approximation, this is just the SPPMI matrix of the
original vocabulary, hence S′ ≈ S0.

Algorithm 2 Recap: Online SVD (OSVD)

Input: Rank-d truncated SVD (tSVD) of A ∈
Rm×n: U,Σ, V = tSVD(A, d), where a ∈
Rm×m′

, U ∈ Rm×d, V ∈ Rn×d,Σ ∈ Rd×d,
{d,m′} � {m,n}.

Output: Rank-d truncated SVD of [A, a]:
1: U∗,Σ∗, V ∗ ← tSVD([A, a], d)
2: Compute projection of new matrix to U .
3: b← U>a. // O(ndm′)
4: Z ← ΣV > // O(nd)
5: V ′ ← [Z, b]>. // O(nd2)
6: Apply tSVD to projection.
7: Vs,Σs, Us← tSVD(V ′, d).
8: // O((n+m′)d2) ≈ O(nd2)
9: Return the results.

10: U∗ ← UUs, Σ∗ ← Σs, V ∗ ← Vs. // O(nd2)

To set up the SPPMI matrix, the following
formula has to be applied to the observed co-
occurrence counts #(w, c) between all word and
context words in the extended vocabulary:

max
{

log
(#(w, c) · |D|

#(w) #(c)

)
− log k, 0

}
(5)

Besides the co-occurrence counts, this also involves
the absolute frequencies #(w) and #(c) of words
and context vectors in the extended vocabulary, as
well as the total number of counts |D|. Note that all
these quantities enter only on a logarithmic scale.

The co-occurrence counts #(w, c) are the same
for the SPPMI matrices of the original and full
vocabularies. What differs slightly are the absolute
counts #(w), #(c), and |D| (these are slightly
higher in the extended corpus). However, since
we assumed that the original training corpus was
much bigger than the corpus containing the new
words, we can safely assume that the change in
log #(w), log #(c), and log |D| is negligible (we
will further specify and analyze this approximation
in our section 3.3). Thus, S′ ≈ S0. Furthermore,
since we have shown in section 3.2.1 that S0 =
UΣV >, this results in

Sfull ≈
(
UΣV > x′

y′> z′

)
. (6)

(ii) Adding rows and columns The matrices
x′, y′ ∈ Rm×m′

in Eq. 6 are tall-and-skinny ma-
trices that contain information about cross co-
ocurrences between old and new words, and z′ ∈
Rm′×m′

are the co-occurrences of new words in

16

the new vocabulary. Next, we will describe how to
estimate these quantities, taking into account that
we don’t have access to the original training corpus
that was used to learn the word embeddings of the
old vocabulary.

As follows, we focus on x′ as an example (es-
timating y′ works analogously). In this case, we
observe the co-occurrence counts #(w, c) between
words w from the base vocabulary in the context
of context words c from the new vocabulary. To
compute the SPPMI (2), we then apply Eq. 5 to all
obtained counts. This results in x′. The remaining
problem is that #(w) and |D| are unknown to us,
and some heuristics have to be found to circumvent
this problem.

First, notice that #(w)
|D| corresponds to the word

frequencies in the original corpus. Furthermore,
we are only interested in log #(w)

|D| . The logarithm
is less sensitive to the result of the estimation of
this quantity.

When using pre-trained word embeddings, the
embedding vectors are typically ranked according
to their frequency. We estimated the word fre-
quency based based on their frequencies on the
smaller corpus. For words from the old vocabulary
that are not present in the new corpus, we inter-
polated using an exponential model, taking their
frequency rankings into account.

Another heuristic has to be found to approximate
z′, in which case #(w) and #(c) are available, but
|D| is unknown. Here, we assume that the new
words are about as rare as the rarest words in the
old vocabulary, setting #(w)/|D| to the frequency
of the least frequent word in corpus. This specifies
the extended SPPMI matrix. Next, we show how
to efficiently re-factorize it.

(iii) Factorizing the Extended SPPMI Matrix
Finally, the approximated SPPMI matrix is effi-
ciently factorized using online SVD.

This can not be carried out in a single step, be-
cause the online SVD method sketched in Algo-
rithm 2 only supports the addition either rows or
columns (here presented for columns). Thus, we
first concatenate UΣV > and x′ horizontally and
perform a rank d truncated SVD. In a second step,
we concatenate the resulting singular value decom-
position vertically with the concatenation of y′ and
z′ to obtain a truncated SVD of the full SPPMI ma-
trix. Algorithm 2 gives the details; for more details
we refer to (Sarwar et al., 2002). This results in
an approximate SVD for the full matrix. Word and

context embeddings can be obtained trivially from
the SVD.

Finally, let us discuss the complexity of the
method. The online SVD subroutine dominates the
complexity of our approach, as it scales as O(nd2).
In all steps, the costs remain linear in the vocabu-
lary size. This makes our approach scalable and
convenient to use. In contrast, when carrying out an
SVD from scratch to compute the word and context
embeddings, we would have a quadratic scaling in
the vocabulary size, which would be impractical.

3.3 Theoretical Analysis
In this section, we show that under certain assump-
tions, the difference between approximate SPMMI
matrix S′full (Equation 6) and SPMMI matrix Sfull
(Equation 4) is bounded. This justifies the previ-
ous assumption that we can substitute S′full for Sfull.
Now we want to show theoretically that this is a
reasonable approximation. First, we make some
assumptions.

Assumption 1. There exists a constant c1 > 0
such that number of nonzero (nnz) entries inm×m
SPPMI matrix can be upper-bounded by c1m, i.e.,
nnz(SPPMI) ≤ c1m.

Remark 1. It is reasonable to assume that in
Shifted Positive PPMI matrix, most of the words
are only closely related to a small number of other
words.

Assumption 2. Every entry in co-occurrence ma-
trix can be bounded by c2 > 0, i.e., #(w, c) ≤
c2 for ∀ w, c.

This is always satisfied, since the number of
observed co-occurrences is always bounded.

Assumption 3. For m ×m SPPMI matrix, there
exists a constant c3 > 0 such that the number of
w and c occur in corpus D at least c3m times, i.e.,
min{ci, wi} ≥ c3

√
m for ∀ i.

Now, we provide our main theoretical result.

Theorem 1. Under Assumption 1, 2 and 3, the
gap between S′full and Sfull in Frobenius norm can

be bounded by a constant c4 =
3
√
c1c2
c3

, i.e., ‖S′full−
Sfull‖F ≤ c4.

This results implies that the difference between
S′full and Sfull is bounded by a constant independent
of the vocabulary size. Since in large-scale word
embedding models the size of the vocabulary is
typically 105 or even 106, the relative difference
between these two matrices can be negligible. We

17

Dataset Method Loss for new Loss for all time

NIPS
FOUN -1.47± 0.004e5 -1.7026±0.00004e7 103.8

FOUN+anneal -1.46±0.006e5 -1.7026±0.00006e7 103.3
SOWE (ours) -1.52e5 -1.7031e7 47.1

Economic
News

FOUN -8.64±0.007e4 -1.6907±0.000007e7 84.3
FOUN+anneal -8.63±0.01e4 -1.6907±0.00001e7 87.8
SOWE (ours) -8.65e4 -1.6904e7 45.79

Table 1: Performance on NIPS Abstract and Economic News. The unit of running time is second. We
report the average value of 10 independent runs for FOUN and standard deviation in brackets only for
“loss for new”. For FOUN, “loss for all words” is the sum of “loss for new words” and “loss that are only
related to old words”(which is a constant). So standard deviation of “loss for all” is equal to “loss for all”.

provide the proof of the theorem in supplementary
materials.

4 Experiment

In this section, we show empirical results where we
compare our proposed SOWE with other continu-
ous word embedding algorithms.We first present
some generic settings of our experiments, followed
by quantitative and qualitative baseline compar-
isons. Compared to the baselines, we find that
our method is more efficient and finds more se-
mantically meaningful embeddings. Our method
takes less than one minute to insert about 1,000
domain-specific words (e.g., machine learning re-
lated words from NIPS abstracts) into a pre-trained
embedding model with more than 180,000 words.

Experimental Setup Our approach departs from
pre-trained word vectors from a generic training
corpus. We downloaded publicly available pre-
trained word embeddings and two small text cor-
pora from specific domains. Our goal is to insert
the domain-specific words that do not already ap-
pear in the original vocabulary efficiently into the
embeddings.

First, we report on basic settings for our exper-
iments. The pre-trained embedding model based
on English Wikipedia is available online 1. It con-
tains 183,870 words. The embedding dimension
is 300. The small, domain-specific corpora that
we considered were the following ones: (1) “NIPS
Abstracts”: this data set contains abstracts of all
the NIPS papers from 2014 to 2016. The data set
contains 981 new words. (2) “Economy News”:
This data set contains news articles, containing 868
new words. These two corpora are much smaller
than base corpus. For both the base corpus and
the new corpus, the text was pre-processed using a

1http://u.cs.biu.ac.il/~yogo/data/
syntemb/bow5.words.bz2

window of 5 tokens on each side of the target word,
where stop-words and non-textual elements were
removed, and sentence splitting and tokenization
were applied.

Baselines: FOUN and FOUN+annealing A
natural idea for inserting new words into a pre-
estisting word embedding fit is to fix the old
word/context vectors, and only to update the new
ones. This is our baseline method, referred in the
following as “Fix Old, Update New” (FOUN). The
approach uses the word2vec objective and employs
stochastic gradient descent for training. We employ
Robbins-Monro learning schedules (Robbins and
Monro, 1951), setting the stepsize at the t-th step
as εt = a(t+ γ)−0.51. We used grid-search to find
optimal parameters on all considered data sets, and
found k = 5, γ = 1e4, a = 1/10 (for different
tasks) to be optimal. Due to the involved random-
ness in the baseline approach, we conducted 10
independent trials using different random seeds for
each results and reported the average results. For
“FOUN+annealing” we used the same settings as
in FOUN, but added random zero-mean Gaussian
noise to the gradient. To this end, we employed a
version of Stochastic Gradient Langevin Dynam-
ics (Welling and Teh, 2011), where we scaled down
the noise by a factor of 0.01.

Loss minimization and runtime We considered
the word2vec loss on the extended vocabulary and
evaluated the value of the loss function on the em-
bedding vectors obtained form the different meth-
ods under consideration. The associated loss values
and runtimes are reported in Table 1 for the “NIPS
Abstracts”, and for “Economy News”. We found
both approaches yield similar values of the loss
function. (In our experiments below, however, we
will show that our obtained word vectors seem to
reflect the semantics of the original corpus better.)
As a clear improvement, we found that our method

http://u.cs.biu.ac.il/~yogo/data/syntemb/bow5.words.bz2
http://u.cs.biu.ac.il/~yogo/data/syntemb/bow5.words.bz2

18

Method Nearest Neighbor

FOUN joyous haworth legionnaires kristiansand cade dingo gaozu mightywords budged freret pepco
FOUN+annealing emmerich hotham totnes crescendo emt demesne family-friendly rutter khazars dijon isidro
SOWE (ours) midcap ultralow jawboning cdw lennar sucres moviefone terest supercenters ious wci

Table 2: Nearest Neighbors of “eurodollars” in extended vocabulary.

Method Nearest Neighbor

FOUN mattias valmiki invalided mailman malkovich bufo khufu dijon propagating madman
FOUN + annealing interrogative bouncers jf time-dependent invalidating bmo enameled subgroup brenda anal keller

SOWE (ours) cannot nonsmooth cnns coreset svrg sublinear denoising lstm interpretability

Table 3: Nearest Neighbors of “submodular” in extended vocabulary. We measure the distance using
cosine distance.

Method EN-WS-353-
SIM EN-MTurk-771 EN-MEN-TR-

3k
EN-RW-

STANFORD
EN-WS-353-

ALL

Ideal 69.94 57.45 64.43 43.26 65.14
FOUN 65.13 54.67 57.47 42.99 64.02

FOUN+anneal 64.99 54.89 57.50 42.73 64.01
SOWE (ours) 66.48 55.49 56.56 42.92 64.82

Table 4: Performance on word similarity task using text8 dataset. “ideal” means the matrix factorization
method proposed in Levy and Goldberg (2014). FOUN and FOUN+annealing are the baseline that we
are comparing with.

Method capital-common-
countries

nationality-
adjective family.txt Syntactic

Ideal 49.60% 50.55% 55.23% 30.49%
FOUN 45.73% 50.63% 55.01% 30.30%

FOUN + anneal 44.70% 49.97% 55.03% 30.26%
SOWE (ours) 46.43% 50.71% 50.43% 29.38%

Table 5: Performance on word analogy task using text8 dataset. “ideal” means learning the word embedding
with the full extended vocabulary from scratch. Here, the matrix factorization method proposed in Levy
and Goldberg (2014) is used on the Sfull. FOUN and FOUN+annealing are the baseline that we are
comparing with.

Method split
number

capital-
common-
countries

nationality-
adjective family.txt Syntactic

Ideal 64.74% 64.49% 62.32% 39.18%

FOUN 64.45±0.25 % 62.43±0.38% 61.29±0.44% 38.73±0.58 %
FOUN + anneal 20 64.26±0.38% 64.10±0.47 % 61.73±1.83 % 38.94±0.77%
SOWE (ours) 64.26±0.79% 64.22±0.47% 60.09±0.32% 38.20±0.72%

FOUN 59.80±1.27 % 60.93±1.76% 59.23±1.88% 38.47±1.23 %
FOUN + anneal 10 58.84±1.82% 59.93±1.90 % 59.77±2.00% 38.19±1.47%
SOWE (ours) 59.89±3.85% 60.86±1.02% 58.84±0.85% 38.00±1.83%

FOUN 51.88±4.03 % 52.10±2.94% 51.83±3.11% 33.33±2.09 %
FOUN + anneal 5 52.20±6.03% 52.08±3.96 % 54.01±3.88 % 33.84±2.11%
SOWE (ours) 51.14±%3.74 49.50±2.83% 50.84±1.44% 31.82±2.73 %

Table 6: Performance on word analogy task using existing embedding results and text8 dataset with
different folds of splits. In the row “Ideal”, we use the well-trained word embedding results downloaded
from Internet. FOUN and FOUN+annealing are the baseline that we are comparing with.

19

is faster than the baseline, yielding a factor of 8
times speedup. We consider the baseline method
to be converged when the loss value of the current
epoch is close (smaller than a threshold) to that of
the previous epoch, where the threshold is 1e2 for
NIPS abstract and Economics News.

Qualitative Nearest Neighbor Test To test
whether the learned embedding vectors are seman-
tically meaningful, we chose some words from the
new vocabulary and reported their nearest neigh-
bors in the extended vocabulary. We expect the
nearest neighbors to have a close semantic mean-
ings. We chose cosine similarity as a means to
measure distance between words.

We chose the words “eurodollars” as a query for
“Economic News” and “submodular” for “NIPS Ab-
stracts”. The results are reported in Table 2 and 3.
In the case of economics, we see that our algorithm
recovered meaningful words such as “midcap” and
“ultralow”. The baseline methods failed to return
meaningful results with respect to the query. One
possible reason is that the baseline’s underlying
optimization algorithm got trapped in a poor local
optimum. In the case of NIPS abstracts (Table 3),
our SOWE method results in words such as “nons-
mooth” and “coreset” which are highly related to
the query “submodular”, while the FOUN-based
methods fail. Our approach thus outperforms the
baseline in providing meaningful relationships be-
tween the pre-trained word vectors and the newly
embedded ones. More examples are provided in
the Appendix.

Evaluations on NLP Tasks Additionally, we
evaluated the proposed method on some down-
stream NLP tasks, such as pairwise word similarity.
To this end, we used datasets that contain word
pairs associated with human-assigned similarity
scores 2. The word vectors are evaluated by rank-
ing the pairs according to their cosine similarities,
and measuring the correlation (Spearmans ρ) with
the human ratings.

We excluded the word pairs of the similarity test
from the original vocabulary and trained word2vec
with the associated reduced vocabulary on sev-
eral corpora. We then added the test words us-
ing the three competing methods (SOWE, FOUN,
and FOUN+anneal). The fourth algorithm "Ideal"
amounts to evaluating the test on the generic pre-

2We used code and data from https://github.com/k-
kawakami/embedding-evaluation

trained word embeddings from the web. The results
on the word similarity task are shown in Table 4.
Our method obtains the best performance on four
out of five word similarity tasks.

Word analogy tests consists of questions of the
form “a is to a* as b is to b*”, where b* must be
completed (Mikolov et al., 2013b). We performed
such word analogy tests; our results are reported
in Table 5. We observe that SOWE outperform
FOUN-based methods in two out of four cases.

Word Analogy Analysis with Varying Number
of Folds We further split the corpus into folds to
evaluate the word analogy task, where we varied
the size of the folds. Here, we choose the most
frequent 20,000 words in text8 and then split the
vocabulary into k ∈ {5, 10, 20} folds. All folds but
one were considered as base vocabulary, and one
fold was considered as new vocabulary. We used
implicit matrix factorization on all but one fold, and
added the last fold’s vocabulary using the different
methods under comparison (FOUN, FOUN+anneal
and SOWE). We repeated this procedure k times
and report means and standard deviations in Table 6.
Our method achieves results comparable with the
baselines.

5 Conclusion

We proposed a deterministic spectral algorithm for
inserting new words into a pre-trained word embed-
ding model. The approach is based on a small cor-
pus (containing the new words) and the pre-trained
word embedding vectors. Under well-specified as-
sumptions, this vocabulary extension can be for-
mulated as an online matrix factorization problem.
This scheme scales linearly with the original vocab-
ulary size, and quadratically with the embedding
dimensions. Compared to baselines that involve
optimizing the original word2vec loss with the old
word vectors fixed, our method is parameter-free,
does not suffer from optimization problems such
as local optima, and as such easier to handle. We
further provided an analysis on the involved ap-
proximation error and showed that it is bounded.
While we found only slight improvements over the
baseline methods in terms of quality of the word
vectors, more work needs to be done to explore
tradeoffs of the involved approaches.

20

References
Zeyuan Allen-Zhu and Yuanzhi Li. 2016. LazySVD:

Even Faster SVD Decomposition Yet Without Ag-
onizing Pain. In Proceedings of the 30th Con-
ference on Neural Information Processing Systems,
NIPS ’16. Full version available at http://
arxiv.org/abs/1607.03463.

Robert Bamler and Stephan Mandt. 2017. Dynamic
word embeddings. In International Conference on
Machine Learning, pages 380–389.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Matthew Brand. 2003. Fast online svd revisions for
lightweight recommender systems. In Proceedings
of the 2003 SIAM International Conference on Data
Mining, pages 37–46. SIAM.

Biswa Nath Datta. 2010. Numerical linear algebra and
applications. SIAM.

Gene H. Golub and Charles F. Van Loan. 1996. Ma-
trix computations (3. ed.). Johns Hopkins University
Press.

Sung Ju Hwang and Leonid Sigal. 2014. A unified
semantic embedding: Relating taxonomies and at-
tributes. Neural Information Processing Systems,
pages 271–279.

Tom Kenter and Maarten De Rijke. 2015. Short text
similarity with word embeddings. pages 1411–
1420.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 1188–1196.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems,
pages 2177–2185.

Yongmin Li. 2004. On incremental and robust sub-
space learning. Pattern Recognition, 37(7):1509–
1518.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2015.
Learning context-sensitive word embeddings with
neural tensor skip-gram model. pages 1284–1290.

Hongyin Luo, Zhiyuan Liu, Huanbo Luan, and
Maosong Sun. 2015. Online learning of inter-
pretable word embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1687–1692.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Viet Phung and Lance De Vine. 2015. A study on
the use of word embeddings and pagerank for viet-
namese text summarization. page 7.

Rene Pickhardt, Thomas Gottron, Martin Korner,
Paul Georg Wagner, Till Speicher, and Steffen Staab.
2014. A generalized language model as the combi-
nation of skipped n-grams and modified kneser ney
smoothing. meeting of the association for computa-
tional linguistics, pages 1145–1154.

Herbert Robbins and Sutton Monro. 1951. A stochas-
tic approximation method. Annals of Mathematical
Statistics, 22(3):400–407.

Maja Rudolph, Francisco Ruiz, Stephan Mandt, and
David Blei. 2016. Exponential family embeddings.
In Advances in Neural Information Processing Sys-
tems, pages 478–486.

Badrul Sarwar, George Karypis, Joseph Konstan, and
John Riedl. 2002. Incremental singular value de-
composition algorithms for highly scalable recom-
mender systems. In Fifth International Conference
on Computer and Information Science, pages 27–28.
Citeseer.

Ohad Shamir. 2015. A stochastic pca and svd algo-
rithm with an exponential convergence rate. interna-
tional conference on machine learning, pages 144–
152.

Max Welling and Yee W Teh. 2011. Bayesian learn-
ing via stochastic gradient langevin dynamics. In
Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 681–688.

Haiyang Wu, Daxiang Dong, Xiaoguang Hu, Dian-
hai Yu, Wei He, Hua Wu, Haifeng Wang, and Ting
Liu. 2014. Improve statistical machine translation
with context-sensitive bilingual semantic embedding
model. pages 142–146.

Will Y Zou, Richard Socher, Daniel M Cer, and
Christopher D Manning. 2013. Bilingual word
embeddings for phrase-based machine translation.
pages 1393–1398.

http://arxiv.org/abs/1607.03463
http://arxiv.org/abs/1607.03463

