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Abstract

This paper presents the Virginia Tech sys-
tem that participated in the CoNLL-2016
shared task on shallow discourse pars-
ing. We describe our end-to-end discourse
parser that builds on the methods shown to
be successful in previous work. The sys-
tem consists of several components, such
that each module performs a specific sub-
task, and the components are organized in
a pipeline fashion. We also present our
efforts to improve several components –
explicit sense classification and argument
boundary identification for explicit and
implicit arguments – and present evalua-
tion results. In the closed evaluation, our
system obtained an F1 score of 20.27% on
the blind test.

1 Introduction

The CoNLL-2016 shared task on shallow dis-
course parsing is an extension of last year’s com-
petition where participants built end-to-end dis-
course parsers. In this paper, we present the Vir-
ginia Tech system that participated in the CoNLL-
2016 shared task. Our system is based on the
methods and approaches introduced in earlier
work that focused on developing individual com-
ponents of an end-to-end shallow discourse pars-
ing system, as well as the overall architecture ideas
that were introduced and proved to be successful
in the competition last year.

Our discourse parser consists of multiple com-
ponents that are organized using a pipeline archi-
tecture. We also present novel features – for the
explicit sense classifier and argument extractors –
that show improvement over the respective com-
ponents of state-of-the-art systems submitted last
year. In the closed evaluation track, our system

achieved an F1 score of 20.27% on the official
blind test set.

The remainder of the paper is organized as fol-
lows. Section 2 describes the shared task. In Sec-
tion 3, we present our system architecture. In Sec-
tion 4, each component is described in detail. The
official evaluation results are presented in Sec-
tion 5. Section 6 concludes.

2 Task Description

The CoNLL-2016 shared task (Xue et al., 2016)
focuses on shallow discourse parsing and is a sec-
ond edition of the task. The task is to identify
discourse relations that are present in natural lan-
guage text. A discourse relation can be expressed
explicitly or implicitly. Explicit discourse rela-
tions are those that contain an overt discourse con-
nective in text, e.g. because, but, and. Implicit
discourse relations, in contrast, are not expressed
via an overt discourse connective. Each discourse
relation is also associated with two arguments –
Argument 1 (Arg1) and Argument 2 (Arg2) – that
can be realized as clauses, sentences, or phrases;
each relation is labeled with a sense. The over-
all task consists of identifying all components of a
discourse relation – explicit connective (for an ex-
plicit relation), arguments with exact boundaries,
as well as the sense of a relation. In addition
to explicit and implicit relations that are related
by an overt or a non-overt discourse connective,
two other relation types (AltLex and EntRel) are
marked and need to be identified. The arguments
of these two relation types always correspond to
entire sentences. Examples below illustrate an ex-
plicit relation (1), an implicit relation (2); AltLex
(3) and EntRel (4). The connective is underlined;
Arg1 is italicized, and Arg2 is in bold in each ex-
ample. The relation sense is shown in parentheses.

1. He believes in what he plays, and he plays su-
perbly. (Expansion.Conjunction) [wsj 0207]
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Figure 1: Overview of the system architecture.

2. In China, a great number of workers are en-
gaged in pulling out the male organs of rice
plants using tweezers, and one-third of rice
produced in that country is grown from hybrid
seeds. Implicit=on the other hand At Plant
Genetic Systems, researchers have isolated
a pollen-inhibiting gene that can be inserted
in a plant to confer male sterility. (Compari-
son.Contrast) [wsj 0209]

3. On a commercial scale, the sterilization of
the pollen-producing male part has only been
achieved in corn and sorghum feed grains.
That’s because the male part, the tassel,
and the female, the ear, are some dis-
tance apart on the corn plant. (Contin-
gency.Cause.Reason) [wsj 0209]

4. In a labor-intensive process, the seed compa-
nies cut off the tassels of each plant, mak-
ing it male sterile.They sow a row of male-
fertile plants nearby, which then pollinate the
male-sterile plants. EntRel The first hybrid
corn seeds produced using this mechanical
approach were introduced in the 1930s and
they yielded as much as 20% more corn than
naturally pollinated plants. [wsj 0209]

The training and the development data for the
shared task was adapted from the Penn Discourse
Treebank 2.0 (PDTB-2.0) (Prasad et al., 2008).
Our system was trained on the training partition
and tuned using the development data. Results in
the paper are reported for the development and the
test sets from PDTB, as well as for the blind test.

3 System Description

The system consists of multiple modules that are
applied in a pipeline fashion. This architecture is a
standard approach that was originally proposed in
Lin et al. (2014) and was followed with slight vari-
ations by systems in the last year competition (Xue
et al., 2015). Our design most closely resembles

the pipeline proposed by the top system last year
(Wang and Lan, 2015), in that argument extrac-
tion for explicit relations is performed separately
for Arg1 and Arg2, the non-explicit sense classi-
fier is run twice. The overall architecture of the
system is shown in Figure 1.

Given the input text, the connective classifier
identifies explicit discourse connectives. Next, the
position classifier is invoked that determines for
each explicit relation whether Arg1 is located in
the same sentence as Arg2 (SS) or in a previous
sentence (PS). The following three modules – SS
Arg1/Arg2 Extractor, PS Arg1 Extractor, and PS
Arg2 Extractor – extract text spans of the respec-
tive arguments. Finally, the explicit sense classi-
fier is applied.

Next, candidate sentence pairs for non-explicit
relations are identified. The non-explicit sense
classifier is applied to these sentence pairs. At
this stage, it is run with the goal of separating En-
tRel relations from implicit relations, as EntRel
relations have arguments corresponding to entire
sentences, while the latter also require argument
boundary identification. Two argument extractors
are then used to determine the argument bound-
aries boundaries of implicit relations. After the
argument boundaries of the implicit relations are
identified, the non-explicit sense classifier is run
again (the assumption is that with better boundary
identification sense prediction can be improved).

4 System Components

This section describes each component of the
pipeline and introduces novel features.

4.1 Identifying Explicit Connectives
The purpose of the explicit connective classifier is
to identify discourse connectives in text. This is a
binary classifier that, given a connective word or
phrase (e.g. but or if . . . then) determines whether
the connective functions as a discourse connec-
tive in the specific context. We use the training
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data to generate a list of 145 connective words and
phrases that may function as discourse connec-
tives. Only consecutive connectives that contain
up to three tokens are addressed. The features are
based on previous work (Pitler et al., 2009; Lin et
al., 2014; Wang and Lan, 2015). Our classifier is
a Maximum Entropy classifier implemented with
the NLTK toolkit (Bird, 2006).

4.2 Identifying Arg1 Position
For explicit relations, position of Arg2 is fixed to
be the sentence where the connective itself occurs.
Arg1, on the other hand, can be located in the
same sentence as the connective or in a previous
sentence. Given a connective and the sentence in
which it occurs, the goal of the position classifier
is to determine the location of Arg1. This is a bi-
nary classifier with two classes: SS and PS.

We employ the features proposed in Lin et al.
(2014) and additional features described in last
year’s top system (Wang and Lan, 2015). The
position classifier is trained using the Maximum
Entropy algorithm and achieves an F1 score of
99.186% on the development data.

In line with prior work (Wang and Lan, 2015),
we consider PS to be the sentence that immedi-
ately precedes the connective. About 10% of ex-
plicit discourse relations have Arg1 occurring in
a sentence that does not immediately precede the
connective. These are missed at this point.

4.3 Explicit Relations: Argument Extraction
SS Argument Extractor: SS argument extrac-
tor identifies spans of Arg1 and Arg2 of explicit
relations where Arg1 occurs in the same sen-
tence, as the connective and Arg2. We follow the
constituent-based approach proposed in Kong et
al. (2014), without the joint inference and enhance
it using features in Wang and Lan (2015). This
component is also trained with the Maximum En-
tropy algorithm.
PS Arg1 Extractor: We implement features de-
scribed in Wang and Lan (2015) and add novel
features. To identify candidate constituents, we
follow Kong et al. (2014), where constituents are
defined loosely based on punctuation occurring in
the sentence and clause boundaries as defined by
SBAR tags. We used the constituent split imple-
mented in Wang and Lan (2015). Based on earlier
work (Wang and Lan, 2015; Lin et al., 2014), we
implement the following features: surface form
of the verbs in the sentence (three features), last
word of the current constituent (curr), last word

of the previous constituent (prev), the first word of
curr, and the lowercased form of the connective.
The novel features that we add are shown in Ta-
ble 1. These features use POS information of to-
kens in the constituents, punctuation between the
constituents, and feature conjunctions.
PS Arg2 Extractor: Similar to PS Arg1 extrac-
tor, for this component we implement features de-
scribed in Wang and Lan (2015) and add novel
features. The novel features are the same as those
introduced for PS Arg1 but also include the fol-
lowing additional features:

• nextFirstW&puncBefore – the first word token
of next and the punctuation before next.

• prevLastW&puncAfter – the last word token of
prev and the punctuation after prev.

• POS of the connective string.

• The distance between the connective and the
position of curr in the sentence.

The argument extractors are trained with the
Averaged Perceptron algorithm, implemented
within Learning Based Java (LBJ) (Rizzolo and
Roth, 2010).

4.4 Explicit Sense Classifier

The goal of the explicit sense classifier is to de-
termine what sense (e.g. Comparison.Contrast,
Expansion.Conjunction, etc.) an explicit relation
conveys. A 3-level sense hierarchy has been de-
fined in PDTB, which has four top-level senses:
Comparison, Contingency, Expansion, and Tem-
poral. We use lexical and syntactic features based
on previous work and also introduce new features:

• C (Connective) string, C POS, prev + C, pro-
posed in Lin et al. (2014).

• C self-category, parent-category of C, left-
sibling-category of C, right-sibling-category of
C, 4 C-Syn interactions, and 6 Syn-Syn interac-
tions, introduced in Pitler et al. (2009).

• C parent-category linked context, previous
connective and its POS of “as”(the connective
and its POS of previous relation, if the con-
nective of current relation is “as”), previous
connective and its POS of “when”, adopted
from Wang and Lan (2015).

• Our new features: first token of C, second to-
ken of C (if exists), next word (next), C + next,
prev + next, prev + C + next.
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Feature name Description
(1) isFirst, isLast, sameAs is the curr first (last, same as) one in the sentence

(2)
currFirstWAndCurrSecondW,
currLastWAndNextFirstW,
prevLastW, nextFirstW

word tokens and conjunctions of curr, prev, and next

(3) puncBefore, puncAfter 1 if there is a punctuation mark before (after) curr

(4)
currFirstPOS, currLastPOS, cur-
rFirstPOSAndCurrSecondPOS,
prevLastPOS, nextFirstPOS

POS and their conjunctions in curr, prev, and next

(5) conjunctions (2)&(3)

Table 1: Novel features used in the PS Arg1 and PS Arg2 extractors. Curr, prev, and next refer to
the current, previous, and next constituent in the same sentence, respectively. W denotes word token,
and POS denotes the part-of-speech tag of a word. For example, currFirstWAndCurrSecondW refers to
the first two word tokens in curr, while prevLastPOS refers to the POS of the last token of prev, and
nextFirstPOS refers to the POS of the first token of next.

For this task, we trained two classifiers – us-
ing Maximum Entropy and Averaged Perceptron
algorithms – and chose Averaged Perceptron, as
its performance was found to be superior.

4.5 Identifying Non-Explicit Relations
The first step in identifying non-explicit relations
is the generation of sentence pairs that are can-
didate arguments for a non-explicit relation. Fol-
lowing Wang and Lan (2015), we extract sentence
pairs that satisfy the following three criteria:

• Sentences are adjacent
• Sentences occur within the same paragraph
• Neither sentence participates in an explicit

relation

For all pairs of sentences that meet those crite-
ria, we take the first sentence to be the location
of Arg1, and the second sentence – the location
of Arg2. This approach is quite noisy since about
24% of all consecutive sentence pairs in the train-
ing data do not participate in a discourse relation.
We leave this for future work.

4.6 Non-Explicit Sense Classifier
Following previous work on non-explicit sense
classification (Lin et al., 2009; Pitler et al., 2009;
Rutherford and Xue, 2014), we define four sets
of binary feature groups: Brown clustering pairs,
Brown clustering arguments, first-last words, and
production rules. Dependency rules and polarity
features were also extracted, but did not improve
the results and were removed from the final model.

A cutoff of 5 was used to prune all of the fea-
tures. Additionally, Mutual Information (MI) was

used to determine the most important features.
The MI calculation took the 50 most important
rules in each feature group, for each of the sixteen
level 1 and level 2 hierarchies and EntRel. This
provided a total of 4 groups of 800 rules.

Recall that the non-explicit sense classifier has
two passes. On the first iteration, its primary
goal is to separate EntRel from implicit relations.
On the second iteration, which is performed after
the argument boundaries of implicit relations are
identified, the sense classifier is run again on im-
plicit relations with the predicted argument bound-
aries. Note that the classifier in both cases is
trained in the same way, as a multiclass classi-
fier, even though the first time it is run with the
purpose of distinguishing between AltLex relations
and all other (implicit) relations. This component
is trained with the Naı̈ve Bayes algorithm.

4.7 Implicit Relations: Argument Extraction

The argument extractors for implicit relations are
implemented in a way similar to explicit relation
argument extraction. Candidate sentences are split
into constituents based on punctuation symbols
and clause boundaries using the SBAR tag. We use
features in Lin et al. (2009) and Wang and Lan
(2015) and augment these with novel features.
Implicit Arg1 Extractor: The Implicit Arg1 ex-
tractor employs a rich set of features. Most of
these are similar to those presented for PS Arg1
and PS Arg2 extractors in that we take into account
POS information, punctuation symbols that occur
on the boundaries of the constituents, as well as
dependency relations in the constituent itself.

One key distinction of how we define the depen-
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dency relation features is that, in contrast to prior
work that treats each dependency relation as a sep-
arate binary feature, we only consider the first two
relations (r1 and r2, respectively) in curr, prev, and
next, and take their conjunctions. Our intuition is
that the relations in the beginning of a constituent
are most important, while the other relations are
not that relevant. This approach to feature gener-
ation also avoids sparseness, which was found to
be a problem in earlier work. Overall, we generate
seven features that use dependency relations.
Implicit Arg2 Extractor: We use most of the fea-
tures in Lin et al. (2014) and Wang and Lan (2015)
to train the Arg2 extractor (for more details and ex-
planation about the features, we refer the reader to
the respective papers):

• Lowercased and lemmatized verbs in curr

• The first and last terms of curr

• The last term of prev

• The first term of next

• The last term of prev + the first term of curr

• The last term of curr + the first term of next

• The position of curr in the sentence: start,
middle, end, or whole sentence

• Product of the curr and next production rules

5 Evaluation and Results

Evaluation in the shared task is conducted using
a new web service called TIRA (Potthast et al.,
2014). We first evaluate the contribution of new
features in individual components in 5.1. In 5.2,
we report performance of all components of the
final system on the development set using gold.
Finally, in 5.3, we show official results on the de-
velopment, test, and blind test sets. Since the sys-
tem is implemented as a pipeline, each component
contributes errors. We refer to the results as no
error propagation (EP) when gold predictions are
used, or with EP when automatic predictions gen-
erated from previous steps are employed.

The components of our final system are trained
as follows: connective, position classifier, SS
Arg1/Arg2 extractor and implicit Arg2 extractor
(Maximum Entropy); explicit sense, PS Arg1,
PS Arg2 extractors, Implicit Arg1 extractor (Av-
eraged Perceptron); non-explicit sense (Naı̈ve
Bayes). The choice of the learning algorithms
was primarily motivated by prior work. Additional
experiments on argument extractors and explicit

Features P R F1
Base features 90.96 90.14 90.55
+ new features 91.88 91.05 91.46

Table 2: Explicit sense classifier. Base refers
to features described in Wang and Lan (2015).
The new set of features is presented in Section 3.
Evaluation using gold connectives and argument
boundaries (no EP).

Model P R F1
Baseline 64.79 64.79 64.79
Base features 66.67 66.67 66.67
All features 69.48 69.48 69.48

Table 3: PS Arg1 extractor, no EP. Baseline de-
notes taking the entire sentence as argument span.
Base features refer to features used in Wang and
Lan (2015).

sense classification indicated that Averaged Per-
ceptron should be preferred for these sub-tasks.
Due to time constraints, we did not compare all
three algorithms on all sub-tasks.

5.1 Improving Individual Components

We first evaluate the components for which we in-
troduce new features. We use gold annotations for
evaluating the individual components below.
Explicit Sense Classifier: Table 2 evaluates the
explicit sense classifier. We compare our base-
line model that implements the features proposed
in Wang and Lan (2015) with the model that em-
ploys additional features introduced in 4.4. Our
baseline model performs slightly better than the
one reported in Wang and Lan (2015): we ob-
tain 90.55 vs. 90.14, as reported in Wang and Lan
(2015). Adding the new features provides an addi-
tional improvement of almost 1 F1 point.
Extraction of Explicit Arguments: We now eval-
uate explicit argument extractors PS Arg1 and PS
Arg2, for which novel features have been intro-

Model P R F1
Baseline 64.32 64.32 64.32
Base features 72.30 72.30 72.30
All features 75.59 75.59 75.59

Table 4: PS Arg2 extractor, no EP. Baseline de-
notes taking the entire sentence, without the con-
nective words, as argument span. Base features
refer to features used in Wang and Lan (2015).
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Model P R F1
Baseline 58.62 58.62 58.62
All features 70.50 70.50 70.50

Table 5: Implicit Arg1 extractor, no EP. Base-
line denotes taking the entire sentence as argument
span.

Component P R F1
Explicit connectives 92.80 95.10 93.97
SS Arg1 68.46 71.33 69.86
SS Arg2 83.45 86.95 85.16
SS Arg1/Arg2 63.31 65.97 64.61
PS Arg1 69.48 69.48 69.48
PS Arg2 75.59 75.59 75.59
Explicit sense 91.88 91.05 91.46
Implicit Arg1 70.50 70.50 70.50
Implicit Arg2 70.11 70.11 70.11
Implicit sense 35.25 35.25 35.25

Table 6: Evaluation of each component on the
development set (no EP).

duced. We implement the features in Wang and
Lan (2015) and add our novel features shown in
Table 1. Results for PS Arg1 extractor are shown
in Table 3. The baseline refers to taking the en-
tire sentence as argument span. Overall, we obtain
a 5 point improvement over the baseline method.
Similarly, Table 4 shows results for PS Arg2 ex-
tractor. For PS Arg2 extractor, the classifiers are
able to obtain a larger improvement compared to
the baseline method. Adding new features im-
proves the results by three points. We note that
in Wang and Lan (2015) the numbers that corre-
spond to the entire sentence baselines are not the
same as those that we obtain, so we do not report
a direct comparison with their models. However,
our base models implement the features they use.

Implicit Arg1 Extractor: In Table 5, we eval-
uate the Implicit Arg1 extractor. It achieves an
improvement of 12 F1 points over the baseline
method that considers the entire sentence to be the
argument span.

5.2 Results on the Development Set (no EP)

Performance of each component on the develop-
ment set, as implemented in the submitted system,
without EP, is shown in Table 6.

Component P R F1
Explicit connectives 93.09 92.95 93.02
Arg1 extractor 62.60 54.03 58.00
Arg2 extractor 68.38 59.01 63.35
Arg1/Arg2 50.21 43.33 46.52
Overall performance 28.58 33.59 30.88

Table 7: Official results on the development set.

Component P R F1
Explicit connectives 89.92 91.51 90.71
Arg1 extractor 56.83 45.80 50.72
Arg2 extractor 63.54 51.21 56.71
Arg1/Arg2 42.24 34.04 37.70
Overall performance 20.80 25.84 23.05

Table 8: Official results on the test set.

5.3 Official Evaluation Results
The overall system results on the three data sets
– development, test, and blind test – are shown in
Tables 7, 8, and 9, respectively.

Component P R F1
Explicit connectives 88.13 90.41 89.25
Arg1 extractor 50.87 47.02 48.87
Arg2 extractor 65.51 60.55 62.93
Arg1/Arg2 39.45 36.47 37.90
Overall performance 19.51 21.09 20.27

Table 9: Official results on the blind test set.

6 Conclusion

This paper introduces an end-to-end discourse
parser for English developed for the CoNLL-2016
shared task. The entire system includes multi-
ple components, which are organized in a pipeline
fashion. We also present novel features and im-
prove performance of several system components
by incorporating these new features.
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