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Abstract

We introduce a simple and accurate neu-
ral model for dependency-based seman-
tic role labeling. Our model predicts
predicate-argument dependencies relying
on states of a bidirectional LSTM en-
coder. The semantic role labeler achieves
competitive performance on English, even
without any kind of syntactic information
and only using local inference. How-
ever, when automatically predicted part-
of-speech tags are provided as input, it
substantially outperforms all previous lo-
cal models and approaches the best re-
ported results on the English CoNLL-
2009 dataset. We also consider Chi-
nese, Czech and Spanish where our
approach also achieves competitive re-
sults.  Syntactic parsers are unreliable
on out-of-domain data, so standard (i.e.,
syntactically-informed) SRL models are
hindered when tested in this setting. Our
syntax-agnostic model appears more ro-
bust, resulting in the best reported results
on standard out-of-domain test sets.

1 Introduction

The task of semantic role labeling (SRL), pio-
neered by Gildea and Jurafsky (2002), involves
the prediction of predicate argument structure, i.e.,
both identification of arguments as well as their as-
signment to an underlying semantic role. These
representations have been shown to be benefi-
cial in many NLP applications, including ques-
tion answering (Shen and Lapata, 2007) and in-
formation extraction (Christensen et al., 2011).
Semantic banks (e.g., PropBank (Palmer et al.,
2005)) often represent arguments as syntactic con-
stituents or, more generally, text spans (Baker
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Figure 1: A semantic dependency graph.

et al.,, 1998). In contrast, CoNLL-2008 and
2009 shared tasks (Surdeanu et al., 2008; Hajic
et al., 2009) popularized dependency-based se-
mantic role labeling where the goal is to iden-
tify syntactic heads of arguments rather than entire
constituents. Figure 1 shows an example of such a
dependency-based representation: node labels are
senses of predicates (e.g., “01” indicates that the
first sense from the PropBank sense repository is
used for predicate makes in this sentence) and edge
labels are semantic roles (e.g., A0 is a proto-agent,
‘doer’).

Until recently, state-of-the-art SRL systems
relied on complex sets of lexico-syntactic fea-
tures (Pradhan et al., 2005) as well as declara-
tive constraints (Punyakanok et al., 2008; Roth
and Yih, 2005). Neural SRL models instead ex-
ploited feature induction capabilities of neural net-
works, largely eliminating the need for complex
hand-crafted features. Initially achieving state-
of-the-art results only in the multilingual setting,
where careful feature engineering is not practi-
cal (Gesmundo et al., 2009; Titov et al., 2009),
neural SRL models now also outperform their tra-
ditional counterparts on standard benchmarks for
English (FitzGerald et al., 2015; Roth and Lapata,
2016; Swayamdipta et al., 2016; Foland and Mar-
tin, 2015).

Recently, it has been shown that an accurate
span-based SRL model can be constructed without
relying on syntactic features (Zhou and Xu, 2015).
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Nevertheless, the situation with dependency-based
SRL has not changed: even recent state-of-the-art
methods for this task heavily rely on syntactic fea-
tures (Roth and Lapata, 2016; FitzGerald et al.,
2015; Lei et al., 2015; Roth and Woodsend, 2014;
Swayamdipta et al., 2016). In particular, Roth
and Lapata (2016) argue that syntactic features
are necessary for the dependency-based SRL and
show that performance of their model degrades
dramatically if syntactic paths between arguments
and predicates are not provided as an input. In
this work, we are the first to show that it is possi-
ble to construct a very accurate dependency-based
semantic role labeler which either does not use
any kind of syntactic information or uses very lit-
tle (automatically predicted part-of-speech tags).
This suggests that our LSTM model can largely
implicitly capture syntactic information, and this
information can, to a large extent, substitute tree-
bank syntax.

Similarly to the span-based model of Zhou and
Xu (2015) we use bidirectional LSTMs to encode
sentences and rely on their states when predicting
arguments of each predicate.! We predict seman-
tic dependency edges between predicates and ar-
guments relying on LSTM states corresponding to
the predicate and the argument positions (i.e. both
edge endpoints). As semantic roles are often spe-
cific to predicates or even predicate senses (e.g.,
in PropBank (Palmer et al., 2005)), instead of pre-
dicting the role label (e.g., AO for Sequa in our ex-
ample), we predict predicate-specific roles (e.g.,
make-AQ) using a compositional model. Both
these aspects (predicting edges and compositional
embeddings of roles) contrast our approach with
that of Zhou and Xu (2015) who essentially treat
the SRL task as a generic sequence labeling task.
We empirically show that using these two ideas is
crucial for achieving competitive performance on
dependency SRL (+1.0% semantic F; in our ab-
lation studies on English). Also, unlike the span-
based version, we observe that using automatically
predicted POS tags is also important (+0.7% F).

The resulting SRL model is very simple. Not
only we do not rely on syntax, our model is
also local, i.e., we do not globally score or con-
strain sets of arguments. On the standard English
in-domain CoNLL-2009 benchmark we achieve

'In the CoNLL-2009 benchmark, predicates do not need
to be identified: their positions are provided as input at test
time. Consequently, as standard for dependency SRL, we ig-
nore this subtask in further discussion.
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87.7 F; which compares favorable to the best lo-
cal model (86.7% F; for PathLSTM (Roth and La-
pata, 2016)) and approaches the best results over-
all (87.9% for an ensemble of 3 PathLSTM mod-
els with a reranker on top). When we experiment
with Chinese, Czech and Spanish portions of the
CoNLL-2009 dataset, we also achieve competitive
results, even without any extra hyper-parameter
tuning.

Moreover, as syntactic parsers are not reli-
able when used out-of-domain, standard (i.e.,
syntactically-informed) dependency SRL models
are crippled when applied to such data. In contrast,
our syntax-agnostic model appears to be consider-
ably more robust: we achieve the best result so far
on the English and Czech out-of-domain test set
(77.7% and 87.2% F, respectively). For English,
this constitutes a 2.4% absolute improvement over
the comparable previous model (75.3% for the lo-
cal PathLSTM) and substantially outperforms any
previous method (76.5% for the ensemble of 3
PathLSTMs). We believe that out-of-domain per-
formance may in fact be more important than in-
domain one: in practice linguistic tools are rarely,
if ever, used in-domain.

The key contributions can be summarized as
follows:

e we propose the first effective syntax-agnostic
model for dependency-based SRL;

e it achieves the best results among local mod-
els on the English, Chinese and Czech in-
domain test sets;

e it substantially outperforms all previous
methods on the out-of-domain test set on both
English and Czech.

Despite the effectiveness of our syntax-agnostic
version, we believe that both integration of tree-
bank syntax and global inference are promising
directions and leave them for future work. In fact,
the proposed SRL model, given its simplicity and
efficiency, may be used as a natural building block
for future global and syntactically-informed SRL
models.’

2  Our Model

The focus of this paper is on argument identifica-
tion and labeling, as these are the steps which have

2The code is available at https://github.com/
diegma/neural-dep-srl.
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Figure 2: Predicting an argument and its label
with an LSTM encoder.

been previously believed to require syntactic infor-
mation. For the predicate disambiguation subtask
we use models from previous work.

In order to identify and classify arguments, we
propose a model composed of three components:

e a word representation component that from a
word w; in a sentence w build a word repre-
sentation x;;

e a Bidirectional LSTM (BiLSTM) encoder
which takes as input the word representation
z; and provide a dynamic representation of
the word and its context in a sentence;

e a classifier which takes as an input the Bil-
STM representation of the candidate argu-
ment and the BiLSTM representation of the
predicate to predict the role associated to the
candidate argument.

2.1 Word representation

We represent each word w as the concatenation
of four vectors: a randomly initialized word em-
bedding z"¢ € R%, a pre-trained word embed-
ding z7* € R%, a randomly initialized part-of-
speech tag embedding 2°° € R% and a randomly
initialized lemma embedding z'* € R% that is
only active if the word is one of the predicates.
The randomly initialized embeddings x"¢, xP°°,
and z'¢ are fine-tuned during training, while the
pre-trained ones are kept fixed, as in Dyer et al.
(2015). The final word representation is given by
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x = 27 o xP€ o xP°5 o zle, where o represents the
concatenation operator.

2.2 Bidirectional LSTM encoder

One of the most effective ways to model se-
quences are recurrent neural networks (RNN) (El-
man, 1990), more precisely their gated versions,
for example, Long Short-Term Memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997).

Formally, we can define an LSTM as a function
LST Mpy(x1.;) that takes as input the sequence z1.;
and returns a hidden state h; € R . This state
can be regarded as a representation of the sen-
tence from the start to the position ¢, or, in other
words, it encodes the word at position ¢ along with
its left context. Bidirectional LSTMs make use of
two LSTMs: one for the forward pass, and another
for the backward pass, LST Mg and LST Mp, re-
spectively. In this way the concatenation of for-
ward and backward LSTM states encodes both left
and right contexts of a word, BiLST M (21.y,,1) =
LSTMp(x1,4) o LSTMp(xy.;). In this work we
stack k layers of bidirectional LSTMs, each layer
takes the lower layer as its input.

2.3 Predicate-specific encoding

As we will show in the ablation studies in Sec-
tion 3, encoding a sentence with a bidirectional
LSTM in one shot and using it to predict the en-
tire semantic dependency graph does not result in
competitive SRL performance. Instead, similarly
to Zhou and Xu (2015), we produce predicate-
specific encodings of a sentence and use them
to predict arguments of the corresponding predi-
cate. This contrasts with most other applications
of LSTM encoders (for example, in syntactic pars-
ing (Kiperwasser and Goldberg, 2016; Cross and
Huang, 2016) or machine translation (Sutskever
et al., 2014)), where sentences are typically en-
coded once and then used to predict the entire
structured output (e.g., a syntactic tree or a tar-
get sentence). Specifically, when identifying ar-
guments of a given predicate, we add a predicate-
specific feature to the representation of each word
in the sentence by concatenating a binary flag to
the word representation of Section 2.1. The flag is
set to 1 for the word corresponding to the currently
considered predicate, it is set to 0 otherwise. In
this way, sentences with more than one predicate
will be re-encoded by bidirectional LSTMs multi-
ple times.



2.4 Role classifier

Our goal is to predict and label arguments for a
given predicate. This can be accomplished by la-
beling each word in a sentence with a role, includ-
ing the special ‘NULL’ role to indicate that it is
not an argument of the predicate. We start with
explaining the basic role classifier and then dis-
cuss two extensions, which we will later show to
be crucial for achieving competitive performance.

2.4.1 Basic role classifier

The basic role classifier takes the hidden state of
the top-layer bidirectional LSTM corresponding
to the considered word at position 7 and uses it
to estimate the probability of the role . Though
we experimented with multilayer perceptrons, we
obtained the best results with a simple log-linear
model:

p(rlvi,p) o< exp(Wrv;), (1)

where wv; is the hidden state calculated by
BiLSTM (x1.p,1), p refers to the predicate and
the symbol o signifies proportionality. This is es-
sentially equivalent to the approach used in Zhou
and Xu (2015) for span-based SRL.

2.4.2 Incorporating predicate state

Since the context of a predicate in the sentence is
highly informative for deciding if a word is its ar-
gument and for choosing its semantic role, we pro-
vide the predicate’s hidden state (v,,) as another
input to the classifier (as in Figure 2):

p(r|vi, vp) o< exp(Wi(vi 0 vp)), ()

where, as before, o denotes concatenation. Note
that we are effectively predicting an edge between
words ¢ and p in the sentence, so it is quite natu-
ral to exploit hidden states corresponding to both
endpoints.*

Since we use predicate information within the
classifier, it may seem that predicate-specific sen-
tence encoding (Section 2.3) is not needed any-
more. Moreover, predicting dependency edges re-
lying on LSTM states of endpoints was shown
effective in the context of syntactic dependency

3Since they considered span-based SRL, they used BIO
encoding (Ramshaw and Marcus, 1995) and ensured the con-
sistency of B, I and O labels with a 1-order Markov CRF. For
dependency SRL both BIO encoding and the 1-order Markov
CRF would be useless.

“We abuse the notation and refer as p both to the predicate
word and to its position in the sentence.
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parsing without any form of re-encoding (Kiper-
wasser and Goldberg, 2016). Nevertheless, in
our ablation studies we observed that forego-
ing predicate-specific encoding results in large
performance degradation (-6.2% F; on English).
Though this dramatic drop in performance seems
indeed surprising, the nature of the semantic
dependencies, especially for nominal predicates,
is different from general syntactic dependencies,
with many arguments being far away from the
predicates. Relations of these arguments to the
predicate may be hard to encode with this simpler
mechanism.

The two ways of encoding predicate informa-
tion, using predicate-specific encoding and incor-
porating the predicate state in the classifier, turn
out to be complementary.

2.4.3 Compositional modeling of roles

Instead of using a matrix W, we found it beneficial
to jointly embed the role r and predicate lemma [
using a non-linear transformation:

p(T’vZ’a Up, l) X exp(VVl,T(vi o Up))v (3)

Wiy = ReLU(U(u © vy)), )

where ReLU is the rectilinear activation func-
tion, U is a parameter matrix, whereas u; € R%
and v, € R% are randomly initialized embed-
dings of predicate lemmas and roles. In this way
each role prediction is predicate-specific, and at
the same time we expect to learn a good represen-
tation for roles associated to infrequent predicates.
This form of compositional embedding is similar
to the one used in FitzGerald et al. (2015).

3 Experiments

We applied our model to the English, Chinese,
Czech and Spanish CoNLL-2009 datasets with the
standard split into training, test and development
sets. For English, we used external embeddings of
Dyer et al. (2015) learned using the structured skip
n-gram approach of Ling et al. (2015), for Chi-
nese, we used external embeddings produced with
the neural language model of Bengio et al. (2003).
For Czech and Spanish, we used embeddings cre-
ated with the model proposed by Bojanowski et al.
(2016).

Similarly to Kiperwasser and Goldberg (2016)
we used word dropout (Iyyer et al., 2015); we re-
placed a word with the UNK token with probabil-

& where « is an hyper-parameter and

Y Frtwrra:



fr(w) is the frequency of the word w. The pre-
dicted POS tags were provided by the CoNLL-
2009 shared-task organizers. We used the same
predicate disambiguator as in Roth and Lapata
(2016) for English, the one used in Zhao et al.
(2009) for Czech and Spanish, and the one used
in Bjorkelund et al. (2009) for Chinese. The train-
ing objective was the categorical cross-entropy,
and we optimized it with Adam (Kingma and Ba,
2015). The hyperparameter tuning and all model
selection was performed on the English develop-
ment set; the chosen values are shown in Table 1.

Semantic role labeler

d,, (English word embeddings) 100
dy, (Chinese word embeddings) 128
dy (Czech word embeddings) 300
dy, (Spanish word embeddings) 300
dpos (POS embeddings) 16
d; (lemma embeddings) 100
dp, (LSTM hidden states) 512
d, (role representation) 128

d; (output lemma representation) 128

k (BiLSTM depth) 4
« (word dropout) 25
learning rate .01

Table 1: Hyperparameter values.

3.1 Results

We compared our full model (with POS tags and
the classifier defined in Section 2.4.3) against
state-of-the-art models for dependency-based SRL
on English, Chinese, Czech and Spanish. For
English, our model significantly outperformed all
the local counter-parts (i.e., models which do not
perform global inference) on the in-domain tests
(see Table 2) with 87.6% F; for our model vs.
86.7% for PathLSTM (Roth and Lapata, 2016).
When compared with global models, our model
performed on-par with the state-of-the-art global
version of PathLSTM.

Though we had not done any parameter selec-
tion for other languages (i.e., used the same pa-
rameters as for English), our model performed
competitively across all languages we considered.

For Chinese (Table 4), the proposed model out-
performed the best previous model (PathLSTM)
with an improvement of 1.8% Fj.

For Czech (Table 5), our model, even though
unlike previous work it does not use any kind
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System P R F

Lei et al. (2015) (local) - - 86.6
FitzGerald et al. (2015) (local) - - 86.7
Roth and Lapata (2016) (local) 88.1 85.3 86.7
Ours (local) 88.7 86.8 87.7
Bjorkelund et al. (2010) (global)  88.6 85.2 86.9
FitzGerald et al. (2015) (global) - - 873
Foland and Martin (2015) (global) - - 86.0
Swayamdipta et al. (2016) (global) - - 85.0
Roth and Lapata (2016) (global)  90.0 85.5 87.7
FitzGerald et al. (2015) (ensemble) - - 877
Roth and Lapata (2016) (ensemble) 90.3 85.7 87.9

Table 2: Results on the English in-domain test

set.
System P R F
Lei et al. (2015) (local) - - 756
FitzGerald et al. (2015) (local) - - 752
Roth and Lapata (2016) (local) 769 73.8 753
Ours (local) 794 76.2 77.7
Bjorkelund et al. (2010) (global) ~ 77.9 73.6 75.7
FitzGerald et al. (2015) (global) - - 752
Foland and Martin (2015) (global) - - 759
Roth and Lapata (2016) (global) ~ 78.6 73.8 76.1
FitzGerald et al. (2015) (ensemble) - - 755

Roth and Lapata (2016) (ensemble) 79.7 73.6 76.5

Table 3:
test set.

Results on the English out-of-domain

of morphological features explicitly,” was able to
outperform the system that achieved the best score
in the CoNLL-2009 shared task. The improve-
ment is 0.8% F;.

Finally, for Spanish (Table 6), our system,
though again achieved competitive results, did
not outperform the best CoNLL-2009 model and
yielded results very similar to those of PathLSTM.
One possible reason for this slightly weaker per-
formance is the relatively small size of the Span-
ish training set (less then half of the English one).
This suggests that our model, tuned on English, is
likely over-parametrized or under-regularized for
Spanish.

The results are especially strong on out-of-
domain data. As shown in Table 3, our approach
outperformed even ensemble models on the out-
of-domain English data (77.7% vs. 76.5% for

SHowever, character level information is encoded in the
external embeddings, see (Bojanowski et al., 2016).



System P R F

Bjorkelund et al. (2009) 82.4 75.1 78.6
Zhao et al. (2009) 80.4 752 77.7
Roth and Lapata (2016) 83.2 75.9 79.4
Ours 83.4 79.1 81.2

Table 4: Results on the Chinese test set.

In-domain P R F;
Bjorkelund et al. (2009) 88.1 82.9 85.4

Zhao et al. (2009) 88.2 82.4 852
Ours 86.6 85.4 86.0
Out-of-domain P R F

Bjorkelund et al. (2009) 86.1 81.9 83.9
Zhao et al. (2009) 88.6 82.5 854
Ours 88.0 86.5 87.2

Table 5: Results on the Czech test sets.

the ensemble of PathLSTMs). Similarly, it per-
formed very well on the out-of-domain Czech
dataset scoring 87.2% F, with a 1.8% F; improve-
ment over the best CONLL-2009 participant (see
Table 5, bottom). The favorable results on out-
of-domain test sets are not surprising, as syntac-
tic parsers, even the most accurate ones, usually
struggle on domains different from the ones they
have been trained on. This means that the syntactic
trees they produce are unreliable and compromise
the accuracy of SRL systems which rely on them.
The error propagation can in principle be miti-
gated by exploiting a distribution over parse trees
(e.g., encoded in a parse forest) rather than using
a single (’Viterbi’) parse. However, this is rarely
feasible in practice. Since our model does not
use predicted parse trees and instead relies on the
ability of LSTMs to capture long distance depen-
dencies and syntactic phenomena (Linzen et al.,
2016), it is less brittle in this setting.

3.2 Ablation studies and analysis

In order to show the contribution of the model-
ing choices we made, we performed an ablation
study on the English development set (Table 7). In
these experiments we made individual changes to
the model (one by one) and measured their influ-
ence on the model performance.

First, we observed that POS tag information is
highly beneficial for obtaining competitive perfor-
mance.
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System P R F

Bjorkelund et al. (2009) 78.9 74.3 76.5
Zhao et al. (2009) 83.1 78.0 80.5
Roth and Lapata (2016) 83.2 77.4 80.2
Ours 81.4 79.3 80.3

Table 6: Results on the Spanish test set.

System P R F;
Ours (local) 87.7 85.5 86.6
w/o POS tags 87.3 84.5 859

w/o predicate-specific encoding 80.9 79.8 80.4
with basic classifier 86.7 84.5 85.6

Table 7: Ablation study on the English develop-
ment set.

Not using predicate-specific encoding (Sec-
tion 2.3), or, in other words, doing one-pass en-
coding with no predicate flags, hurts the perfor-
mance even more badly (6% drop in F; on the de-
velopment set). This is somewhat surprising given
that one-pass LSTM encoders performed com-
petitively for syntactic dependencies (Kiperwasser
and Goldberg, 2016; Cross and Huang, 2016) and
suggests that major differences between the two
problems require the use of different modeling ap-
proaches.

We also observed a 1.0% drop in F; when we
follow Zhou and Xu (2015) and use the basic role
classifier (Section 2.4.1). These results show that
both predicate-specific encoding (Section 2.3) and
exploiting predicate information in the classifier
(Sections 2.4.2-2.4.3) are complementary.

We also studied how performance varies de-
pending on the distance between a predicate
and an argument (Figure 3). We compared
our approach to the global PathLSTM model:
PathLSTM is a natural reference point as it is
the most accurate previous model, exploits simi-
lar modeling and representation techniques (e.g.,
word embeddings, LSTMs) but, unlike our ap-
proach, relies on predicted syntax. Contrary to
our expectations, syntactically-driven and global
PathL.STM was weaker for longer distances. We
may speculate that syntactic paths for arguments
further away from the predicate become unreli-
able. Though LSTMs are likely to be affected by
a similar trend, their states may be able to capture
the uncertainty about the structure and thus let the
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Figure 3: Fj as function of word distance. Per-
centages indicate the amount of arguments at a
specific distance from a predicate.

Ours PathLSTM Freq. (%)

A0 905  90.4 15%
= Al 920 918 21%
£ A2 803 802 5%
> AM-* 779  77.0 16%

All 864  86.1 61%

Ours PathLSTM Freq. (%)

A0 818 815 10%
F Al 851 855 16%
‘EA2 785 798 7%
S AM-* 725 732 5%

All 811  81.8 39%

Table 8: F, results on the English test set broken
down into verbal and nominal predicates.

role classifier account for this uncertainty without
the need to explicitly sum over potential syntactic
analysis. In contrast, PathLSTM will have access
only to the single (top scoring) parse tree and, thus,
may be more brittle.

In Table 8, we break down F; results on the En-
glish test set into verbal and nominal predicates,
and again compare our results with PathLSTM.
First, as expected, we observe that both models
are less accurate in predicting semantic roles of
nominal predicates. For verbal predicates, our
model slightly outperformed PathLSTM in core
roles (A0-2) and performed much better (0.9% F;)
in predicting modifiers (AM-*). This is very sur-
prising as some information about modifiers is ac-
tually explicitly encoded in syntactic dependen-
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System P R F

PathLSTM 93.4 87.8 90.5
Ours 92.7 89.8 91.2

System P R F

£ PathLSTM 92.0 83.9 87.8
< Ours 89.4 86.6 88.0

p—

<
5
>

Table 9:  Argument recognition results broken
down into verbal and nominal predicates.

—— Ours
—=—=- PathLSTM (global)

0 1
19% 64% 10% 7%
Syntactic Distance

Figure 4: F} as function of syntactic distance
for nominal predicates. Percentages indicate the
amount of arguments at a specific distance from a
nominal predicate.

cies exploited by PathLSTM (e.g., the syntactic
dependency TMP is predictive of the modifier role
AM-TMP). Note though that the syntactic parser
was trained on the same sentences (both data orig-
inates from WSJ sections 02-22 of Penn Tree-
bank), and this can explain why these syntactic
dependencies (e.g., TMP) may convey little bene-
ficial information to the semantic role labeler. For
nominal predicates, PathLSTM was more accurate
than our model for all roles excluding AO. To
get a better idea for what is happening, we plot-
ted the F; scores as a function of the length of
the shortest path between nominal predicates and
their arguments. On one hand, Figure 4 shows that
PathLLSTM is more accurate on roles one syntac-
tic arc away from the nominal predicate. Note that
these are the majority (78%) of arguments. On the
other hand, our model appears to be more accurate
for arguments syntactically far from nominal pred-
icates. This again suggests that PathLSTM strug-
gles with harder cases.



System Example

Manual

Most of the stock [azjsellingp o2) pressure came [aojfromp ) Wall Street professionals.

PathLSTM Most of the stock [az)sellingp o) pressure came from Wall Street professionals.

Ours

Most of the stock [aojsellingp po) pressure came [aojfromp ) Wall Street professionals.

Table 10: Example of errors for the nominal predicate pressure: AQ is a presser (proto-agent) and A2 is

a goal .

Unlike verbal predicates, syntactic structure is
less predictive of semantic roles for nominals (e.g.,
many arguments are noun modifiers). Conse-
quently, we hypothesized that our model should be
weaker than PathLSTM in recognizing arguments
but should be on par with PathLSTM in assign-
ing their roles. To test this, we looked into argu-
ment identification performance (i.e., ignored la-
bels). Table 9 shows the accuracy of both models
in recognizing arguments of nominal and verbal
predicates. Our model appears more accurate in
recognizing arguments of both nominal (88.0% vs
87.8% F1) and verbal predicates (91.2% vs. 90.5%
F). This, when taken together with weaker la-
beled F; of our model for nominal predicates (Ta-
ble 8), implies that, contrary to our expectations,
it is the role labeling performance for nominals
which is problematic for our model. Examples of
this behavior can be seen in Table 10: all argu-
ments of the predicate pressure are correctly rec-
ognized by our model but the role for the argu-
ment selling is not predicted correctly. In contrast,
PathLSTM does not make any mistake with the
labeling of the argument selling but fails to recog-
nize from as an argument.

4 Related Work

Earlier approaches to SRL heavily relied on com-
plex sets of lexico-syntactic features (Gildea and
Jurafsky, 2002). Pradhan et al. (2005) used a
support vector machine classifier and relied on
two syntactic views (obtained with two different
parsers), for feature extraction. In addition to
hand-crafted features, Roth and Yih (2005) en-
riched CRFs with an integer linear programming
inference procedure in order to encode non-local
constraints in SRL; Toutanova et al. (2008) em-
ployed a global reranker for dealing with structural
constraint; while Surdeanu et al. (2007) studied
several combination strategies of local and global
features obtained from several independent SRL

models.

In the last years there has been a flurry of
work that employed neural network approaches
for SRL. FitzGerald et al. (2015) used hand-
crafted features within an MLP for calculating po-
tentials of a CRF model; Roth and Lapata (2016)
extended the features of a non-neural SRL model
with LSTM representations of syntactic paths be-
tween arguments and predicates; Lei et al. (2015)
relied on low-rank tensor factorization that cap-
tured interactions between arguments, predicate,
their syntactic path and semantic roles; while Col-
lobert et al. (2011) and Foland and Martin (2015)
used convolutional networks as sentence encoder
and a CRF as a role classifier, both approaches em-
ployed a rich set of features as input of the con-
volutional encoder. Finally, Swayamdipta et al.
(2016) jointly modeled syntactic and semantic
structures; they extended one of the earliest neu-
ral approaches for SRL (Henderson et al., 2008;
Titov et al., 2009; Gesmundo et al., 2009), with
more sophisticated modeling techniques, for ex-
ample, using LSTMs instead of vanilla RNNs.

Another related line of work (Naradowsky et al.,
2012; Gormley et al., 2014), instead of relying on
treebank syntax, integrated grammar induction as
a sub-component into their statistical model. In
this way, similarly to us, they do not use tree-
bank syntax but rather rely on the ability of their
joint model to induce syntax appropriate for SRL.
Their focus was primarily on the low resource set-
ting (where syntactic annotation is not available),
whereas in standard set-ups their performance was
not as strong. It would be interesting to see if ex-
plicit modeling of latent syntax is also beneficial
when used in conjunction with LSTMs.

5 Conclusions

We proposed a neural syntax-agnostic method for
dependency-based SRL. Our model is simple and
fast, and surpasses comparable approaches (no
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system combination, local inference) on the stan-
dard in-domain CoNLL-2009 benchmark for En-
glish, Chinese, Czech and Spanish. Moreover, it
outperforms all previous methods (including en-
sembles) in the arguably more realistic out-of-
domain setting in both English and Czech. In the
future, we will consider integration of syntactic in-
formation and joint inference.
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