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Abstract

Following Kiperwasser and Goldberg
(2016), we present a multilingual de-
pendency parser with a bidirectional-
LSTM (BILSTM) feature extractor and
a multi-layer perceptron (MLP) classifier.
We trained our transition-based projective
parser in UD version 2.0 datasets without
any additional data. The parser is fast,
lightweight and effective on big treebanks.

In the CoNLL 2017 Shared Task: Multi-
lingual Parsing from Raw Text to Univer-
sal Dependencies, the official results show
that the macro-averaged LAS F1 score of
our system Mengest is 61.33%.

1 Introduction

Developing tools that can process multiple lan-
guages has always been an important goal in
NLP. Ten years ago, CoNLL 2006 (Buchholz and
Marsi, 2006) and CoNLL 2007 (Nivre et al., 2007)
Shared Task were a major milestone for multilin-
gual dependency parsing. The CoNLL 2017 UD
Shared Task (Zeman et al., 2017) is an extension
of the tasks addressed in previous years. Unlike
CoNLL 2006 and CoNLL 2007, the focus of the
CoNLL 2017 UD Shared Task is learning syntactic
dependency parsers on a universal syntactic anno-
tation standard. This shared task requires partici-
pants to parse raw texts from different languages,
which vary both in typology and training set size.
The CoNLL 2017 UD Shared Task provided
universal dependencies description from LREC
2016 (Nivre et al., 2016), two datasets, which are
UD version 2.0 datasets (Nivre et al., 2017b) and
this task test datasets (Nivre et al., 2017a), two
baseline models, which are UDPipe (Straka et al.,
2016) and SyntaxNet (Weiss et al., 2015), and the
evaluation platform TIRA (Potthast et al., 2014).

In this paper, We present our multilingual de-
pendency parsing system Mengest for CoNLL
2017 UD Shared Task. The system contains a
BiLSTM feature extractor for feature representa-
tion and a MLP classifier for the transition system.
The inputs of our system are word form (lemma or
stem, which depending on the particular treebank)
and part of speech (POS) tags (coarse-grained and
fine-grained) for each token. Based on this input,
the system finds a governor for each token, and as-
signs a universal dependency relation label to each
syntactic dependency. Our official submission ob-
tains 61.33% macro-averaged LAS F1 score on all
treebanks.

The rest of this paper is organized as follows.
Section 2 discusses the transition-based model
(Kiperwasser and Goldberg, 2016) and our im-
plementation. Section 3 explains how our system
deals with parallel sets and surprise languages. Fi-
nally, we present experimental and official results
in Section 4.

2 System Description

We implement a transition-based projective parser
following Kiperwasser and Goldberg (2016). The
system consists of a BILSTM feature extractor and
an MLP classifier. We describe their model and
our implementation in the following sections in
detail.

2.1 Arc-Hybrid System

In this work, we use the arc-hybrid transition sys-
tem (Kuhlmann et al., 2011). In the arc-hybrid
system, a configuration ¢ = (v, 3, A) consists of a
stack «, a buffer (3, and a set of dependency arcs A.
Given n words sentence s = wi, - - - , Wy, the ini-
tial configuration ¢ = (0,{1,2,--- ,n,root}, )
with an empty stack, an empty arc set, and a full
buffer 3 = 1,2,---,n,root, where root is the
special root index. The terminal configuration set
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contains configurations with an empty stack, an
arc set and a buffer containing only root.

For each configuration ¢ = (o|s1|so, bo|3, 4),
the arc-hybrid system has 3 kinds of transitions,
T = {SHIFT,LEFT;, RIGHT;}:

SHIFT(C) = (0’|51|80|b0,ﬁ,A)
s.t. |B] >0
LEFTZ(C) = (O"S17 b0|ﬁ, AU {(bo7 S0, l)})

s.t. |8l >0,|0] >0
RIGHT;(c) = (o|s1,bo|B8, AU {(s1,50,1)})
s.t. |o| > 0,s0 # root

The SHIFT transition moves the first item of
the buffer (bg) to the stack. The LEFT} transition
removes the first item on top of the stack (sg) and
attaches it as a modifier to by with label [, adding
the arc (bg, sg, ) to arc set A. The RIGHT] transi-
tion removes sg from the stack and attaches it as a
modifier to the next item on the stack (s1), adding
the arc (s1, s, 1) to arc set A.

We apply a classifier to determine the best ac-
tion for a configuration. Following Chen and Man-
ning (2014), we use a MLP with one hidden layer.
The score of the transition ¢t € T is defined as:

MLPy(¢(c)) = W?
SCOREs (¢(c), t)

~tanh (W' - ¢(c) +b') +b°
= MLP (¢(c)) 1]

where 6§ = {W?' W2 bl b2} are the model pa-
rameters, ¢(c) is the feature representation of the
configuration ¢. MLPy(¢(c))[t] denotes an in-
dexing operation taking the output element which
is the class of transition ¢.

2.2 The Feature Representation

We consider two types of feature repersentations
¢(c) of a configuration: simple and extended.

Simple: For an input sequence s
wy, -+, Wy, We associate each word w; with a
vector z;:

z; = e(w;) o e(pi) o e(q;)

where e(w;) is the embedding vector of word
wj, e(p;) is the embedding vector of POS tag
pi» e(q;) is the embedding vector of coarse-
grained POS (CPOS) tag ¢;. The embeddings
e(w;), e(p;), e(q;) are randomly initialized (with-
out pre-training) and jointly trained with the pars-
ing model. Then, in order to encode context fea-
tures, we use a 2-layer sentence level BILSTM on
top of z1.,,:
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hy = LSTM (hy_1, z;,0)
Ty = LSTM (hys1, 4, 0)
(i ﬁl o) 7%

g are the model parameters of the forward hidden
sequence h. 0 are the model parameters of the
backward hidden sequence T The vector v; is our
final vector representation of ¢th token in s, which
has took into account both the entire history ﬁz and
the entire future /; by concatenating the matching
Long Short-Term Memory Network (LSTM).

For ¢(c), our simple feature function is the con-
catenated BiLSTM vectors of the top 3 items on
the stack and the first item on the buffer. A config-
uration c is represented by:

¢(C) = Usy O Vsy © Usy O Upy

Extended: We add the feature vectors corre-
sponding to the right-most and left-most modifiers
of sg, s1 and s9, as well as the left-most modifier
of by, reaching a total of 11 BiLSTM vectors as
extended feature representation. As we will see in
experimental sections, using the extended set does
indeed improves parsing accuracies.

2.3 Training Details

The training objective is to make the score of cor-
rect transitions always above the scores of incor-
rect transitions. We use a margin-based criteria.
Assume Ty, q is the set of gold transitions at the
current configuration c. At each time stamp, the
objective function tries to maximize the margin
between Tjq and T' — Typ1q. The hinge loss of
a configuration c is defined as:

Lossg(c) = (1 — max SCOREg(¢(c),

to€Tgold

to)
SCOREy((c), ¢

max
tp€E(T—Tyo1d)

)N

Our system use the backpropagation algorithm to
calculate the gradients of the entire network (in-
cluding the MLP and the BiLSTM).

Since our parser can only deal with projective
dependency trees, we exclude all training exam-
ples with non-projective dependencies. This ap-
proach undoubtedly downgrades the performance
of our system, we plan to use pseudo-projective
approach to improve it in the future work.



3 Multilingual Dependency Parsing

There are 81 treebanks in the CoNLL 2017 UD
Shared Task, including 55 big treebanks, 14 PUD
treebanks (additional parallel test sets), 8 small
treebanks and 4 surprise language treebanks. For
each language treebank of UD version 2.0 training
sets, we train a parser only using its monolingual
training set (no cross-lingual features). In total, we
trained 61 models, 55 on big treebanks and 6 on
small treebanks'. Our system reads the CONLL-U
files predicted by UDPipe, and uses morphology
(Iemmas, UPOS, XPOS) predicted by UDPipe.

3.1 Dealing with Parallel Test Sets

There are 14 additional parallel test sets. Our sys-
tem simply selects one trained model when we en-
counter a parallel test set where multiple training
treebanks exist. For example, although we don’t
have English-PUD training set but we have En-
glish, English-LinES and English-ParTUT train-
ing set. So we only use the model trained on En-
glish training set to predict English-PUD test set.

3.2 Dealing with Surprise Languages

There are 4 surprise languages in the CoNLL 2017
UD Shared Task. Our system simply use the
model trained on English to predict 4 surprise lan-
guages, without looking at the input words.

4 Results

We trained our system based on a MacBook Air
with a Intel Core i5 1.6 GHz CPU and 4G memory.
We used the official TIRA (Potthast et al., 2014)
to evaluate the system. We used Dynet neural net-
work library to build our system (Neubig et al.,
2017).

The hyper-parameters of the final system used
for all the reported experiments are detailed in Ta-
ble 1.

4.1 Token Representation

We compare two constructions of x;:
e lemma and POS tag (w; o p;).
e lemma, POS tag and CPOS tag (w; o p; o ¢;).

The performance of different token representa-
tions on 4 example languages are given in Table 2.
The results show that the CPOS tag improves the
LAS measure between 0.5% and 0.72%.

lln UD version 2.0 datasets, Kazakh and Uyghur only contain develop-
ment set, no training set.
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Word embedding dimension 100
POS tag embedding dimension 25
CPOS tag embedding dimension 10

Label embedding dimension 25
Hidden units in MLP 100
BiLSTM layers 2

BiLSTM hidden layer dimensions | 125
BiLSTM output layer dimensions | 125
« (for word dropout) 0.25
Learning rate 0.1
Optimization algorithm Adam

Table 1: Hyper-parameter values used in shared
task.
Language W; O Pp; W;OP;Og;
Bulgarian(bg)  83.78 84.28
Catalan(ca) 85.67 86.26
German(de) 70.77 71.49
English(en) 75.91 76.42

Table 2: The LAS score of two different token
representations on the 4 treebanks: Bulgarian(bg),
Catalan(ca), German(de), English(en).

4.2 BiLSTM Feature Representation

Performances of simple feature representation and
extended feature representation are given in Ta-
ble 3. The results show that the extended feature
representation slightly increases the performance
of our system. while the simple feature represen-
tation can significantly speed up the system.

Simple Feature Extended Feature
LAS train(sec) test(sec) LAS train(sec) test(sec)

bg 84.24 205.6 224 8428 2879 29.1
ca 8574 663.5 372 86.26 878.5 48.8
de 71.15 416.8 29.8 7149 7332 37.4
en 76.18 375.6 245 7642 5248 31.1

Table 3: Comparison of Simple and Extended fea-
ture representations, we report LAS score, offline
training time, and TIRA testing time.

4.3 Overall Performances

In our final submitted system to the shared task,
we used lemmas, POS tags and CPOS tags in to-
ken representation and selected extended feature
representation.

The macro-average LAS of the 55 big treebanks
is 68.37% and the results for each language are



Language LAS(max) Language LAS(max) Language LAS(max) Language LAS(max)

ar 65.65(72.90) bg 84.28(89.81) ca 86.26(90.70) cs 83.85(90.17)
cs_cac  83.22(90.43) cs_cltt 68.42(85.82) cu 48.95(76.84) da 72.78(82.97)
de 71.49(80.71) el 78.72(87.38) en 76.42(82.23) en_lines 72.66(82.09)
en_partut 73.74(84.46) es 75.41(87.29) es_ancora 78.64(89.99) et 55.40(71.65)
eu 62.89(81.44) fa 61.43(86.31) fi 69.86(85.64)  fi_ftb  75.13(86.81)
fr 80.07(85.51) fr_sequoia 79.00(87.31) gl 79.28(83.23) got 57.02(71.36)
grc 49.30(73.19) grc_proiel 60.61(75.28) he 58.10(68.16) hi 86.76(91.59)
hr 76.59(85.25) hu  57.85(77.56) id 74.40(79.19) it 86.14(90.68)
ja 73.00(91.13) ko  63.21(82.49) la.ittb  74.37(87.02) la_proiel 54.07(71.55)
Iv 59.50(74.01) nl 68.84(80.48) nl_lassysmall 71.53(87.71) no_bokmaal 75.96(89.88)
no_nynorsk 70.97(88.81) pl 67.63(90.32) pt 62.85(87.65) ptbr  79.71(91.36)
ro 64.38(85.92) ru 56.56(83.65) ru_syntagrus 82.42(92.60) sk 60.48(86.04)
sl 61.28(91.51) sV 61.43(85.87) sv_lines 61.09(82.89) tr 49.11(62.79)

ur 61.77(82.28) vi 31.67(47.51) zh 58.03(68.56)

Table 4: The LAS F1 score of our system and best system on the 55 big treebanks: ar, bg, ca, cs, cs_cac,
cs_cltt, cu, da, de, el, en, en_lines, en_partut, es, es_ancora, et, eu, fa, fi, fi_ftb, fr, fr_sequoia, gl, got, grc,
grc_proiel, he, hi, hr, hu, id, it, ja, ko, la_ittb, la_proiel, lv, nl, nl_lassysmall, no_bokmaal, no_nynorsk, pl,
pt, pt_br, ro, ru, ru_syntagrus, sk, sl, sv, sv_lines, tr, ur, vi, zh.

Language LAS(max) Language LAS(max) Language LAS(max) Language LAS(max)

fr_partut 72.40(88.13) ga  55.07(70.06) gl _treegal 61.17(74.34)  kk _(29.22)
la 38.00(63.37) slsst 23.77(59.07) ug (43.51) uk  20.61(75.33)

Table 5: The LAS F1 score of our system and best system on the 8 small treebanks: fr_partut, ga,
gl _treegal, kK, la, sl_sst, ug, uk.

Language LAS(max) Language LAS(max) Language LAS(max) Language LAS(max)

arpud 43.70(49.94) cs_pud 80.44(84.42) de_pud 69.13(74.86) en_pud 79.02(85.51)
espud 72.61(81.05) fipud 71.77(88.47) frpud 73.92(78.81) hipud 51.07(54.49)
itpud 83.79(88.14) japud 76.66(83.75) ptpud 59.32(78.48) rupud 52.73(75.71)
sv.pud 54.83(78.49) trpud 22.52(38.22)

Table 6: The LAS F1 score of our system and best system on the 14 PUD treebanks (additional parallel
test sets): ar_pud, cs_pud, de_pud, en_pud, es_pud, fi_pud, fr_pud, hi_pud, it_pud, ja_pud, pt_pud, ru_pud,
sv_pud, tr_pud.

Language LAS(max) Language LAS(max) Language LAS(max) Language LAS(max)
bxr 12.44(32.24) hsb  14.19(61.70) kmr 8.62(47.53) sme 10.00(48.96)

Table 7: The LAS F1 score of our system and best system on the 4 surprise language treebanks: bxr, hsb,
kmr, sme.
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shown in Table 4. The macro-average LAS of the
8 small treebanks is 33.88% and the results for
each language are shown in Table 5. The macro-
average LAS of the 14 PUD treebanks is 63.68%
and the results for each language are shown in Ta-
ble 6. The macro-average LAS of the 4 surprise
language treebanks is 11.31% and the results for
each language are shown in Table 7. The macro-
averaged LAS F1 score of our system on all tree-
banks is 61.33%.

4.4 Computational Efficiencies

The parser is fast. Offline training time is about
300 words/sec. Prediction time on the official
TIRA is about 400 words/sec without asking for
more resources.

Memory requirements are lower than 512M for
each language.

5 Conclusions

In this paper, we present a fast and lightweight
multilingual dependency parsing system for the
CoNLL 2017 UD Shared Task, which composed
of a BiLSTMs feature extractor and a MLP classi-
fier. Our system only uses UD version 2.0 datasets
(without any additional data). The parser makes
a good ranking at some of the big treebanks. The
results suggests that the simple BiLSTM extrac-
tor is a reasonable baseline for multilingual depen-
dency parsing. We will continue to improve our
system and add cross-lingual techniques in our fu-
ture work.
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