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Abstract

This paper presents RACAI’s approach,
experiments and results at CoNLL 2017
Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies. We
handle raw text and we cover tokeniza-
tion, sentence splitting, word segmenta-
tion, tagging, lemmatization and parsing.
All results are reported under strict train-
ing, development and testing conditions,
in which the corpora provided for the
shared tasks is used “as is”, without any
modifications to the composition of the
train and development sets.

1 Introduction

This paper describes RACAI’s entry for the
CONLL Shared Task on Universal Dependen-
cies parsing. We represent the Research Institute
for Artificial Intelligence, in Bucharest, Roma-
nia. The shared task refers to processing raw text
with the goal of automatically inferring word de-
pendencies. While some approaches require only
segmented (tokenized) text, parsing methods that
depend on rich feature sets (which is our case),
implicitly require that the text is tokenized, POS
tagged and lemmatized. The Universal Depen-
dencies (UD) corpus (Nivre et al., 2016, 2017a)
uses 3 distinct layers of analysis: (a) a Univer-
sal Part-of-Speech layer (UPOS) (Petrov et al.,
2011); (b) a language specific part-of-speech layer
(XPOS) and (c) a list of language-dependent mor-
phological attributes Zeman (2008). Also, in the
current version of UD, tokenization and word-
segmentation require different handling strategies
(see section 3.2 for details). In what follows
we will provide an overview of our system’s ar-
chitecture (section 2) and a detailed description
of each module (section 3) used in our process-

ing pipeline, followed by its evaluation (section
4) (Nivre et al., 2017b) on the TIRA platform
(Potthast et al., 2014). Though Syntaxnet (Weiss
et al., 2015) models were also available, some
discrepancies in the token and word-segmentation
methodology made the comparison impossible
(mainly because the Syntaxnet’s output was in-
compatible with the evaluation script). This work
is focused on presenting our system’s technical de-
tails and individual results. The full comparison
between competing systems, as well as the base-
line values obtained by UDPipe v1.1 (Straka et al.,
2016) are available in Zeman et al. (2017).

2 System Architecture

Figure 1 presents a bird’s eye view on the individ-
ual modules of the system and how they intercon-
nect.

At runtime, the input of the system is a raw text
file. As the file is not sentence split, all new line
characters are removed and passed as a single long
string to the first module: the Tokenization and
Sentence Splitting (Tok/SS) (section 3.1). De-
pending on language, some files are already tok-
enized, for which we perform only sentence split-
ting; however, for most languages, we perform
both tokenization and sentence-splitting in a sin-
gle pass. At this point, we obtain a file in the con-
llu format, passed to the Compound Word mod-
ule (section 3.2). This module looks for words
that can (and should) be split in two or more to-
kens. For example, in German "im" becomes "in
dem", or in Polish: "kupiłbym" becomes "kupił by
m". Compound words are added as new lines in
the conllu file. Next, language independent part of
speech (UPOS) tags are added by the Tag.UPOS
module (section 3.3). Based on the available in-
formation so far, the following modules all run in
parallel: The Lemma (section 3.4), Tag.XPOS
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Figure 1: System architecture

and Morphological Features modules add lem-
mas, XPOSes and Morphological Features. The
XPOS and Morphological Features modules are
language dependent and are described together in
section 3.5. Finally, the Parser module (section
3.6) adds the final dependencies in the output con-
llu file.

For the training process we used the available
training data in the conllu format. The conllu files
provided by the organizers contained “detokeniza-
tion” information (a SpaceAfter=No flag added to
every token that in the original text had no space)
and morphological analysis layers: word, lem-
mas, part-of-speech, language-dependent part-of-
speech, morphological attributes and word depen-
dencies (index of the head of each word, as well as
the relationship type).

Further details about each information layer
will be provided later in the paper, when we in-
troduce the individual processing modules and de-
scribe our feature extraction and labeling strate-
gies. During training we use a separate script re-
sponsible for preparing the custom training and
development sets. Depending on the memory and
CPU requirements we trained either the models se-
quentially (e.g. the parser is memory expensive
and the linear classifier for part-of-speech tagging
is multi-threaded) or multiple models in parallel
(the morphological analysis require far less mem-
ory and CPU time - practically the decision trees
for all languages in the competition were built and
pruned in parallel).

3 System Description

Before we proceed with the description of the
modules we must note that some of our methods
rely on decision trees (DT) that are built using a
custom designed algorithm that relies on the con-
stituency matrix to speed-up computation for the
Information Gain (IG) (Equation 1). Also, after
the initial trees are built, we use the available de-

velopment sets to prune them to reduce possible
train-data overfitting, leading to improved perfor-
mance.

IGi(S) = H(S)−
∑
t∈T

(P (t) ·H(t)) (1)

where i represents an input feature, H(S) (Equa-
tion 2) is the entropy of the initial set S, H(t) the
entropy of subset t, and P (t) is the fraction of el-
ements in t over the entire |S|. We note |S| as the
number of instances in S.

H(S) = −
N∑

x=1

Px · log2 Px (2)

We note this because the above mentioned
methodology was not presented elsewhere and we
feel the it is an important aspect of our approach
(see section 4 for details regarding the model sizes
and section 5 for comments).

3.1 Tokenization and Sentence Splitting

The first module in the pipeline is the Tokenizer
and Sentence Splitter. Depending on the train-
ing data, we actually have 4 distinct tokeniz-
ers/sentence splitters merged into our module: the
standard Tok/SS for corpora that had both punc-
tuation and was not already tokenized (this is
the case for most languages), the character level
Tok/SS for Japanese and Chinese, and two ver-
sions of the sentence splitter for training data with
pre-tokenized sentences that had (e.g. Danish,
Finish FTB and Slovene SST), and had not punc-
tuation (e.g. Gothic, Latin Proiel, Ancient Greek
Proiel and Old Church Slavonic).

The main tokenizer and sentence splitter is
based on DTs. Tokenization and sentence split-
ting are independent models, and are run in par-
allel. Based on a number of features (described
below), the DT tokenizer model chooses be-
tween 4 classes: SPLIT_LEFT, SPLIT_RIGHT,
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SPLIT_LEFTRIGHT and NONE, meaning it
should split to the left of the current charac-
ter, right, to put two spaces around the charac-
ter or not make a split. The DT sentence split-
ter has only 2 classes: SPLIT and NONE. Train-
ing is done in the following manner: (1) initially,
we look for specific characters where we might
have a word split, marked in the conllu train file
by "SpaceAfter=No"; we then normalize the fre-
quency of these characters; iterating again on the
training data, we choose only the character that is
most probable to initiate a split, based on the nor-
malized frequency; for sentence splitting we per-
form the same process, the only difference being
we pre-seed the character list with a number of
punctuation characters like: .-!? etc., because we
had cases where ? for example was not frequent
enough to remain in the split list, though it was a
valid sentence splitter; (2) we extracted the follow-
ing features for each split character: current letter,
3 characters before and after (4 for sentence split-
ting), and for the previous and next words a marker
whether or not the word is punctuation only, if it
ends with punctuation, if it contains punctuation,
if it is uppercase, if it is capitalized and the num-
ber of periods in the word; (3) we trained the DT
model and pruned the tree based on the dev set.
Another small optimization worth mentioning is
that we replaced all digits with zeroes to reduce
variability in the training data.

The symbol based tokenizer is targeted for
Japanese and Chinese where we have to look after
each symbol and decide whether to split. The fea-
tures are simply the current symbol and one sym-
bol to the left and right, with two possible classes:
SPLIT (split after the current symbol) and NONE.

The last two Tok/SS address languages that are
already tokenized, performing only sentence split-
ting. For the languages that had no punctuation
(e.g. Gothic), the features are 5 characters to the
left and 3 to the right (including the current charac-
ter). For the languages that had punctuation (e.g.
Danish) the features are token based: the current
token plus 2 tokens before and after; for each to-
ken we mark all the features the main tokenizer
has for words (if the token is punctuation only,
etc.)

Overall, we compared our results on the dev sets
against UDPipe’s, obtaining good results. How-
ever, for a few languages it seems that the deci-
sion tree approach is not optimal, yielding low per-

formances. For English, Bulgarian, Korean, Por-
tuguese and other 14 smaller languages, at run-
time we directly used the UDPipe tokenization and
sentence split conllu files, bypassing this module.
This is the only place in the system where we use
data that was not generated by us.

3.2 Compound Words
The compound words module has the task of
word expansion. For example, in German “im” is
the contraction of "in dem”; in Turkish, “muhab-
betliydi” is for “muhabbet li ydi”. While word ex-
pansion could be relatively well solved by using
a dictionary (search for the key and replace with
expansion tokens), it would fail for unseen words
as well as ignoring split-no split decisions depend-
ing on POS tags. Our intuition was that we need
to represent generated word expansions as parts of
the original string (longest common substring or
LCS) plus new terminations, either before and/or
after the LCS. For example, currency tokens like
“7000e ” should always expand as the first vari-
able part plus the last symbol separately if that
last symbol is “e ”, while the opposite example
“e 7000” should be represented as a static first
symbol followed by a variable string (here the nu-
meric amount).

Needless to say, the process of token decompo-
sition into words carries a great weight over the
accuracy of the system, because all other modules
depend on it: tagging, morphological analysis and
parsing. Obviously preserving the head or tail of
the original token and concatenating strings at the
beginning or end requires different labeling strate-
gies, because any of the words in the decompo-
sition can be written either by keeping the head
of the original token and concatenating a suffix or
by a prefix and concatenating the tail of the orig-
inal token. More often than not, one strategy will
likely yield a larger number of unique output la-
bels in the training data than the other. As such,
the actual difficulty is determining which labeling
strategy would be more accurate. We attempted to
determine the labeling strategy as follows:

• First, take the training data and generate out-
put labels using all (desired) tagging strate-
gies, generating multiple label sets;

• Then, measure the system entropy for each of
the previously generated label sets;

• Finally, use the tagging strategy which gen-

176



erated the lowest-entropy system for training
the classifier.

In our approach the labeling scheme was in the
form of "n+<string>" where n is a number and
<string> is a string to keep. Consider the fol-
lowing example, where a is the word that will
be expanded in two words b c. There are four
different output encodings we can choose from:
FS_KS, FS_KE, FE_KS and FE_KE. FS means
"from start" and denotes that the number n is
an absolute index, which measures the character
span from the beginning of the word, FE is "from
end" and denotes that n is a relative index and it
will express a character span relative to the size of
the original token. The meaning of KS is “keep
start” and means that the head of the token should
be preserved, while KE stands for “keep end” and
means that the tail of the original token will be
used in building the decomposed token. Now, sup-
pose we write word a as letters a1a2a3a4a5 and its
first expansion b as b1b2b3b4, and a1−2 is equal to
b1−2 and a5 is equal to b4. To obtain the first en-
coding FS_KS we find the longest common sub-
string from start of a and b which is b1−2, of length
2, keeping the rest of b; so, the FS_KS label en-
coding is 2+ < b3−4 >. Encoding FS_KE means
finding the longest common substring from start,
while keeping the end: 3 + b4−n−3.

Our algorithm has to choose between FS and
FE labeling schemes, the decision between KS and
KE subordinated depending only on the LCS cri-
terion (for each word in the decomposition, we
chose to keep the head or tail of the original to-
ken depending on which would provide a higher
character overlapping).

After determining the best labeling strategy we
generated a decision tree using the following fea-
tures: first four letters, last four letters, wordform
(if occurrence frequency was higher than 10 in the
training data).

To show how important choosing the appropri-
ate labeling strategy is, on the Hebrew develop-
ment set we obtained 93% F-score using the FE
notation (automatically selected by the system),
versus 88% when we forced the system to use FS.

3.3 POS Tagging

The part-of-speech inventory used in this step
refers to UPOS tags, an inventory which contains
only 17 unique labels. Our tagging methodology
is fairly standard: we use a Conditional Random

Field to estimate the probability of the i-th tag (ti),
based on the previous tag and a rich set of features
(fi) (Equation 3). During runtime, we use Viterbi
to obtain the optimal sequence of labels.

P (ti|ti−1, fi) (3)

The set of features is composed of (a) the lower-
cased wordform, (b) a large number of letter n-
grams, with n ranging from 2 to 5 and (c) a feature
which we refer to as “writing style”. All the fea-
tures are extracted from a window of 3 words (cen-
tered on the current word). The “writing style”
feature takes 4 values:

• ALL-CAPS - the word is written in CAPS;

• ALL-LOWER - the word contains only
lower-cased symbols;

• F-UPPER - the word starts with a capital let-
ter and all other symbols are lower-cased;

• F-UPPER-START - similar with F-UPPER,
only this time the word is also the first token
of the sentence.

We use a large number of character combina-
tions (90), which includes cross-word letter n-
grams and was manually obtained using a trial-
and-error process.

To prevent overfitting and obtain a robust model
for out-of-vocabulary (OOV) words, we only in-
clude a wordform as a feature, if that word’s oc-
currence frequency is higher than a threshold (k)
in the training data1.

3.4 Lemmatizer

Lemmatization is done in two steps. First, the
surface wordform and its UPOS (language inde-
pendent part of speech) is searched in a dictionary
created at train time. If the surface form & UPOS
match, the corresponding lemma is used (if there
is more than one lemma for the surface&UPOS
pair, we prefer the most frequent). If not found,
we attempt to create the new lemma using a DT.
Given a word, we extract the UPOS, the first 4 let-
ters and the last 4 as features. The first and last
letters may overlap if the word is smaller than 8
letters, or can be null (encoded as "_") if the word
is smaller than 4 letters. The output classes are

1In our experiments we observed that k = 10 is a good
choice for many of the languages we used for tunning
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Model Type Count Min Max Average St. Dev.
Tokenization DT 57 0.66 KB 394 KB 18.09 KB 71.09 KB
Sentence Split DT 64 0.91 KB 345 KB 23.90 KB 54.07 KB
Compound Words DT 22 0.34 KB 484 KB 50.53 KB 126.68 KB
Lemmatization DT 56 2.79 KB 370.53 KB 56.36 KB 68.23 KB
Tag.UPOS CRF 64 2.97 MB 612 MB 121.26 MB 100.09 MB
Morph. Feats. DT 64 10.46 KB 1.34 MB 170.21 KB 219.05 KB
Tag.XPOS DT 64 10.64 KB 1.08 MB 111.73 KB 200.39 KB
Parsing RBG 64 43.41 MB 3.16 GB 1.01 GB 755.5 MB

Table 1: Model types and sizes

strings looking like "n+<string>". The n repre-
sents how many letters to cut from the surface
form of the word, and <string> means the string to
append to the word. For example, given the word
forgotten, which is a Verb, with features f o r g and
t t e n, its output class would be 5+et, meaning
that we need to cut the last 5 letters (to obtain the
largest common prefix) and add et to obtain the
lemma forget.

We note that the number of output classes varies
between a few hundreds to several thousands de-
pending on the language, but, even for this large
number, the results of the DT seem accurate.

3.5 Language Specific Morphological
Analysis

Language-specific morphological analysis is a
two-fold process that refers to the resolution of (a)
the language-dependent part-of-speech (XPOS)
tag and (b) a structured set of morphological at-
tributes (in the form of key-value pairs), which are
used to encode important information such as gen-
der, number, case etc.

As a rule-of-thumb, the XPOS tag used in mor-
phologically rich languages is a compact repre-
sentation of the morphological attributes. For
instance, the Romanian corpus from the UD
data uses a standardized compact representation,
which is composed of morphosyntactic descrip-
tors (MSDs) (Erjavec, 2004). Given the simi-
larities between language-specific tags and UD
morphological-attributes, in our approach we used
the same feature sets for both tasks. The features
are composed of: (a) the UPOS tag, (b) the first
four characters of the word; (c) the last four char-
acters of the word and (d) the previously men-
tioned “writing-style” feature. To capture local-
dependencies between words we used a context
window of 5 centered on the current word.

In this case, we preferred to use decision trees,
mainly because of reduced computational require-
ments and the small-footprint of the output mod-
els.

3.6 Parsing
Once the morphological analysis is completed, our
processing pipeline relies on RBGParser2 which
is a greedy hill-climbing parser, well described in
Zhang et al. (2014a,b); Lei et al. (2014). In our
approach, we used branch 1.1.2 of RBG, which we
modified in order to be compliant with the current
UD version.

The main incompatibility was generated by the
presence of multiword tokens. During training we
modified the data adapter of the RBGParser to skip
multiword tokens and, for the runtime version, we
filtered the input for RBG to exclude multiword
tokens and we re-aligned the output of RBG with
the unparsed dataset, to restore multiword tokens
and provide an output compatible with the current
UD standard.

The RBG models were built using the default
parameters for the “standardModel” predefined
configuration, on which we added automatically
extracted word embeddings (Mikolov et al., 2013),
obtained using word2vec3. The word embeddings
were computed by applying the Continuous Bag of
Words (CBOW) model on the permitted raw-text
resources.

Depending on the language, for the computa-
tion of word vectors we compiled monolithic cor-
pora composed of Wikipedia Dumps (whenever
available) and raw text from UD training.

2https://github.com/taolei87/RBGParser - accessed 2017-
05-24

3https://github.com/dav/word2vec - accessed 2017-05-24
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Language Tok SS Words Lemma UPOS XPOS Morpho UAS LAS
ar 99.98 60.50 95.50 85.51 90.01 81.96 80.76 76.35 69.32

ar_pud 80.81 98.80 93.34 0 73.54 0 0 59.80 48.73
bg 99.91 92.83 99.91 92.14 97.20 91.45 90.00 87.66 82.47

bxr 99.35 91.81 99.35 81.40 84.12 99.35 78.08 38.46 21.66
ca 99.96 98.95 99.95 84.26 97.60 97.60 95.46 87.98 83.94
cs 99.96 82.83 99.96 95.03 98.07 88.31 85.15 85.97 81.14

cs_cac 100.00 100.00 99.97 96.27 98.38 85.22 81.94 87.18 81.95
cs_cltt 99.82 80.14 99.820 94.56 95.78 83.24 83.00 76.17 68.36
cs_pud 97.98 93.23 97.97 92.00 95.40 83.93 80.01 84.13 77.71

cu 99.96 36.05 99.96 86.38 94.06 94.28 80.76 74.04 67.12
da 100.00 76.85 100.00 94.14 94.62 100.00 90.46 77.15 72.29
de 99.44 76.80 99.45 90.82 91.02 91.27 71.30 76.21 69.14

de_pud 96.72 89.87 96.47 2.71 83.12 19.45 1.36 74.65 65.24
el 99.83 87.56 99.83 91.78 95.78 95.78 84.98 84.03 79.08
en 98.67 73.22 98.67 93.43 92.76 91.67 89.75 78.34 74.44

en_lines 99.92 82.11 99.92 88.36 93.86 90.90 88.98 76.84 70.97
en_partut 99.51 97.51 99.49 94.81 92.93 92.60 90.22 78.11 72.69

en_pud 99.66 97.13 99.66 95.00 93.65 91.81 88.36 82.59 77.79
es 99.94 94.17 99.77 94.17 95.21 99.75 92.04 84.43 79.97

es_ancora 99.95 98.06 99.93 78.56 97.60 97.60 95.56 86.12 82.07
es_pud 99.53 95.27 99.36 3.32 87.55 1.70 0 84.60 76.64

et 99.85 92.53 99.85 79.28 87.53 89.48 77.32 68.69 58.74
eu 99.98 99.83 99.98 88.89 92.44 99.98 80.72 77.31 70.40
fa 99.99 98.01 99.34 96.58 94.92 94.50 93.75 82.69 77.45
fi 99.46 86.05 99.46 81.87 92.56 93.77 85.05 78.23 72.59

fi_ftb 99.90 83.83 99.87 85.58 89.77 85.74 82.94 78.21 72.09
fi_pud 99.39 91.91 99.39 81.06 93.74 0.01 0.01 80.85 75.44

fr 99.72 92.12 98.85 95.41 94.95 98.85 92.18 82.64 78.38
fr_partut 99.75 99.12 98.89 92.86 94.30 90.15 84.69 81.42 76.75

fr_pud 97.43 91.71 96.62 4.82 87.23 2.41 0 77.50 72.18
fr_sequoia 99.77 83.75 99.14 95.66 95.41 99.14 91.94 81.52 77.64

ga 99.73 96.69 99.73 83.33 88.95 83.25 65.64 76.27 65.65
gl 99.92 95.92 99.92 96.94 96.11 95.15 94.88 82.43 78.34

gl_treegal 98.91 84.80 97.97 90.94 90.51 85.60 83.99 71.74 65.22
got 100.00 27.85 100.00 88.80 93.39 93.13 80.18 70.18 62.30
grc 99.98 98.70 99.98 72.35 86.48 72.68 71.44 68.53 60.48

grc_proiel 100.00 43.11 100.00 90.17 95.70 96.03 83.01 74.89 69.47
he 99.98 100.00 88.55 75.64 83.24 83.24 78.17 66.23 60.72
hi 100.00 99.20 100.00 87.09 95.94 95.05 84.93 89.90 85.33

hi_pud 92.27 94.45 92.27 0 78.12 33.23 4.67 57.33 45.57
hr 99.84 95.91 99.84 93.36 95.80 99.84 79.17 84.13 77.03

hsb 99.84 90.69 99.84 87.70 90.30 99.84 72.43 54.24 43.74
hu 99.70 89.75 99.70 80.02 90.52 99.70 67.59 72.34 64.76
id 99.99 88.41 99.99 85.47 92.71 99.99 92.67 80.89 73.86
it 99.92 98.45 99.82 89.40 96.56 95.74 94.19 87.98 84.45

it_pud 99.60 94.56 99.16 88.22 92.50 2.47 2.47 86.73 82.48
ja 87.57 93.18 86.57 86.00 84.82 87.57 84.82 69.14 67.64

ja_pud 89.87 96.21 89.87 88.55 87.78 6.17 5.69 74.92 74.06
kk 94.52 81.50 93.89 51.48 56.49 54.94 35.81 43.01 29.22

kmr 99.01 97.02 98.85 89.76 90.04 89.84 80.62 32.05 14.73
ko 99.73 93.05 99.73 53.80 91.21 81.02 81.02 69.45 62.79
la 99.97 99.20 99.97 31.42 84.58 63.18 62.79 59.15 46.77

la_ittb 99.91 83.10 99.91 94.32 96.68 88.49 84.56 79.61 74.45
la_proiel 100.00 25.80 100.00 88.08 93.73 93.91 80.29 67.68 60.80

lv 99.30 93.30 99.30 84.86 88.62 71.51 69.55 68.54 60.08
nl 99.85 74.52 99.85 77.02 91.19 85.67 83.82 77.32 68.23

nl_lassy 99.93 78.62 99.93 97.13 96.88 99.93 93.82 84.05 79.54
no_bokmaal 99.88 93.11 99.88 95.55 96.04 99.88 90.91 83.84 79.84
no_nynorsk 99.85 91.23 99.85 93.30 95.51 99.85 90.47 82.33 77.83

pl 99.97 99.59 99.89 92.23 95.45 77.72 75.94 85.56 78.29
pt 99.64 89.79 99.49 94.05 96.01 73.24 71.81 85.81 81.92

pt_br 99.95 95.51 99.84 81.13 96.81 96.81 96.80 86.92 83.54
pt_pud 99.29 95.65 99.40 11.87 88.12 0 0 79.85 73.27

ro 99.54 92.60 99.54 95.90 96.02 94.11 93.88 85.75 79.44
ru 99.94 95.30 99.94 74.14 95.15 94.38 77.71 81.06 75.54

ru_pud 97.22 96.93 97.21 0 85.33 78.49 33.85 77.32 68.96
ru_syntag 99.51 98.01 99.51 93.55 97.70 99.51 89.04 89.41 85.41

sk 100.00 83.53 100.00 86.18 94.11 71.55 68.68 80.77 74.26
sl 99.96 99.24 99.96 93.95 96.24 83.08 80.99 84.67 79.61
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Language Tok SS Words Lemma UPOS XPOS Morpho UAS LAS
sl_sst 99.82 16.72 99.82 90.64 89.42 77.15 72.58 55.84 48.13

sme 99.88 98.79 99.82 81.86 86.81 88.98 77.76 47.51 35.47
sv 99.59 89.87 99.59 91.62 94.63 87.70 86.42 79.36 73.56

sv_lines 99.90 84.96 99.90 83.82 93.48 89.42 88.02 76.95 70.72
sv_pud 98.39 94.46 98.39 81.73 90.87 83.63 68.71 74.81 68.40

tr 99.76 95.77 97.52 84.83 89.30 87.31 76.01 64.09 55.74
tr_pud 97.61 91.79 95.10 0 68.66 0 0 53.78 33.20

ug 98.57 68.17 98.57 36.73 72.79 74.73 72.41 57.61 38.76
uk 99.65 94.25 99.65 85.16 88.58 65.35 61.26 72.45 63.54
ur 100.00 96.83 100.00 69.78 92.12 89.64 75.35 82.72 75.17
vi 82.47 92.59 82.47 78.18 71.23 50.35 50.25 39.98 34.19
zh 88.91 98.19 88.91 88.38 82.81 82.50 81.14 62.56 57.75

Table 2: Results per language

4 Evaluation
Table 1 presents the types of the individual models and their
sizes. We use decision trees for most of the tasks, a CRF
model for UPOS tagging and the models RBG Parser cre-
ates for the last task of parsing. We can directly see that the
DT models are very small, even if they are written in text
mode, with the largest average for morphological features of
170 KB. We also note that while there are 64 models for the
64 languages we had training data for, we only created 22
models for the languages that actually had compound words
and 56 for lemmatization. The 57 tokenization models do
not include the symbol tokenization models for Japanese and
Chinese, which are even smaller; also, there were other lan-
guages that were pre-tokenized, so no models were created
for them (details in section 3.1). The CRF models used for
UPOS tagging are significantly larger, with the average of
121MB. Still, with a standard deviation of 100MB, we can
say that most models are smaller than 250MB. The largest
models are created by RBG, with the model for Czech reach-
ing an impressive 3.16GB. On average, RBG creates models
of around 1GB.

Moving on to the system results, we evaluate each task
incrementally, starting from tokenization. We obtained a
macro-averaged F1 score of 98.58, with a 0.37 difference to
the first place. The decision tree approach used, while simple,
brought interesting results, like first place for Czech (CLTT),
Italian, Irish or Russian.

For sentence splitting, also based on DT, we obtained an
average F1 score of 87.52 versus the top score of 89.10. We
obtained first place on a number of languages like Hebrew,
Basque or Latin. However on Latvian we obtained last place
with an F1 of 93.30 versus 98.90. We note that no language-
dependent tuning was performed, neither for tokenization nor
for sentence splitting. The same features were chosen for all
languages. While we did perform tree pruning based on the
dev sets, we did not vary and choose the best feature set for
each language (e.g. tokenization on some languages was bet-
ter with a context of 2,2, while for others with context 4,1;
we used 3,3 for every language that had punctuation and was
not pre-tokenized).

In word segmentation we obtained a score of 98.39 vs
98.81, a difference of only 0.42 percent. Using the DT clas-
sifier brought us top places in several languages like Czech
(CLTT), Danish, Norwegian (Bokmaal) or Russian.

Lemmatization, also based on decision trees, unfortu-
nately worked really well on only a small number of lan-
guages. For example on Farsi we were the first with a 1.5
point difference over second place. Overall, we obtained
an F1 score of 77.45 versus the top performer that obtained
83.74.

The morphological features average F1 score of 70.8
brings us relatively close to the top score of 73.92. Again,

while not a best performer, the decision tree algorithm we
used has shown very good performance compared to more
complex algorithms in the competition.

On the language independent parts of speech (UPOSes)
we obtained 90.71 vs 93.09. On language dependent parts of
speech (XPOSes) we have an average F1 of 78.20 vs the top
performer 82.27, a larger difference that for UPOSes.

Finally, on parsing we obtained an UAS of 74.67 vs 81.30
(11th place), and on LAS an F1 score of 67.71 vs 76.3, plac-
ing us on the 18th place.

5 Conclusions
The CoNLL 2017 UD Shared Task has been a learning expe-
rience for us. Considering that so far we only worked mostly
on Romanian and English, and only up to the level of POS
tagging, we managed to draw a number of conclusions, a few
outlined below:

• while the DT algorithm has, on average, below state-
of-the-art performance, it is very close to top performers. It
sometimes achieves first place on tasks like tokenization or
word expansion which follow a simpler and more predictable
set of rules. We used a decision tree model because it is a pre-
dictable and understandable model, that, for this initial set of
experiments allowed us to obtain significant insight on how
we should create features and output labels, something that
using a neural network would not allow.

• sticking with a method and trying out variations can
lead to noticeable improvements. For example, pruning the
character list on which to attempt a word split for tokeniza-
tion based on normalized frequency yielded a more balanced
training set. This has led to better results than simply ask-
ing whether to split on each character in the unpruned list (an
unbalanced training set with most examples being “no split”).

• sometimes intuition does not work. Initially, we hypoth-
esized that for the morphological feature prediction task it
was natural to attempted to predict each feature individually:
we would predict, for every word irrespective of its part of
speech, all available features separately. Each feature had
an extra class of NONE meaning that it was not appropri-
ate for that particular word, so it would not show up to the
final composition of features. The results were actually sig-
nificantly worse that trying to predict all features at once, as
a single class output label, even if the number of such labels
was much higher as it contained all combinations seen in the
training data for morphological features.

As we viewed the CoNLL 2017 UD Shared Task as a
learning experience, we attempted all tasks sequentially, even
though the main goal of the challenge was the last task: pars-
ing. The only place we used baseline UDPipe files was in
the tokenization and sentence splitting where our decision
tree approach with no tuning produced results significantly
below the baseline. However, we kept our Tok/SS module
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even for languages where we were 5 points below the base-
line, to see what would be the results on the test data. That
basically meant that any error in the initial task would be par-
tially propagated in the next one in our processing chain, as
each module relies on information from any number of the
preceding modules, marginally explaining some of the lower
scores in later tasks.

Regarding the system itself we already created a fully
functioning on-line version available at our NLP Tools Web-
site4. During the last weeks after the shared task ended, we
have replaced the decision tree algorithm with our own im-
plementation of a linear classifier, and have obtained superior
results. However there the footprint of the model obtained
using the linear classifier is, in some cases, 1000 times larger
than that of the decision tree classifier (i.e. the Ancient Greek
XPOS linear model size is 4.5GB, whereas the DT model is
only 4MB). Experiments using a deep neural network (DNN)
architecture, trained to predict attributes and XPOS based on
character-level features were also performed. Though this ap-
proach provided state-of-the art results for some languages,
we found it difficult to tune hyper-parameters for all lan-
guages. However, for the DNN approach, the model foot-
print and performance figures (accuracy and computational
time) were very appealing.

While one might consider that training independent mod-
els for each morphological attribute would provide better re-
sults, decision trees, Linear Classifier and DNN performed
significantly better, when trained to output all the morpholog-
ical features at once (softmax one-of-n encoded, not multi-
task learning). Additionally, we experimented with multi-
task learning (i.e.: using a common network structure, fol-
lowed by multiple softmax layers) (Collobert and Weston,
2008) and observed that it did not improve the learning pro-
cess, at least on the corpora and feature sets we used. Further
tuning will be done and performance figures evaluated by the
UD evaluation script will be reported on the above mentioned
website.
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