Multi-Model and Crosslingual Dependency Analysis

Johannes Heinecke, Munshi Asadullah
Orange Labs
2 avenue Pierre Marzin
F - 22300 Lannion, France
{johannes.heinecke, munshi.asadullah}@orange.com

Abstract

This paper describes the system of the
team Orange-Deskifi, used for the CoNLL
2017 UD Shared Task. We based our ap-
proach on an existing open source tool
(BistParser), which we modified in or-
der to produce the required output. Ad-
ditionally we added a kind of pseudo-
projectivisation. This was needed since
some of the task’s languages have a high
percentage of non-projective dependency
trees. In most cases we also employed
word embeddings. For the 4 surprise lan-
guages, the data provided seemed too lit-
tle to train on. Thus we decided to use
the training data of typologically close lan-
guages instead. Our system achieved a
macro-averaged LAS of 68.61% (10th in
the overall ranking) which improved to
69.38% after bug fixes.

1 Introduction

For our work in our lab (Orange-Deskiil) we
needed a robust dependency analysis for written
French with the highest Labeled Attachment Score
(LAS)' possible, using a wide range of depen-
dency relations. Having worked in the past on
rule based dependency analysis, it became obvi-
ous that we need to adopt a more modern ap-
proach to dependency analysis. Thus during the
last year we tried several freely available open
source tools available (e.g. MaltParser?, Google’s
SyntaxNet®, Standford Dependency Tools*, Bist-

'Since we are interested in semantic relations a good
CLAS score (Nivre and Fang, 2017) is even more relevant.
2http: //www.maltparser.org/
*https://www.tensorflow.org/versions/
r0.11/tutorials/syntaxnet/
‘nttps://nlp.stanford.edu/software/
stanford-dependencies.shtml

Parser’ and HTParser®), trained on different Tree-
banks (notably French Sequoia (Candito et al.,
2014) and Universal Dependencies (McDonald
et al., 2013)). All combinations of tools and tree-
banks had some advantages and some inconve-
niences. For instance, the underlying linguistic
models of the treebanks are not the same or some
tools would not accept CONLLU input but only raw
text and apply their own segmentation and POS
tagging.

In a next step we enriched the French treebanks
with additional information like lemmas, morpho-
logical features and more fine-graded XPOS in
addition to the about 20 UPOS categories of the
treebanks (UD-French v1.2 does not contain nei-
ther lemmas nor morphological features) and con-
ducted a new training/test/evaluation cycle. Since
the initial results for French were encouraging we
tried the same approaches with other languages,
such as the languages proposed for CoNLL 2017
UD Shared Task (Zeman et al., 2017). However,
for participation at the shared task, we relied ex-
clusively on the data provided by Universal De-
pendencies (Nivre et al., 2016, 2017b), also for
French in spite of our previous work.

For the shared task we have trained models sep-
arately for each language. So strictly speaking,
this is not a multilingual but a monolingual multi-
model approach.

2 System Description

2.1 Software

For the shared task, we used an (older) ver-
sion of BistParser for all treebanks (ud-treebanks-
conll2017). BistParser (Kiperwasser and Gold-
berg, 2016) is a transition based parser (Nivre
(2008), and which uses the arc-hybrid transition

Shttps://github.com/elikip/bist-parser
®https://github.com/elikip/htparser

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 111-118,
Vancouver, Canada, August 3-4, 2017. (©) 2017 Association for Computational Linguistics

system (Kuhlmann et al., 2011)) with the three
“basic” transitions LEFT ARC, RIGHT ARC and
SHIFT. Since the shared task requires that out-
put dependency trees have exactly one root, we
modified BistParser accordingly by deleting the
additional ROOT node added to each sentence in
the original version of this parser. BistParser uses
a bidirectional LSTM neural network. Currently
BistParser uses forms and XPOS for both learning
and predicting. We have started implementing the
use of feature column as well, but this has not been
used for the CoNLL 2017 UD Shared Task.

Some of the languages in the shared task
have a large percentage of non-projective sen-
tences. We thus decided to implement a pseudo-
projectivisation (Kiibler et al., 2009, p. 37) of the
input sentences before training or predicting. The
output sentences are than de-projectivised. Some-
times of course, the de-projectivisation can fail,
especially if there are other dependency relation
errors. Our tests showed, however, that the overall
result for most languages is still better than with-
out any pseudo-projectivisation.

Finally we implemented filters which ignore
the special CONLLU lines for multi-word tokens
(2-3 ...) and elliptic insertions (4.1 D)
and reinsert those lines after predicting.

In order to reduce memory usage during train-
ing and prediction, we modified BistParser and
the underlying CNN library’ to load word embed-
dings only for the words present in the training or
test data. For the same reason we modified Bist-
Parser to read sentences one by one, to predict, and
to output the result, instead of reading the entire
test file at once®

2.2 Training Data

We trained our models using all treebanks pro-
vided by the CoNLL 2017 UD Shared Task. Since
for some of the languages there were no devel-
opment treebanks available, we split the training
treebank in order to get a small development cor-
pus (10% of the training corpus is split to test dur-
ing development). This posed a certain problem
for treebanks like Kazakh and Uyghur, which are
hopelessly small (31 and 100 sentences respec-
tively). Eventhough both languages are geneti-

"https://github.com/clab/cnn-v1l, CNN has
meanwhile evolved to Dynet (https://github.com/
clab/dynet)

8The code is available at https://github.com/
CoNLL-UD-2017/0Orange-Deskin

112

cally and typologically very close to Turkish (3685
sentences), we finally trained on those small tree-
banks for time constraints (with more time avail-
able we would have experimented with various
other parameters and a cross-lingual approach).

In most cases, adding word embeddings im-
proved the LAS considerably. We downloaded the
language specific corpora provided’ by the task
organisers and calculated our own word embed-
dings with Mikolov’s word2vec (Mikolov et al.,
2013)'%, which gave better results than the 100-
dimensional word embeddings provided. In order
to get the best results, we cleaned the text cor-
pora (e.g. deleting letter-digit combinations and
separating punctuation symbols such as commas,
question marks etc. by a white space from the pre-
ceding token). For those languages which use an
alphabet which has case distinction (Latin, Cyril-
lic and Greek) we put everything in lowercase. Fi-
nally we trained word embeddings with 300 and
500 dimensional vectors respectively. For all other
parameters of word2vec we used the default set-
ting, apart from the lower frequency limit, which
we increased to 15 words.

The word embeddings were calculated on a
server with a 32 core CPU running Ubuntu
14.04'!. For the biggest text corpora like English
(9 billion words), German (5,9 billion words),
Indonesian (5 billion words) French (4,8 billion
words) training for 500 dimensional word vectors
took up to 6 hours (English).

A similar approach to word2vec is fastText
The fundamental difference is the adoption of the
“subword model” described in Bojanowski et al.
(2016). A subword model is described as a open
model allowing each word to be represented not
only by the word itself but also the subword com-
ponents of the word in combination. Subword
components can be n-grams with varying values
for n, stems, root words, prefixes, and suffixes or
any other possible formalism. As a matter of fact,
word2vec can been seen as the minimum config-
uration of fastText where only the words are con-
sidered. FastText has been demonstrated (Joulin
etal., 2016) to perform rather well in two different
tasks i.e. sentiment analysis and tag prediction.
For the CoNLL 2017 UD Shared Task we finally

‘https://lindat .mff.cuni.cz/
repository/xmlui/handle/11234/1-1989

Yhttps://code.google.com/archive/p/
word2vec/

"ntel Xeon CPU E5-2640 v3 at 2.60GHz.

used word2vec, since the results were similar,
but fastText was taking significantly more time to
train.

3 Training and development

We trained all treebanks without any word embed-
dings, with 300 and with 500 dimensional word
embeddings. For BistParser, the only other param-
eter we changed was the size of the first hidden
layer (default 100) which we set to 50 (or lower,
especially for languages whose treebanks are very
small). Every sentence of the training treebanks
was pseudo-projectivised before training. Using
the weighted LAS, we then chose the best com-
bination of parameters for each language. Since
the python version of CNN (used by our adapta-
tion of BistParser) does not support GPU, training
was slow!2. Thus we stopped training usually af-
ter 15 epochs unless the intermediary results were
promising enough to continue. Figure 1 shows the
system architecture. The upper part represents the
data flow for the training, the lower part represents
the predicting phase.

We did all training on two Ubuntu 16.04
servers'> with 64 GB RAM. As said above, the
version of the CNN library we used, does not run
on GPU, so all training was single threaded. The
training processes used up to 15 GB RAM, and
took between 1 minute (Kazakh) and 53 hours
(Czech). depending on the size of the treebank.
This corresponds to 0.5 to 3 seconds per sentence
during training. Training for the surprise lan-
guages (using treebanks of typologically close lan-
guages, cf. section, 4), took significantly longer
(up to 90 hours for Czech).

Training was on the gold values (form, lemma,
XPOS, UPOS, deprel, head) of the training tree-
banks'#, however, both, the development set (on
the Tira-platform) and the final test set use the UD-
Pipe output e.g. lemma, XPOS or UPOS (Straka
et al., 2016) which may be erroneous. So we ex-
pected a certain drop of LAS for the tests. In order
to be prepared, we tried to add erroneous lemmas
and UPOS in the training data. This, however, did
not produce better results, so we abandoned the

2The successor of CNN, Dynet, supports GPU, but since
BistParser learns on a phrase by phrase base, no gain in time
can be observed.

Intel Xeon CPU E5-1620 v4 at 3.50GHz and Intel Core
17-6900K CPU at 3.20GHz respectively.

14 Apart from numerous punctuation symbols with wrong

heads, we found several bad annotations for words as well in
different languages.

113

B] |

A '

BistParser
(train)

i | train
treebank

pseudo-
projectivisation

test data # !
(POS-tagged

_>/ | o] BistParser |
! | with UDpipe)

(predict)
i

reinsertion of

‘
i lemmas, features i

and multi words !

pseudo-
projectivisation

Figure 1: Schema of the system architecture

idea. Knowing that training takes a certain time
we did not POS-tag the training treebanks with
UDpipe to have similar “noise” than the test tree-
banks. The final results obtained with the devel-
opment corpora (or split from train corpora when
there were no development corpora) are shown in
table 1. We did not (yet) use the morphological
features (column 6). First tests on French showed
that a slight increase in LAS is possible, so we will
work on this in the future.

With 16GB RAM on the virtual machine pro-
vided by Tira (Potthast et al., 2014)!3 the 56 devel-
opment corpora (on the Tira platform) were pro-
cessed in about 130 minutes.

4 Surprise languages

The biggest challenge were the 4 surprise lan-
guages. Having only between 20 and 109 sen-
tences to train on (even less if we wanted to split it
into a train and development corpus) did not help
(see table 2 for some details). Since the word em-
bedding files where also rather small we chose not
to train on the languages themselves, but to keep
all of the provided sentences for the development
corpus. So we first tried three similar approaches
in order to be able to predict dependency relations
for these languages:

1. lumping together 2000 sentences of 11 typo-
logically different languages (German, Irish,
Russian, Spanish, Turkisch, Arabic, Persian,
Indonesian, Basque, Finnish and Estonian)

2. lumping together 5000 sentences of 11 typo-
logically different languages (as above)

'5The tests are run on the Tira platform (http://www.
tira.io), we used Ubuntu 16.04 as operating system

treebank
ar

bg

ca

cs

cs-CAC
cs-CLTT
cu

da

de

el

en
en-LinES
en-ParTUT
es
es-AnCora
et

eu

fa

fi

fi-FTP

fr
fr-ParTut
fr-Sequoia
ga

gl
gl-TreeGal
got

grc
grc-PROIEL
he

hi

hr

number of
dimensions of
S & word embeddings

3

(O8]

300
300
300
500
500
500
300
300
300
500
300
300
500
300
300
500
300
300
500
500
300
500
300
500
none
500
300
300
500
300

size of
& hidden layer

k. Pt
oS B L ©
=N el eNe)

100
40
40
50

100
50
40
50
50

100
50
50
40

100
50

100

100
50

100
50

100

100
40
50
50
40

100

20
=

76.75
83.62
85.67
87.08
85.93
78.95
75.18
72.46
78.03
80.59
84.60
77.83
79.93
80.29
85.60
67.68
65.65
84.23
77.84
82.70
83.64
83.03
80.42
64.84
78.46
70.04
68.53
58.21
66.81
78.87
89.70
72.56

eighted

114

treebank

hu

id

it
it-ParTUT
ja

kk

ko

la

Ia-ITTB
la-PROIEL
Iv

nl
nl-LassySmall
no-Bokmaal
no-Nynorsk
pl

pt

pt-BR

ro

ru
ru-SynTagRus
sk

sl

sl-sst

Y

sv-LinES

tr

ug

uk

ur

vi

zh

number of
dimensions of

S S d embeddi

S & word embeddings

3

(98]

500
300
500
300
300
300
300
300
300
500
500
300
300
500
300
500
300
300
300
500
300
300
500
300
300
500
300
500
500
500

Table 1: Development results (without surprise languages)

size of
2 8 hidden layer

100
100
50
50
40
50
100
50
50
50
40
50
100
100
50
50
40
50
100
100
100

weighted

64.72
71.82
86.34
79.54
91.04
31.53
73.76
54.40
72.32
70.49
69.47
78.70
73.99
82.19
80.25
86.78
91.21
87.22
80.10
80.22
82.06
82.67
86.62
60.24
80.01
79.73
56.60
42.35
75.77
80.89
71.06
78.28

3. lumping together 2000 sentences of 23 typo-
logically different languages (as above and
Chinese, Japanese, Korean, Vietnamese, Ro-
manian, Latin, Greek, Ancient Greek, He-
brew, Urdu and Hungarian)

hsb sme kmr bxr
sentences 109 20 65 20
words 460 147 242 153

has XPOS no yes yes no
has features yes yes yes yes

Table 2: Statistics on the data of the surprise lan-
guages

In all three cases we replaced the forms of all
closed word classes (i.e. all but nouns, adjectives
and verbs) with the corresponding UPOS in the
training and in the test corpus (for the CoNLL 2017
UD Shared Task we inserted the original forms
again after predicting the dependency relations.
The “mix” is then trained with a hidden layer size
of either 100 or 50, but without word embeddings.
We initially tested these models using the test cor-
pus for the Tamil treebank (UD v2.0). Using the
“mix” with 23 languages (3) resulted in the best
weighted LAS, 35.2% (35.3% if using a hidden
layer size of 50). The weighted LAS for the sur-
prise languages is shown in table 3.

language hidden layer size
50 100
Upper Sorbian (hsb) 59.5% 63.2%
Northern Sami (sme) 49.2% 47.5%
Kurmanji (kmr) 289% 29.2%
Buryat (bxr) 25.3% 26.3%

Table 3: Weighted LAS of the surprise languages
using a model trained on 23 languages

By replacing words of the closed word classes
by their UPOS we tried to get similar corpora
for training (on languages other than the surprise
language) and predicting (surprise languages), as-
suming that the syntactical structures are simi-
lar enough, especially if we use only typologi-
cally close languages (see below). This technique
avoids also the problem of different alphabets for
typologically close languages, since we use UPOS
and not character chains.

Eventhough these results were encouraging, we
hoped an increase of the weighted LAS should still
be feasible. Especially since some of the surprise

Upper Sorbian Northern Sami
cs (100) 69.5% fi (100) 52.9%
cs (50) 67.5% fiu'®(100) 51.7%
pl (50) 56.9% fiu (50) 49.7%
pl (100) 51.9% fi (50) 50.8%

Table 4: Weighted LAS using typologically close
languages (with hidden layer size)

languages are typologically (very) close to lan-
guages within the Universal Dependency corpus:
Upper Sorbian is a slavonic language very close to
Czech (and slightly less close to Polish). North-
ern Sami shares quite a lot of typological features
with the Finnic branch of the Fenno-Ugric lan-
guages (here Finnish and Estonian), and Kurmanji
shares at least some typolological feature with Per-
sian (both are from the Iranian subgroup of the
Indo-European language family. However Buryat,
a Mongolian language, is not typologically close
to any of the shared task’s languages. Even though
Turkish seems close enough, to our surprise Hindi
was finally the best guess. With Urdu, which is
very similar to Hindi apart from the fact that it
uses the Arabic alphabet instead of Devanagari,
the LAS was less good.

As for the language mix, we replaced the forms
of the closed word classes in the training corpora
by the corresponding UPOS (except nouns, verbs
and adjectives) and trained the modified treebanks
(cf. tables 4 and 5, best configuration in bold).

Kurmanji Buryat

fa (100) 36.7% hi (50) 32.0%
fa(50) 35.8% hi (100) 28.1%
hi (50) 22.2% ur (50) 28.0%
hi (100) 22.0% tr (100) 27.6%
ur (100) 20.6% fi (100) 21.8%
ur (50) 20.6% tr (50) 19.4%

ja(s0) 18.0%

Table 5: Weighted LAS using typologically close
languages (with hidden layer size)

The reason for not replacing nouns, adjectives,
and verbs is simple: Leaving the original words
of the training corpus language and the test cor-
pus language, means while the parser predicts, it
comes across a word which it has never seen dur-
ing training. But since it has the UPOS, it has

1$fiu represents the Fenno-Ugric languages, in our case a
mix of Finnish, Estonian and Hungaric

115

Se 8¢ 5 S 8¢ 3
ST TS S ST T S
treebank g § E § E treebank § § E § E
ar 76.75 67.26 -9.49 hsb (surprise Ig) 69.50 5825 -11.25
ar-pud (unavailable for dev.) 44.77 hu 64.72 64.59 -0.13
bg 83.62 85.06 1.44 id 71.82 73.64 1.82
bxr (surprise lg) 32.00 25.25 -6.75 it 86.34 86.65 0.31
ca 85.67 86.24 0.57 it-ParTuT 79.54 (withdrawn)
cs 87.08 84.33 -2.75 it-pud (unavailable for dev.) 84.89
cs-CAC 85.93 83.98 -1.95 ja 91.04 73.37 -17.67
cs-CLTT 78.95 72.99 -5.96 ja-pud (unavailable for dev.) 76.74
cs-pud (unavailable for dev.) 79.49 kk 31.53 2131 -10.22
cu 75.18 64.26 -10.92 kmr (surprise lg) 36.70 38.31 1.61
da 72.46 73.54 1.08 ko 73.76 67.76 -6.00
de 78.03 73.38 -4.65 la 54.40 43.16 -11.27
de-pud (unavailable for dev.) 69.75 1a-ITTB 72.32 76.42 4.10
el 80.59 80.69 0.10 la-PROIEL 70.49 60.44 -10.05
en 84.60 77.51 -7.09 v 69.47 61.52 -7.95
en-LinES 77.83 73.36 -4.47 nl 78.70 70.33 -8.37
en-ParTUT 79.93 75.78 -4.15 nl-LassySmall 73.99 77.58 3.59
en-pud (unavailable for dev.) 79.67 no-Bokmaal 82.19 83.79 1.60
es 80.29 83.03 2.74 no-Nynorsk 80.25 81.69 1.44
es-AnCora 85.60 85.57 -0.03 pl 86.78 81.71 -5.07
es-pud (unavailable for dev.) 78.78 pt 91.21 7640 -14.81
et 67.68 58.98 -8.70 pt-BR 87.22 87.07 -0.15
eu 65.65 65.29 -0.36 pt-pud (unavailable for dev.) 69.00
fa 84.23 80.87 -3.36 ro 80.10 81.34 1.24
fi 77.84 73.97 -3.87 ru 80.22 76.28 -3.94
fi-FTP 82.70 78.64 -4.06 ru-pud (unavailable for dev.) 69.58
fi-pud (unavailable for dev.) 77.52 ru-SynTagRus 82.06 87.10 5.04
fr 83.64 80.58 -3.06 sk 82.67 7597 -6.7
fr-ParTut (*) 83.03 7726 (tested sl 86.62 82.38 -4.24
with fr) sl-sst (*) 60.24 40.25 (tested
fr-pud (unavailable for dev.) 74.63 with sl)
fr-Sequoia 80.42 81.54 1.12 sme (surprise lg) 5290 33.08 -19.82
ga 64.84 63.10 -1.74 Y 80.01 78.85 -1.16
gl 78.46 79.66 1.20 sv-LinES 79.73 74.28 -5.45
gl-TreeGal (*) 70.04 2246 (tested sv-pud (unavailable for dev.) 70.82
with gl) tr 56.60 55.21 -1.39
got 68.53 5797 -10.56 tr-pud (unavailable for dev.) 34.36
grc 58.21 54.10 -4.11 ug 4235 34.24 -8.11
grc-PROIEL 66.81 65.50 -1.31 uk 75.77 62.30 -13.47
he 78.87 58.07 -20.8 ur 80.89 77.93 -2.96
hi 89.70 87.09 -2.61 vi 71.06 39.12 -31.94
hi-pud (unavailable for dev.) 51.02 zh 78.28 59.33 -18.95
hr 72.56 77.11 4.55 average 74.40 68.61

Table 6: comparison of training results (on development corpora) and final results. Due to an error, the
models for the treebanks marked (*) were unfortunately not used for the tests.

116

an idea what to do. If we took UPOS for verbs,
nouns, and adjectives, this meant that the whole
training (and test) corpus would only contain one
single verb (namely VERB), noun (NOUN) and ad-
jective (ADJ). Tests showed, that the parser got
confused, since it encountered the same verb, noun
or adjective in very different syntactic contexts. Of
course, this applies also to prepositions or adverbs
but keeping the open word classes gave the best
development results.

As expected, Upper Sorbian and Norther Sami
give quite acceptable results using models trained
on Czech and Finnish respectively. Due to the
fact that the provided treebanks for Kazakh and
Uyghur are both very small we tried to apply the
same approach of using the training corpus of a ty-
pologically close language (here Turkish). How-
ever, the results were disappointing. Thus, we
continue to use the models trained on very small
corpora for these two languages in the shared
task. Possibly the fact that the raw text corpus
used to calculate word embeddings for Kazakh
and Uyghur are much bigger than those of the sur-
prise languages allowed to produce usable word
embeddings. If so, this would mean that word em-
beddings play a very prominent role in data driven
dependency parsing.

5 Results of the Shared Task

Our final macro-averaged LAS F1 score on the
CoNLL 2017 UD Shared Task test data (Nivre
et al., 2017a) was 68.61%, (10th out of 33)!”. The
details show that our approach worked well for
the bigger treebanks and the surprise languages
(where we ended up as 8th). In general, the results
per language are slightly lower than those we had
during training on the development corpora (cf. ta-
ble 1). This is due to the fact we did our training
on forms, lemmas, UPOS and XPOS of the train-
ing corpus, which are gold. In the test data, lem-
mas, UPOS and XPOS (if present), however, are
predicted by UDpipe, and do contain some errors
with respect to the gold standard.

After the end of the test phase, we discovered
a bug in our chain, which concerned languages,
which have only UPOS data. In this case the
UPOS information was totally discarded by error.
Thus all training and testing are done only on the

"http://universaldependencies.org/
conlll7/results.html

117

18

forms

Further we made en error uploading the models
for the gl _TreeGal, fr_parTut and sl_sst
treebanks. During the tests the models trained
on the basic g1, fr and sl treebanks were used
instead. After the test phase we corrected these
errors. Fortunately, their impact was not that
hard. Apart from the result for g1 _TreeGal and
s1l_sst, which went up to 66.13% (from 22.46%)
and to 47.68 (from 40.25) respectively once the
correct model was used, the results for the other
corpora changed only slightly, the global results
could have been 69.38%. All results are shown
in table 6. The column on the right shows the
difference between the results of the development
corpora and test data. For some languages, the
test results are unexpectedly lower than the results
on the development corpora. For gl _TreeGal,
fr_parTut and sl_sst, this is due to errors
when installing our system on the Tira-platform.
The lower performance on languages like Chinese,
Ukrainian, Vietnamese or Latin (both ITTB and
PROIEL) seems to be caused by the nature of the
test corpora themselves. Systems of other partici-
pants seem to drop in performance as well; for all
these languages our system is still around the 10th
position of the global ranking. Perhaps a cause
may be the fact that the XPOS we use (predicted
by UDpipe) contain more errors than average for
the Chinese, Ukrainian or Vietnamese treebanks
than for languages where our test score is closer to
the development score.

Acknowledgments

We would like to thank the developpers of Bist-
Parser, Eliyahu Kiperwasser and Yoav Goldberg,
and the developper of the CNN library (Chris
Dyer) for making them available as open source
on GitHub. Finally we would like to thank our
colleague Ghislain Putois for help on all aspects
on neural networks.

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors
with subword information. CoRR abs/1607.04606.
http://arxiv.org/abs/1607.04606.

8This concerns the treebanks da, en-LinES, es, eu, fr,
fr-Sequoia, hr, hu, id, ja, nl-LassySmall, no-Bokmaal, no-
Nynorsk, ru-SynTagRus and sv-LinEs.

Marie Candito, Guy Perrier, Bruno Guillaume,
Corentin Ribeyre, Karén Fort, Djamé Seddah, and
Eric de la Clergerie. 2014. Deep syntax annotation
of the sequoia french treebank. In Proc. of LREC
2014. Reykjavik, Iceland.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016. Bag of tricks for ef-
ficient text classification. CoRR abs/1607.01759.
http://arxiv.org/abs/1607.01759.

Eliyahu Kiperwasser —and Yoav Goldberg.
2016. Easy-first dependency parsing with
hierarchical tree Istms. TACL 4:445-461.

https://transacl.org/ojs/index.php/tacl/article/view/798.

Sandra Kiibler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Morgan and Claypool
Publishers.

Marco Kuhlmann, Carlos Gémez-Rodriguez, and
Giorgio Satta. 2011. Dynamic programming al-
gorithms for transition-based dependency parsers.
In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguis-
tics: Human Language Technologies - Volume
1. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT 11, pages 673-682.

http://dl.acm.org/citation.cfm?id=2002472.2002558.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Gancheyv, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Tackstrom, Claudia Bedini, Nuria Bertomeu, and
Castell6 Jungmee Lee. 2013. Universal dependency
annotation for multilingual parsing. In Proc. of ACL
2013.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Joakim Nivre. 2008. Algoritms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics 34(4):513-553.

Joakim Nivre, Zeljko Agié, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Haji¢, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016). European Language
Resources Association, PortoroZz, Slovenia, pages
1659-1666.

118

Joakim Nivre and Chiao-Ting Fang. 2017. Univer-
sal dependency evaluation. In Proceedings of the
NoDalLiDa 2017 Workshop on Universal Depen-
dencies (UDW 2017). Association for Computa-
tional Linguistics, Gothenburg, Sweden, pages 86—
95. http://www.aclweb.org/anthology/W17-0411.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague. http://hdl.handle.net/11234/1-1983.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268-299. https://doi.org/10.1007/978-3-319-
11382-122.

Milan Straka, Jan Haji¢, and Jana Strakova. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoroz, Slove-
nia.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Haji¢, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkovd, Jan Haji¢ jr.,
Jaroslava Hlavacova, Viaclava Kettnerova, Zdenka
UreSovd, Jenna Kanerva, Stina Ojala, Anna Mis-
sild, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Héctor Martinez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonga, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

