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Abstract

We present the ParisNLP entry at the UD
CoNLL 2017 parsing shared task. In ad-
dition to the UDpipe models provided,
we built our own data-driven tokenization
models, sentence segmenter and lexicon-
based morphological analyzers. All of
these were used with a range of different
parsing models (neural or not, feature-rich
or not, transition or graph-based, etc.) and
the best combination for each language
was selected. Unfortunately, a glitch in the
shared task’s Matrix led our model selec-
tor to run generic, weakly lexicalized mod-
els, tailored for surprise languages, instead
of our dataset-specific models. Because of
this #ParsingTragedy, we officially ranked
27th, whereas our real models finally un-
officially ranked 6th.

1 Introduction

The Universal Dependency parsing shared task
(Zeman et al., 2017) was arguably the hardest
shared task the field has seen since the CoNLL
2006 shared task (Buchholz and Marsi, 2006)
where 13 languages had to be parsed in gold to-
ken, gold morphology mode, while its follow up in
2007 introduced an out-of-domain track for a sub-
set of the 2006 languages (Nivre et al., 2007). The
SANCL “parsing the web” shared task (Petrov and
McDonald, 2012) introduced the parsing of En-
glish non-canonical data in gold token, predicted
morphology mode and saw a large decrease of per-
formance compared to what was usually reported
in English parsing of the Penn Treebank . As far
as we know, the SPMRL shared tasks (Seddah
et al., 2013, 2014) were first to introduce a non
gold tokenization, predicted morphology, scenario
for two morphologically rich languages, Arabic

and Hebrew while, for other languages, complex
source tokens were left untouched (Korean, Ger-
man, French. . . ). Here, the Universal Dependency
(hereafter “UD”) shared task introduced an end-
to-end parsing evaluation protocol where none of
the usual stratification layers were to be evaluated
in gold mode: tokenization, sentence segmenta-
tion, morphology prediction and of course syn-
tactic structures had to be produced1 for 46 lan-
guages covering 81 datasets. Some of them are
low-resource languages, with training sets con-
taining as few as 22 sentences. In addition, an
out-of-domain scenario was de facto included via
a new 14-language parallel test set. Because of the
very nature of the UD initiative, some languages
are covered by several treebanks (English, French,
Russian, Finnish. . . ) built by different teams, who
interpreted the annotation guidelines with a certain
degree of freedom when it comes to rare, or sim-
ply not covered, phenomena.2 Let us add that our
systems had to be deployed on a virtual machine
and evaluated in a total blind mode with different
metadata between the trial and the test runs.

All those parameters led to a multi-dimension
shared task which can loosely be summarized by
the following “equation”:

Lang.Tok.WS.Seg.Morph.DS.OOD.AS.Exp,

where Lang stands for Language, Tok for tok-
enization, WS for word segmentation, Seg for
sentence segmentation, Morph for predicted mor-
phology, DS for data scarcity, OOD for out-of-
domainness, AS for annotation scheme, Exp for
experimental environment.

1Although baseline prediction for all layers were made
available through Straka et al.’s (2016) pre-trained models or
pre-annotated development and test files.

2See for example, the discrepancy between frpartut and
the other French treebanks regarding the annotation of the
not so rare car conjunction, ‘for/because’, and the asso-
ciated syntactic structures, cf. https://github.com/
UniversalDependencies/docs/issues/432.
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In this shared task, we earnestly tried to cover
all of these dimensions, ranking #3 in UPOS tag-
ging and #5 in sentence segmentation. But we
were ultimately strongly impacted by the Exp pa-
rameter (cf. Section 6.3), a parameter we could not
control, resulting in a disappointing rank of #27
out of 33. Once this variable was corrected, we
reached rank #6.3

Our system relies on a strong pre-processing
pipeline, which includes lexicon-enhanced statis-
tical taggers as well as data-driven tokenizers and
sentence segmenters. The parsing step proper
makes use for each dataset of one of 4 parsing
models: 2 non-neural ones (transition and graph-
based) and extensions of these models with char-
acter and word-level neural layers.

2 Architecture and Strategies

In preparation for the shared task, we have de-
veloped and adapted a number of different mod-
els for tokenization4 and sentence segmentation,
tagging—predicting UPOS and the values for a
(manually selected, language-independent) subset
of the morphological attributes (hereafter “par-
tial MSTAGs”)— and parsing. For each dataset
for which training data was available, we com-
bined different pre-processing strategies with dif-
ferent parsing models and selected the best per-
forming ones based on parsing F-scores on the
development set in the predicted token scenario.
Whenever no development set was available, we
achieved this selection based on a 10-fold cross-
evaluation on the training set.

Our baseline pre-processing strategy consisted
in simply using the data annotated using UDPipe
(Straka et al., 2016) provided by the shared task
organizers. We also developed new tools of our
own, namely a tagger as well as a joint tokenizer
and sentence segmenter. We chose whether to use
the baseline UDPipe annotations or our own an-
notations for each of the following steps: sentence
segmentation, tokenization, and tagging (UPOS
and partial MSTAGs). We used UDPipe-based in-
formation in all configurations for XPOS, lemma,
and word segmentation, based on an a posteriori
character-level alignment algorithm.

3http://universaldependencies.org/
conll17/results-unofficial.html

4We follow the shared task terminology in differentiating
tokenization and word segmentation. A tokenizer only per-
forms token segmentation (i.e. source tokens), and does not
predict word segmentation (i.e. wordforms, or tree tokens).

At the parsing level, we developed and tried
five different parsers, both neural and non-neural,
which are variants of the shift-reduce (hereafter
“SR”) and maximum spanning-tree algorithms
(hereafter “MST”). The next two sections describe
in more detail our different pre-processing and
parsing architectures, give insights into their per-
formance, and show how we selected our final ar-
chitecture for each dataset.

3 Pre-processing

3.1 Tagging
Tagging architecture Taking advantage of the
opportunity given by the shared task, we devel-
oped a new part-of-speech tagging system inspired
by our previous work on MElt (Denis and Sagot,
2012), a left-to-right maximum-entropy tagger re-
lying on features based on both the training corpus
and, when available, an external lexicon. The two
main advantages of using an external lexicon as
a source of additional features are the following:
(i) it provides the tagger with information about
words unknown to the training corpus; (ii) it al-
lows the tagger to have a better insight into the
right context of the current word, for which the
tagger has not yet predicted anything.

Whereas MElt uses the megam package to learn
tagging models, our new system, named alVW-
Tagger, relies on Vowpal Wabbit.5 One of Vowpal
Wabbit’s major advantages is its training speed,
which allowed us to train many tagger variants for
each language, in order to assess, for each lan-
guage, the relative performance of different types
of external lexicons and different ways to use them
as a source of features. In all our experiments, we
used VW in its default multiclass mode, i.e. us-
ing a squared loss and the one-against-all strategy.
Our feature set is a slight extension of the one used
by MElt (cf. Denis and Sagot, 2012).

The first improvement over MElt concerns how
information extracted from the external lexicons
is used: instead of only using the categories pro-
vided by the lexicon, we also use morphological
features. We experimented different modes. In the
baseline mode, the category provided by the lexi-
con is the concatenation of a UPOS and a sequence
of morphological features, hereafter the “full cat-
egory”. In the F mode (“ms mode” in Table 1),
only the UPOS is used (morphological features

5https://github.com/JohnLangford/
vowpal_wabbit/
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are ignored). In the M mode, both the full cate-
gory and the sequence of morphological features
are used separately. Finally, in the FM mode, both
the UPOS and the sequence of morphological fea-
tures are used separately.

The second improvement over MElt is that
alVWTagger predicts both a part-of-speech (here,
a UPOS) and a set of morphological features. As
mentioned earlier, we decided to restrict the set of
morphological features we predict, in order to re-
duce data sparsity.6 For each word, our tagger first
predicts a UPOS. Next, it uses this UPOS as a fea-
ture to predict the set of morphological features as
a whole, using an auxiliary model.7

Extraction of morphological lexicons As men-
tioned above, our tagger is able to use an exter-
nal lexicon as a source of external information.
We therefore created a number of morphological
lexicons for as many languages as possible, rely-
ing only on data and tools that were allowed by
the shared task instructions. We compared the
UPOS accuracies on the development sets, or on
the training sets in an 10-fold setting when no
development data was provided, and retained the
best performing lexicon for each dataset (see Ta-
ble 1). Each lexicon was extracted from one of the
following sources or several of them, using an a
posteriori merging algorithm:

• The monolingual lexicons from the Apertium
project (lexicon type code “AP” in Table 1);

• Raw monolingual raw corpora provided by
the shared task organizers, after application
of a basic rule-based tokenizer and the appro-
priate Apertium or Giellatekno morphologi-
cal analyzers (codes “APma” or “GTma”);

• The corresponding training dataset (code
“T”) or another training dataset for the same
language (code “Tdataset”);

• The UDPipe-annotated corpora provided by
the shared task organizers (code “UDP”);

• A previously extracted lexicon for an-
other language, which we automatically
“translated” using a dedicated algorithm,
which we provided, as a seed, with a
bilingual lexicon automatically extracted
from OPUS sentence-aligned data (code
“TRsource language”).

6The list of features we retained is the following: Case,
Gender, Number, PronType, VerbForm, Mood, and Voice.

7We also experimented with per-feature prediction, but it
resulted in slightly lower accuracy results on average, as mea-
sured on development sets.

All lexical information not directly extracted
from UDPipe-annotated data or from training data
was converted to the UD morphological categories
(UPOS and morphological features).

For a few languages only (for lack of time), we
also created expanded versions of our lexicons us-
ing word embeddings re-computed on the raw data
provided by the organizers, assigning to words un-
known to the lexicon the morphological informa-
tion associated with the closest known word (using
a simple euclidian distance on the word embed-
ding space).8 When the best performing lexicon
is one of these extended lexicons, it is indicated in
Table 1 by the “-e” suffix.

3.2 Tokenization and sentence segmentation

Using the same architecture as our tagger, yet
without resorting to external lexicons, we devel-
oped a data-driven tokenizer and sentence seg-
menter, which runs as follows. First, a simple
rule-based pre-tokenizer is applied to the raw text
of the training corpus, after removing all sen-
tence boundaries.9,10 This pre-tokenizer outputs
a sequence of “pre-tokens,” in which, at each
pre-token boundary, we keep trace of whether a
whitespace was present in the raw text or not at
this position. Next, we use the gold train data
to label each pre-token boundary with one of the
following labels: not a token boundary (NATB),
token boundary (TB), sentence boundary (SB).11

This model can then be applied on raw text, af-
ter the pre-tokenizer has been applied. It labels
each pre-token boundary, resulting in the follow-
ing decisions depending on whether it corresponds
to a whitespace in the raw text or not: (i) if
it predicts NATB at a non-whitespace boundary,
the boundary is removed; (ii) if it predicts NATB
at a whitespace boundary, it results in a token-
with-space; (iii) if it predicts TB (resp. SB) at
a non-whitespace boundary, a token (resp. sen-
tence) boundary is created and “SpaceAfter=No”
is added to the preceedings token; (iv) if it predicts

8We did not used the embeddings provided by the organiz-
ers because we experimentally found that the 10-token win-
dow used to train these embeddings resulted in less accurate
results than when using smaller windows, especially when
the raw corpus available was of a limited size.

9Apart from paragraph boundaries whenever available.
10On languages such as Japanese and Chinese, each non-

latin character is a pre-token on its own.
11Our tokenizer and sentence segmenter relies on the al-

most same features as the tagger, except for two special fea-
tures, which encode whether the current pre-token is a strong
(resp. weak) punctuation, based on two manually crafted lists.
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Dataset ours (best setting) UDPipe Dataset ours (best setting) UDPipe Dataset ours (best setting) UDPipe
lexicon ms overall overall lexicon ms overall overall lexicon ms overall overall

type mode acc. acc. type mode acc. acc. type mode acc. acc.

ar AP-e M 94.71 94.57 fr AP-e 97.30 97.08 nl AP F 94.70 94.07
bg AP F 97.61 97.72 frsequoia AP-e FM 97.54 96.60 nllassysmall AP+Tnl F 96.74 95.65
ca AP-e FM 98.42 98.15 ga UDP M — — nobokmaal AP 97.66 97.34
cs AP M 98.83 98.48 gl AP FM 97.45 96.77 nonynorsk AP M 97.23 96.74
cscac Tcs 99.24 98.78 got T 94.53 94.22 pl AP M 97.03 95.34
cscltt AP+Tcs F 94.34 92.06 grc Tgrcproiel-e 89.56 81.54 pt AP FM 97.21 97.00
cu T F 95.15 94.07 grcproiel UDP-e FM 96.40 96.01 ptbr AP+Tpt FM 97.96 97.40
da AP 96.30 95.19 he AP FM 96.68 95.72 ro AP 97.34 96.98
de AP M 92.70 91.39 hi AP F 96.59 95.79 ru AP M 96.62 94.95
el AP F 95.53 94.17 hr TRsl M 96.94 96.15 rusyntagrus AP FM 98.54 98.20
en AP F 94.68 94.43 hu T 93.90 92.31 sk TRcs FM 96.00 93.14
enlines AP FM 96.08 94.75 id AP M 92.98 93.36 sl AP FM 97.82 96.34
enpartut AP+T FM 95.90 94.39 it AP F 97.55 97.23 sv AP FM 96.32 95.17
es AP 96.47 96.24 itpartut Trit M 97.89 95.16 svlines AP F 96.01 94.63
esancora AP FM 98.39 98.16 ja no lexicon 96.87 96.72 tr APma FM 93.65 92.25
et GTms FM 89.28 87.52 kk APms — — ug UDP — —
eu AP F 94.48 92.80 ko no lexicon 93.77 93.68 uk AP M — —
fa no lexicon 96.04 96.17 laittb TRit+T 97.15 96.86 ur AP 93.01 92.45
fi GTms FM 95.06 94.52 laproiel TRit+T-e FM 95.62 95.43 vi no lexicon 88.60 88.68
fiftb GTms F 92.50 92.34 lv AP FM 93.43 90.81 zh AP+UDP 91.40 91.21

Table 1: UPOS accuracies for the UDPipe baseline and for our best alVWTagger setting.

TB (resp. SB) at a whitespace boundary, a token
(resp. sentence) boundary is created.

We compared our tokenization and sentence
segmentation results with the UDPipe baseline on
development sets. Whenever the UDPipe tok-
enization and sentence segmentation scores were
both better, we decided to use them in all config-
urations. Other datasets, for which tokenization
and sentence segmentation performance is shown
in Table 2, were split into two sets: those on which
our tokenization was better but sentence segmen-
tation was worse—for those, we forced the UD-
Pipe sentence segmentation in all settings—, and
those for which both our tokenization and sentence
segmentation were better.

3.3 Preprocessing model configurations

As mentioned in Section 2, we used parsing-based
evaluation to select our pre-processing strategy for
each corpus. More precisely, we selected for each
dataset one of the following strategies:

1. UDPIPE: the UDPipe baseline is used and
provided as such to the parser.

2. TAG: the UDPipe baseline is used, except for
the UPOS and MSTAG information, which is
provided by our own tagger.

3. TAG+TOK+SEG and TAG+TOK: we apply
our own tokenization and POS-tagger to pro-
duce UPOS and MSTAG information; sen-
tence segmentation is performed either by us
(TAG+TOK+SEG (available for datasets with
“yes” in the last column in Table 2) or by
the UDPipe baseline (TAG+TOK, available
for datasets with “no” in Table 2).

Dataset ours UDPIPE Use our
tok. sent. tokenis. sent. sent.
F-sc. F-sc. F-sc. F-sc. seg.?

ar 99.54 92.75 99.99 77.99 yes
ca 99.95 99.01 99.97 98.77 yes
cscac 100.00 99.5 100.00 99.09 yes
cu 99.98 39.44 100.00 37.09 yes
da 100.00 84.01 99.68 84.36 no
el 99.57 92.61 99.87 88.67 yes
et 99.69 90.82 99.79 84.91 yes
eu 99.93 99.42 99.99 99.00 yes
fa 99.95 99.42 100.00 97.14 yes
fi 99.54 87.76 99.69 86.47 yes
fiftb 100.00 85.94 99.94 82.52 yes
gl 99.73 96.8 99.06 92.44 yes
got 99.99 28.95 100.00 23.51 yes
hu 99.74 96.83 99.91 94.55 yes
it 99.73 96.31 99.82 93.20 yes
ja 92.63 99.61 89.53 99.71 no
laittb 99.90 78.71 99.88 77.38 yes
laproiel 100.00 19.92 99.99 19.76 yes
lv 99.21 91.48 98.91 96.48 no
nonynorsk 99.82 94.30 99.92 93.05 yes
pt 99.89 90.23 99.82 89.27 yes
vi 87.25 92.23 83.99 96.28 no

Table 2: Tokenization and sentence segmentation
accuracies for the UDPipe baseline and our tok-
enizer (restricted to those datasets for which we
experimented the use of our own tokenization).

Whenever we used our own tokenization and not
that of the UDPipe baseline, we used a character-
level alignment algorithm to map this information
to our own tokens.

Table 1 shows the configuration retained for
each language for which a training set was
provided in advance.12 For surprise language

12Note that our parsing-performance-based selection strat-
egy did not always result in the same outcome as what we
would have been chosen based solely on the comparison of
our own tools with UDPipe’s baseline. For instance, our new
tagger gets better results than UDPipe in UPOS tagging on
all development corpora but one, yet we used UDPipe-based
UPOS for 24 non-PUD corpora.
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datasets, we always used the UDPipe configura-
tion.13 For PUD corpora, we used the same con-
figuration as for the basic dataset for the same lan-
guage (for instance, we used for the frpud dataset
the same configuration as that chosen for the fr
dataset).14 Table 1 indicates for each dataset
which configuration was retained.

4 Parsing Models

We used 4 base parsers, all implemented on top
of the DYALOG system (de La Clergerie, 2005),
a logic-programming environment (à la Prolog)
specially tailored for natural language processing,
in particular for tabulation-based dynamic pro-
gramming algorithms.

Non-neural parsing models The first two
parsers are feature-based and use no neural com-
ponents. The most advanced one is DYALOG-
SR, a shift-reduce transition-based parser, us-
ing dynamic programming techniques to maintain
beams (Villemonte De La Clergerie, 2013). It ac-
cepts a large set of transition types, besides the
usual shift and reduce transitions of the arc-
standard strategy. In particular, to handle non-
projectivity, it can use different instances of swap
transitions, to swap 2 stack elements between the
3 topmost ones. A noop transition may also be
used at the end of parsing paths to compensate
differences in path lengths. Training is done with
a structured averaged perceptron, using early ag-
gressive updates, whenever the oracle falls out of
the beam, or when a violation occurs, or when a
margin becomes too high, etc.15

Feature templates are used to combine elemen-
tary standard features:

• Word features related to the 3 topmost
stack elements si=0···2, 4 first buffer ele-
ments Ij=1···4, leftmost/rightmost children
[lr]si /grandchildren of the stack elements
[lr]2si, and governors. These features in-
clude the lexical form, lemma, UPOS, XPOS,

13For surprise languages, the UDPipe baseline was trained
on data not available to the shared task participants.

14Because of a last-minute bug, we used the TAG configu-
ration for trpud and ptpud although we used the UDPIPE con-
figuration for tr and pt. We also used the TAG setting for fipud
rather than the TAG+TOK+SEG setting used for fi.

15By “violation,” we mean for instance adding an edge not
present in the gold tree, a first step towards dynamic oracles.
We explored this path further for the shared task through dy-
namic programming exploration of the search space, yet did
not observe significant improvements yet.

morphosyntactic features, Brown-like clus-
ters (derived from word embeddings), and
flags indicating capitalization, numbers, etc.

• Binned distances between some of these ele-
ments

• Dependency features related to the left-
most/rightmost dependency labels for si (and
dependent [lr]si), label set for the dependents
of si and [lr]si, and number of dependents

• Last action (+label) leading to the current
parsing state.

The second feature-based parser is DYALOG-
MST, a parser developed for the shared task
and implementing the Maximum Spanning Tree
(MST) algorithm (McDonald et al., 2005). By
definition, DYALOG-MST may produce non-
projective trees. Being recent and much less flex-
ible than DYALOG-SR, it also relies on a much
smaller set of first-order features and templates,
related to the source and target words of a depen-
dency edge, plus its label and binned distance. It
also exploits features related to the number of oc-
currences of a given POS between the source and
target of an edge (inside features) or not covered
by the edge but in the neighborhood of the nodes
(outside features). Similar features are also imple-
mented for punctuation.

Neural parsing models Both feature-based
parsers were then extended with a neural-based
component, implemented in C++ with DyNet
(Neubig et al., 2017). The key idea is that the
neural component can provide the best parser ac-
tion or, if aksed, a ranking of all possible actions.
This information is then used as extra features to
finally take a decision. The 2 neural-based vari-
ants of DYALOG-SR and DYALOG-MST, straight-
forwardly dubbed DYALOG-SRNN and DYALOG-
MSTNN, implement a similar architecture, the one
for DYALOG-SRNN being a bit more advanced
and stable. Moreover, DYALOG-MSTNN was only
found to be the best choice for a very limited num-
ber of treebanks. In addition to these models,
we also investigated a basic version of DYALOG-
SRNN that only uses, in a feature-poor setting, its
character-level component and its joint action pre-
diction, and which provides the best performance
on 3 languages. The following discussion will fo-
cus on DYALOG-SRNN.

The architecture is inspired by Google’s
PARSEYSAURUS (Alberti et al., 2017), with a
first left-to-right char LSTM covering the whole

247



sentence and (artificial) whitespaces introduced
to separate tokens.16 The output vectors of the
char LSTM at the token separations are used as
(learned) word embeddings that are concatenated
(when present) with both the pre-trained ones pro-
vided for the task and the UPOS tags predicted
by the external tagger. The concatenated vectors
serve as input to a word bi-LSTM that is also used
to predict UPOS tags as a joint task (training with
the gold tags provided as oracle). For a given word
wi, its final vector representation is the concatena-
tion of the output of the bi-LSTM layers at posi-
tion i with the LSTM-predicted UPOS tag.

The deployment of the LSTMs is done once
for a given sentence. Then, for any parsing state,
characterized by the stack, buffer, and dependency
components mentioned above, a query is made to
the neural layers to suggest an action. The query
fetches the final vectors associated with the stack,
buffer, and dependent state words, and completes
it with input vectors for 12 (possibly empty) label
dependencies and for the last action. The number
of considered state words is a hyper-parameter of
the system, which can range between 10 and 19,
the best and default value being 10, covering the 3
topmost stack elements and 6 dependent children,
but only the first buffer lookahead word17 and no
grandchildren. Through a hidden layer and a soft-
max layer, the neural component returns the best
action paction (and plabel) but also the rank-
ing and weights of all possible actions. The best
action is used as a feature to guide the decision
of the parser in combination with the other fea-
tures, the final weight of an action being a linear
weighted combination of the weights returned by
both perceptron and neural layers.18

A dropout rate of 0.25 was used to introduce
some noise. The Dynet AdamTrainer was cho-
sen for gradient updates, with its default param-
eters. Many hyperparameters are however avail-
able as options, such as the number of layers of the
char and word LSTMs, the size of input, hidden
and output dimensions for the LSTMs and feed-
forward layers. A partial exploration of these pa-
rameters was run on a few languages, but not in a
systematic way given the lack of time and the huge

16A better option would be to add whitespace only when
present in the original text.

17We suppose the information relative to the other looka-
head words are encapsulated in the final vector of the first
lookahead word.

18The best way to combine the weights of the neural and
feature components remains a point to further investigate.

number of possibilities. Clearly, even if we did try
380 distinct parsing configurations through around
16K training runs,19 we are still far away from
language-specific parameter tuning, thus leaving
room for improvement.

5 Results

Because of the greater flexibility of transition-
based parsers, MST-based models were only used
for a few languages. However, our results, pro-
vided in the Appendix, show the good perfor-
mance of these models, for instance on Old
Church Slavonic (cu), Gothic (got), Ancient Greek
(grc), and Kazakh (kk). Already during develop-
ment, it was surprising to observe, for most lan-
guages, a strong preference for either SR-based
models or MST-based ones. For instance, for An-
cient Greek, the best score in gold token mode for
a MST-based model is 62.43 while the best score
for a SR-based one is 60.59. On the other hand,
for Arabic (ar), we get 74.87 for the best SR model
and 71.44 for the best MST model.

Altogether, our real, yet unofficial scores are
encouraging (ranking #6 in LAS) while our offi-
cial UPOS tagging, sentence segmentation and to-
kenization results ranked respectively #3, #6 and
#5. Let us note that our low LAS official results,
#27, was the result of a mismatch between the
trial and test experimental environments provided
by the organizers (cf. Section 6.3). However, we
officially ranked #5 on surprise languages, which
were not affected by this mismatch.

6 Discussion

While developing our parsers, training and eval-
uation were mostly performed using the UDPipe
pre-processing baseline with predicted UPOS and
MSTAGs but gold tokenization and gold sentence
segmentation. For several (bad) reasons, only in
the very last days did we train on files tagged
with our preprocessing chain. Even later, eval-
uation (but no training) was finally performed
on dev files with predicted segmentation and to-
kenization, done by either UDPipe or by our
pre-processing chains (TAG, TAG+TOK+SEG or
TAG+TOK). Based on the results, we selected, for
each language and treebank, the best preprocess-
ing configuration and the best parsing model.

19We count as a training run the conjunction of a parser
configuration, a treebank, and a beam size. Please note that a
synthesis may be found at http://alpage.inria.fr/
˜clerger/UD17/synthesis.html
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In general, we observed that neural-based mod-
els without features often worked worse than pure
feature-based parsers (such as srcat), but great
when combined with features. We believe that, be-
ing quite recent, our neural architecture is not yet
up-to-date and that we still have to evaluate sev-
eral possible options. Between using no features
(srnnsimple and srnncharsimple mod-
els) and using a rich feature set (srnnpx mod-
els), where the predicted actions paction and
plabelmay be combined with other features, we
also tested, for a few languages, a more restricted
feature set with no combinations of paction and
plabel with other features (srnncharjoin
models). These latter combinations are faster to
train and reach good scores, as shown in Table 3.

srnn
Lang srcat charsimple charjoin px

sk 76.85 67.85 78.87 80.84
cscac 84.48 77.07 84.80 84.85
lv 63.86 59.57 66.95 68.74
ko 54.43 57.19 70.91 71.45

Table 3: Neural models & feature impact (Dev)

For the treebanks without dev files, we simply
did a standard training, using a random 80/20-split
of the train files. Given more time, we would have
tried transfer from other treebanks when available
(as described below).

To summarize, a large majority of 47 selected
models were based on DYALOG-SRNN with a
rich feature set, 29 of them relying on predicted
data coming from our processing chains (TAG or
TAG+TOK+SEG), the other ones relying on the tags
and segmentation predicted by UDPipe. 10 mod-
els were based on DYALOG-MSTNN, with 5 of
them relying on our preprocessing chain. Finally,
5 (resp. 2) were simply based on DYALOG-SR

(resp. DYALOG-MST), none of them using our
preprocessing.

6.1 OOV Handling

Besides the fact that we did not train on files
with predicted segmentation, we are also aware
of weaknesses in handling unknown words in test
files. Indeed, at some point, we made the choice
to filter the large word-embedding files by the vo-
cabulary found in the train and dev files of each
dataset. We made the same for the clusters we
derived from word embeddings. It means that
unknown words have no associated word embed-

dings or clusters (besides a default one). The im-
pact of this choice is not yet clear but it should be
a relatively significant part of the performance gap
between our score of the dev set (with predicted
segmentation) and on the final test set.20

6.2 Generic Models

We also started exploring the idea of transfer-
ring information between close languages, such as
Slavic languages. Treebank families were created
for some groups of related languages by randomly
sampling their respective treebanks as described in
Table 4. A fully generic treebank was also created
by randomly sampling 41k sentences from almost
all languages (1k sentences per primary treebank).

Model Languages #sent.

ZZNorthGerman da, no, sv 8k
ZZRoman fr, ca, es, it, pt, ro, gl 20k
ZZSouthSlavic bg, cu, hr, sl 16k
ZZWestSlavic cs, pl, sk 9k
ZZWestGerman de, du, nl 12k
ZZGeneric sampling main 46 lang. 41k

Table 4: Generic models partition

The non-neural parsers were trained on these
new treebanks, using much less lexicalized infor-
mation (no clusters, no word embeddings, no lem-
mas, and keeping only UPOS tags, but keeping
forms and lemmas when present). We tested using
the resulting models, whose named are prefixed
with “ZZ”, as base models for further training on
some small language treebanks. However, prelim-
inary evaluations did not show any major improve-
ment and, due to lack of time, we put on hold this
line of research, while keeping our generic parsers
as backup ones.

Some of these generic parsers were used for the
4 surprise languages, with Upper Sorbian using
a ZZSSlavic parser21 (LAS=56.22), North Saami
using ZZFinnish (LAS=37.33), and the two other
ones using the fully generic parser (Kurmanji
LAS=34.8; Buryat LAS=28.55).

6.3 The Tragedy

Ironically, the back-off mechanism we set up for
our model selection was also a cause of failure and
salvation. Because of the absence of the name

20An average of 0.4 points between dev and tests. Dev
results available at goo.gl/lyuC8L.

21We had planned to use a ZZWSlavic parser but made a
mistake in the configuration file.
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field in the test set metadata, which was never-
theless present in the dev run and crucially also
in the trial run metadata, the selection of the best
model per language was broken and led to the se-
lection of back-off models, either a family one
or in most cases the generic one. The Tira blind
test configuration prevented us from discovering
this experimental discrepancy before the deadline.
Once we adapted our wrapper to the test meta-
data, the appropriate models were selected, result-
ing in our real run results. It turned out that our
non language-specific, generic models performed
surprisingly well, with a macro-average F-score of
60% LAS. Of course, except for Ukrainian, our
language-specific models reach much better per-
formance, with a macro-average F-score of 70.3%.
But our misadventure is an invitation to further in-
vestigation.

However, it is unclear at this stage whether
or not mixing languages in a large treebank re-
ally has advantages over using several small tree-
banks. In very preliminary experiments on Greek,
Arabic, and French, we extracted the 1000 sen-
tences present in the generic treebank for these
languages and trained the best generic configura-
tion (srcat, beam 6) on each of these small tree-
banks. As shown in Table 5, the scores on the
development sets do not exhibit any improvement
coming from mixing languages in a large pool and
are largely below the scores obtained on a larger
language-specific treebank.

Lang generic small full size

Greek 76.25 76.29 78.40 1,662
Arabic 57.94 59.84 64.34 6,075
French 78.28 79.59 84.81 14,553

Table 5: Generic pool vs. small treebank vs. full
treebank (with srcat models (LAS, Dev)

6.4 Impact of the Lexicon
We also investigated the influence of our tagging
strategy with respect to the UDPipe baseline. Fig-
ure 1 plots the parsing LAS F-scores with respect
to training corpus size. It also show the result
of logarithmic regressions performed on datasets
for which we used the UDPipe baseline for pre-
processing versus those for which we used the
TAG configuration. As can be seen, using the UD-
Pipe baseline results in a much stronger impact of
training corpus size, whereas using our own tag-
ger leads to more stable results. We interpret this
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Figure 1: LAS F-score w.r.t. training corpus size

observation as resulting from the influence of ex-
ternal lexicons during tagging, which lowers the
negative impact of out-of-training-corpus words
on tagging and therefore parsing performance. It
illustrates the relevance of using external lexical
information, especially for small training corpora.

7 Conclusion

The shared task was a excellent opportunity for us
to develop a new generation of NLP components
to process a large spectrum of languages, using
some of the latest developments in deep learning.
However, it was really a challenging task, with an
overwhelming number of decisions to take and ex-
periments to run over a short period of time.

We now have many paths for improvement.
First, because we have a very flexible but newly
developed architecture, we need to stabilize it by
carefully selecting the best design choices and pa-
rameters. We also plan to explore the potential of
a multilingual dataset based on the UD annotation
scheme, focusing on cross-language transfer and
language-independent models.
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Wróblewska, and Eric Villemonte de la Clérgerie.
2013. Overview of the spmrl 2013 shared task: A
cross-framework evaluation of parsing morphologi-
cally rich languages. In Proc. of the 4th Workshop
on Statistical Parsing of Morphologically Rich Lan-
guages: Shared Task. Seattle, USA.
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Martin Popel, Milan Straka, and et al. 2017. CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies. Vancou-
ver, Canada, pages 1–20.

251



Appendix: Overall Results

Dataset Preproc. UPOS tagging Parsing (LAS)
name #train wds mode acc. rank model real run real rank official run ∆(real−official)

ar 224k UDPIPE 88.13 8 SR-nn 66.47 11 56.72 9.75
arpud — UDPIPE 70.27 8 SR-nn 45.38 10 42.73 2.65
bg 124k TAG 97.29 25 SR-nn 84.41 13 74.15 10.26
bxr — UDPIPE 84.12 1 SR-cat (Generic) 28.55 6 28.55 0
ca 418k UDPIPE 98.04 3 SR-feats 85.78 11 81.94 3.84
cs 1,173k UDPIPE 98.13 6 SR-cat 82.72 18 71.30 11.42
cscac 473k UDPIPE 98.27 8 SR-nn-charjoin 83.56 12 73.62 9.94
cscltt 16k TAG 97.77 2 SR-nn 76.72 6 58.65 18.07
cspud — UDPIPE 96.55 2 SR-cat 79.28 18 72.05 7.23
cu 37k UDPIPE 93.34 11 MST-nn 67.34 4 63.64 3.70
da 80k TAG+TOK 96.43 2 SR-nn 76.31 8 73.83 2.48
de 270k TAG 92.04 6 SR-nn 72.27 12 68.45 3.82
depud — TAG 84.58 2 SR-nn 69.79 8 65.16 4.63
el 41k TAG+TOK+SEG 96.26 3 SR-nn 82.25 5 77.00 5.25
en 205k TAG 93.52 3 SR-nn 76.00 14 70.20 5.80
enlines 50k TAG 95.99 2 SR-nn 76.01 7 64.77 11.24
enpartut 26k TAG 94.78 2 SR-nn 77.21 7 69.29 7.92
enpud — TAG 94.74 2 SR-nn 80.68 7 75.87 4.81
es 382k UDPIPE 95.60 5 SR-nn 82.09 13 77.94 4.15
esancora 445k UDPIPE 98.15 4 SR-feats 84.47 14 76.61 7.86
espud — UDPIPE 88.15 5 SR-nn 78.15 11 76.57 1.58
et 23k TAG+TOK+SEG 89.24 5 SR-nn 61.52 8 56.00 5.52
eu 73k TAG 94.01 3 SR-nn 71.70 8 50.67 21.03
fa 121k UDPIPE 96.00 7 SR-nn 80.52 9 61.93 18.59
fi 163k TAG+TOK+SEG 84.59 4 SR-nn 75.82 9 60.19 15.63
fiftb 128k TAG+TOK+SEG 93.11 2 MST-nn 75.88 9 40.21 35.67
fipud — TAG 95.98 4 SR-nn 79.68 7 62.41 17.27
fr 356k TAG 95.51 6 SR-nn 80.44 16 76.79 3.65
frpartut 18k UDPIPE 94.46 7 SR-nn 77.40 16 75.15 2.25
frpud — TAG 88.54 4 SR-nn 74.82 10 74.70 0.12
frsequoia 51k TAG 96.78 2 SR-nn 80.48 13 73.55 6.93
ga 14k TAG 90.00 3 MST-nn 62.23 13 56.35 5.88
gl 79k TAG 97.42 2 SR-nn 79.06 13 76.81 2.25
gltreegal 15k UDPIPE 90.69 9 SR-nn 64.36 21 65.95 -1.59
got 35k UDPIPE 93.55 10 MST-nn 63.40 4 58.66 4.74
grc 160k TAG 88.48 3 MST-nn 62.53 5 47.37 15.16
grcproiel 184k UDPIPE 95.72 7 MST-altcats 68.72 7 49.41 19.31
he 138k TAG 81.42 4 SR-nn 57.85 15 44.49 13.36
hi 281k TAG 96.61 3 SR-nn 87.25 10 45.72 41.53
hipud — TAG 84.62 4 SR-nn 51.46 10 32.39 19.07
hr 169k UDPIPE 95.67 12 SR-nn 78.67 9 74.81 3.86
hsb — UDPIPE 90.30 1 SR-altcats (SSlavic (!)) 56.22 9 56.22 0
hu 20k TAG 92.19 4 SR-nn 66.82 6 49.82 17
id 98k TAG 93.59 2 SR-nn 75.47 10 64.84 10.63
it 271k TAG+TOK+SEG 97.38 3 SR-nn 85.59 17 81.20 4.39
itpud — TAG+TOK+SEG 93.08 6 SR-nn 84.17 13 81.81 2.36
ja 29k TAG+TOK 90.00 5 SR-nn 77.52 6 65.15 12.37
japud — TAG+TOK 88.49 25 SR-nn 76.03 20 62.91 13.12
kk 162k TAG 67.86 1 MST-nn 26.64 4 24.73 1.91
kmr 0.5k UDPIPE 90.04 1 SR-cat (Generic) 34.80 12 34.80 0
ko 52k UDPIPE 93.79 7 SR-nn 73.26 6 40.71 32.55
la 18k UDPIPE 83.39 11 MST-nn 46.59 13 39.91 6.68
laittb 270k TAG+TOK+SEG 97.39 6 SR-nn 78.51 10 52.38 26.13
laproiel 147k UDPIPE 94.82 8 MST-altcats 60.65 10 42.68 17.97
lv 35k TAG+TOK 91.10 2 SR-nn 64.03 6 50.52 13.51
nl 186k TAG 91.57 3 SR-nn 70.28 11 56.11 14.17
nllassysmall 81k TAG 97.84 2 SR-nn 79.99 10 57.83 22.16
nobokmaal 244k UDPIPE 96.75 6 SR-nn 83.49 14 68.58 14.91
nonynorsk 245k UDPIPE 96.38 7 SR-feats 82.66 10 65.11 17.55
pl 63k TAG 96.95 2 SR-nn 83.65 6 71.98 11.67
pt 207k UDPIPE 96.22 6 SR-nn-charjoint 81.87 17 79.21 2.66
ptbr 256k TAG 97.54 2 SR-nn 86.17 13 61.30 24.87
ptpud — TAG 88.88 2 SR-nn-charjoint 74.67 10 75.00 -0.33
ro 185k UDPIPE 96.40 10 SR-nn 80.47 13 76.69 3.78
ru 76k TAG 96.60 2 SR-nn 77.61 7 66.83 10.78
rupud — TAG 86.66 3 SR-nn 71.55 3 66.17 5.38
rusyntagrus 870k UDPIPE 97.99 4 SR-altcats 86.25 18 54.19 32.06
sk 81k TAG 95.10 2 SR-nn 77.17 6 67.72 9.45
sl 113k TAG 97.36 2 SR-nn 85.41 5 80.27 5.14
slsst 19k UDPIPE 88.82 9 MST-nn 46.27 17 40.15 6.12
sme — UDPIPE 86.81 1 SR-cat (Generic) 37.33 5 37.33 0
sv 67k TAG 96.74 2 SR-nn 80.30 6 76.77 3.53
svlines 48k TAG 95.83 2 SR-nn 76.61 7 63.50 13.11
svpud — TAG 93.43 2 SR-nn 73.65 4 70.83 2.82
tr 38k UDPIPE 91.22 10 SR-nn 56.03 9 46.38 9.65
trpud — TAG 72.65 2 SR-nn 32.74 20 25.78 6.96
ug 2k TAG 74.06 9 MST-nn 34.82 10 19.65 15.17
uk 13k TAG 92.10 2 MST-nn 64.58 6 65.52 -0.94
ur 109k TAG 92.65 6 SR-nn 77.46 12 39.73 37.73
vi 20k TAG+TOK 77.64 2 SR-nn 42.40 3 33.00 9.40
zh 99k UDPIPE 82.69 11 SR-nn 59.28 12 45.83 13.45

Overall (macro-average) 91.79 3 70.35 6 60.02 10.33
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