Event Embeddings for Semantic Script Modeling

Ashutosh Modi
Saarland University,
Germany
ashutosh@coli.uni-sb.de

Abstract

Semantic scripts is a conceptual represen-
tation which defines how events are orga-
nized into higher level activities. Practi-
cally all the previous approaches to induc-
ing script knowledge from text relied on
count-based techniques (e.g., generative
models) and have not attempted to compo-
sitionally model events. In this work, we
introduce a neural network model which
relies on distributed compositional repre-
sentations of events. The model captures
statistical dependencies between events in
a scenario, overcomes some of the short-
comings of previous approaches (e.g., by
more effectively dealing with data spar-
sity) and outperforms count-based coun-
terparts on the narrative cloze task.

1 Introduction

It is generally believed that the lack of knowl-
edge on how individual events are organized into
higher-level scenarios is one of the major obstacles
for natural language understanding. Texts often
do not provide a detailed specification of underly-
ing events as writers rely on the ability of humans
to read between the lines or, more specifically, on
their common sense knowledge of underlying sce-
narios. For example, going to a restaurant involves
entering the restaurant, getting seated, making an
order and so on. Consequently, when describing
a visit to a restaurant, a writer will not specify all
the events, as they are obvious to the reader. This
kind of knowledge is typically refereed to as se-
mantic scripts (Schank and Abelson, 1977), and,
in this work, will aim to capture some aspects of
this knowledge within our probabilistic model.
Early work on scripts focused on manual
construction of knowledge bases and rule-based

75

systems for inference using these knowledge
bases (Schank and Abelson, 1977). More re-
cent approaches relied on automatically learning
script knowledge either from crowd-sourced or
naturally-occurring texts (Chambers and Jurafsky,
2008; Regneri et al., 2010; Modi and Titov, 2014;
Frermann et al., 2014; Jans et al., 2012; Pichotta
and Mooney, 2014; Rudinger et al., 2015a).

Most of these methods represent events as ver-
bal predicates along with tuples of their immediate
arguments (i.e. syntactic dependents of the pred-
icate). These approaches model statistical depen-
dencies between events (or, more formally, men-
tions of events) in a document, often restricting
their model to capturing dependencies only be-
tween events sharing at least one entity (a common
protagonist). We generally follow this tradition in
our approach.

Much of this previous work has focused on
count-based techniques using, for example, either
the generative framework (Frermann et al., 2014)
or relying on information-theoretic measures such
as pointwise mutual information (PMI) (Chambers
and Jurafsky, 2008). Some of these techniques
treat predicate-argument structures as an atomic
whole (e.g., Pichotta and Mooney (2014)), in other
words their probability estimates are based on co-
occurrences of entire (predicate, arguments) tu-
ples. Clearly such methods fail to adequately take
into account compositional nature of expressions
used to refer to events and suffer from data spar-
sity.

In this work our goal is to overcome the short-
comings of the count-based methods described
above by representing events as real-valued vec-
tors (event embeddings), with the embeddings
computed in a compositional way relying on the
predicate and its arguments. These embeddings
capture semantic properties of events: events
which differ in surface forms of their constituents

Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL), pages 75-83,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics

but are semantically similar will get similar em-
beddings. The event embeddings are used and es-
timated within our probabilistic model of seman-
tic scripts. We evaluate our model on predicting
left-out events (the narrative cloze task) where it
outperforms existing count-based methods.

2 Background

The general idea in the previous count based meth-
ods is to collect events sequences for an entity
from the corpus (referred as a script). An entity is
typically a noun/pronoun describing a person, lo-
cation or temporal construct mentioned in a docu-
ment. A document is parsed using a statistical de-
pendency parser. Then, the document is processed
with a coreference resolution system, linking all
the mentions of an entity in the document. Infor-
mation from the parser and the coreference system
is used to collect all the events corresponding to an
entity. Different systems differ on how they rep-
resent an event. We later explain in detail these
event representation differences. The process de-
scribed above is repeated for all the documents in
the corpus to collect event chains for each of the
entities. The collected event sequences are used
to build different statistical script models. These
script models are typically evaluated using a nar-
rative cloze test as explained in section 3. In the
cloze test, an event is removed from an event chain
and the task is to predict the missing event.

As described above different script models dif-
fer in, how they represent an event. Chambers and
Jurafsky (2008), Jans et al. (2012) and Rudinger
et al. (2015a) represent an event as verb depen-
dency type (for example subject, object etc) pair.
Using dependency parser and coreference system,
they collect verbs governing entity mentions, this
chain of verbs along with corresponding depen-
dency, forms the event chain. Recently, Pichotta
and Mooney (2014) extended the concept of an
event to include multiple arguments. In their
model, an event is a tuple v(es, €,, €p), where, en-
tities e, €, and e;, are arguments with subject, ob-
ject and prepositional relation with the governing
verb v. A multi-argument event model encodes
a richer representation of events. They have em-
pirically show the advantages of having multiple
arguments in an event. In our work, we follow the
event definition of Pichotta and Mooney (2014)
and include multiple arguments in an event.

One of the disadvantage of the count based

76

models described above is poor event representa-
tions. Due to these impoverished representations,
these models fail to take into account composi-
tional nature of an event and suffer from sparsity
issues. These models treat verb-argument pair as
one unit and collect chains of verb-arguments pair
observed during training. Verb-arguments com-
binations never observed during training are as-
signed zero (or very small, if model is smoothed)
probability, even if these are semantically similar
to the ones in training. These models fail to ac-
count for semantic similarity between individual
components (verbs and arguments) of an event.
For example, events cook(John,spaghetti,dinner)
and prepared(Mary,pasta,dinner) are semantically
very similar but count based models would not
take this into account unless both events occur
in similar context. Due to sparsity issues, these
models can fail. This can be exemplified as fol-
lows. Suppose the following text is observed dur-
ing model training :

John cooked spaghetti for dinner. Later, John
ate dinner with his girlfriend. After dinner, John
took a dog for a walk. After 30 minutes, John came
home. After a while, John slept on the bed.

Event sequence (script) corresponding to the
above story is:
cook(john,spaghetti,dinner)—eat(john,dinner,girlfriend)—
take(john,dog,walk)—come(john,home)— sleep(john,bed)

Suppose during testing the following event
sequence is observed :
prepared(mary,pasta,dinner)—eat(mary,dinner,boyfriend)—

take(mary,cat,walk)— ? —sleep(mary, couch)

The model is required to guess the missing
event marked with ‘?’. A count-based model
would fail if it never encountered the same events
during training. It would fail to take into account
the semantic similarity between words prepared
and cook, dog and cat.

A related disadvantage of a count based script
models is that they suffer from the curse of dimen-
sionality (Bengio et al., 2001). Since these meth-
ods are based on co-occurrence counts of events,
the number of instances required to model the joint
probability distribution of events grows exponen-
tially. For example, if event vocabulary size is 10
and number of events occurring in a chain are 5,
then number of instances required to model the
joint distribution of events is 5'° — 1. This is so
because the number of instances required are di-

rectly proportional to number of free parameters
in the model.

To counter the shortcomings of count based
script models, we propose a script model based
on distributed representations (Bengio et al., 2001;
Turian et al., 2010; Collobert et al., 2011). Our
model tries to overcome the curse of dimension-
ality and sparsity by representing events as vec-
tor of real values. Both verbs and arguments are
represented as a vector of real values (a.k.a em-
beddings). Verb and argument embeddings are
composed to get event vector (event embedding).
The model automatically learns these embeddings
from the data itself and in the process encodes se-
mantic properties in the event representations.

3 Tasks Definition

One of the standard tasks used for evaluating
script models is Narrative Cloze (Chambers
and Jurafsky, 2008; Jans et al., 2012; Pichotta
and Mooney, 2014; Rudinger et al., 2015a).
Origins of narrative cloze lie in psychology
where it was used to assess child’s ability to fill
in missing word in a sentence (Taylor, 1953).
In our setting the cloze task is described as
follows : given a sequence of events with an
event removed from the sequence, guess the
missing event. For example, given the sequence
cook(john,spaghetti,dinner)—-eat(john,dinner,girlfriend)—
take(john,dog,walk)—?—sleep(john,bed) , predict the
event that should come at position marked by ?

Narrative cloze task evaluates models for exact
correctness of the prediction. It penalizes predic-
tions even if they are semantically plausible. It
would be more realistic to evaluate script models
on a task that gives credit for predicting seman-
tically plausible alternatives as well. We propose
adversarial narrative cloze task. In this task, the
model is shown two event sequences, one is the
correct event sequence and another is same se-
quence but with one event replaced by a random
event. The task is to guess which of the two, is the
correct event sequence. For example, given two
sequences below, the model should be able to dis-
tinguish the correct event sequence from the incor-
rect one. Interestingly, Manshadi et al. (2008) also
propose a similar task for evaluating event based
language model and they refer to it as event order-
ing task. As explained in section 5, we evaluate
our model on both the tasks: narrative cloze and
adversarial narrative cloze.

77

event embedding e

000000
[y

Ah

hidden layer h

Tal
(OO000) (0O0O0OO00O) (00000
dep embedding predicate embedding arg embedding
ap = Csubj P = Cembark as = Chatmobile

! T !
(subj) (embarked) (batmobile)

Figure 1: Computation of an event representa-
tion for a predicate with dependency and an ar-
gument (subj (batman) embarked batmobile), an
arbitrary number of arguments is supported by our
approach.

Correct:
cook(john,spaghetti,dinner)—-eat(john,dinner,girlfriend)
—take(john,dog,walk)—come(john,home)—sleep(john,bed)
Incorrect:
cook(john,spaghetti,dinner)—eat(john,dinner,girlfriend)
—take(john,dog,walk)—play(john,tennis)— sleep(john,bed)

4 Script Model

We propose a probabilistic model for learning a
sequence of events corresponding to a script. The
proposed model predicts the event incrementally.
It first predicts a verbal predicate, followed by pro-
tagonist position (since the protagonist argument
is already known) and followed by remaining ar-
guments. We believe this is more natural way of
predicting the event as opposed to predicting the
complete event, treating it as an atomic unit. The
information about the predicate influences the pos-
sible arguments that could come next due to selec-
tional preferences of the verb.

As done in previous work, (Chambers and
Jurafsky, 2008; Jans et al., 2012; Pichotta and
Mooney, 2014; Rudinger et al., 2015a) each event
in a sequence of events has a common entity (pro-
tagonist) as one of the argument. We represent an
event as a tuple v(d, a"), a(?)) where v is the ver-
bal predicate, d is the position (subj, obj or prep)
of the protagonist, (') and a(?) are the other de-
pendent arguments of the verb. We marked absent
argument as ‘NULL’.

ay a3

mooood\

[ooooom\ 000000

A
{We, W, Wy}

{m W, w,”} N W W, Wy}

. (000000

. (000000)
-

G
y . &) (W i, wimy
(CO000)---(00000) (©oo00) [OOOOOO] [OOOOOO] [OOOOOO]
€1 €k—1 €ht1 (pl ed) j (nmy) _ d ufers)
—_ —) a) @)
Figure 2: Model for learning event sequence. Here, we are given sequence of events

4.1 Event Representation

For event representation, one could use a sophis-
ticated compositional model based on recursive
neural networks (Socher et al., 2012) , we take a
simpler approach and choose a feedforward net-
work based compositional model as this is eas-
ier to train and more robust to choice of hyper-
parameters. Our event representations model is
inspired from the event ordering model of Modi
and Titov (2014). Their model uses distributed
word representations for representing verb and ar-
gument lemmas constituting the event. Distributed
word representations (also known as word embed-
dings) encode semantic and syntactic properties of
a word in a vector of real values (Bengio et al.,
2001; Turian et al., 2010; Collobert et al., 2011).
Word embeddings have been shown to be benefi-
cial in many NLP applications Turian et al. (2010);
Collobert et al. (2011).

The event model is a simple compositional
model representing an event. The model is shown
in Figure 1. Given an event, e = (v,d, a1, as),
(here v is the predicate lemma, d the dependency
and a1, as are corresponding argument lemmas),
each lemma (and dependency) is mapped to a vec-
tor using a lookup matrix C'. For example, a par-
ticular row number of C, corresponding to index
of a predicate in the vocabulary, gives the embed-
ding for the predicate. These constituent embed-
dings are projected into same space by multiplying
with respective projection matrices 2 (for predi-
cates) and 7' (for arguments). Hidden layer h is
obtained by applying a nonlinear activation func-
tion (tanh in our case). Final event representation

78

,€k—1, €k, €k+1. Event ey is removed from the sequence and it is predicted incrementally.

e is obtained by projecting the hidden layer using a
matrix A. Formally, event representation is given
by e = Axtanh(T'+C,, .+RxC,, .+T*C,, .)+b.
All the projection matrices (R, T, A) and lookup
matrix C' are learned during training. We also ex-
perimented with different matrices 1" for subject
and object positions, in order to take into account
the positional information. Empirically, this had
negligible effect on the final results.

4.2 Event Sequence Model

A good script model should capture the mean-
ing as well as the statistical dependencies between
events in an event sequence. More importantly,
the model should be able to learn these represen-
tations from unlabeled script sequences available
in abundance.

We propose a neural network based probabilis-
tic model for event sequences, for learning event
sequence as well as the event representations. The
model is shown in Figure 2. The model is trained
by predicting a missing event in an event se-
quence. During training, a window (size = 5 =
3*2 + 1) is moved over all events in each event se-
quence corresponding to each entity. The event in
window’s center is the event to be predicted and
events on the left and right of the window are the
context events. As explained earlier, the missing
event is predicted incrementally, beginning with
a predicate, followed by the protagonist position,
followed by other participants in the event.

In order to get an intuition how our model pre-
dicts an event, consider the following event se-
quence in a script, with a missing event : (e; —

€9 — €k_1 —>? — €k+1 — ...€En). We

would like to predict the missing event, say e.
The event model is used to obtain event repre-
sentations for each event in the context. These
event representations are then composed into con-
text representation by summing the representation
for each of the event in the context. We sum the
representations, as this formulation works well in
practice. The desired event e, is predicted incre-
mentally, beginning with the predicate p for ey.
The context embedding is used to predict the ver-
bal predicate via a hidden layer followed by a
multiclass logistic regression (softmax) classifica-
tion. Next, the protagonist position d (subject, ob-
ject etc) is predicted. For predicting d, the con-
text embedding and the predicate embedding (cor-
responding to the predicate predicted in previous
step) are linearly combined to be given as input
to a hidden layer. This is followed by regular
softmax prediction. Similarly, arguments are pre-
dicted. For each of the argument, predicate em-
bedding and the previous prediction (position or
argument) are linearly combined with the context
embedding. If at each prediction stage we used
gold predicate/position/argument embedding for
linearly combining with context embedding, our
model would not be robust to wrong predictions
during testing. Using the embeddings correspond-
ing to predicted unit would make the model robust
against noise and would help the model to partially
recover from wrong predictions during testing.

We train the model by minimizing the negative
likelihood function for the event prediction. For-
mally, we minimize the objective function —.J(O)
as shown in equation 1 and 2. As shown in equa-
tion 3, we factorize the event distribution into con-
stituents, making appropriate independence as-
sumptions as explained earlier. Each of the factor
is a multiclass logistic regression (softmax) func-
tion. Equation 4 illustrates the probability distri-
bution for the predicate given the context. Here,
Uy, 1s the word embedding for the predicate v;,
E' is the context embedding and b,, is the bias.
Probability distributions for arguments has simi-
lar form and are not shown here due to space con-
straints.

©={C,T,R,A,Cp,Cs,We, W,, W5, W,,
W, W™ W™ Wi wlim) Bl s the pa-
rameter vector to be learned. Parameters are
learned using mini-batch (size=1000) stochastic

gradient descent with adagrad (Duchi et al., 2011)
learning schedule. During training, the error in-

79

curred during predictions at each stage are back-
propagated to update the parameters for the model
including the embeddings for predicates and argu-
ments (matrix C').

We regularize the parameters of the model us-
ing L2 regularization (regularization parameter =
0.01). All the hidden layers have a dropout fac-
tor of 0.5. We trained a word2vec model on train
set documents to learn word embeddings. Pred-
icate and arguments vectors are initialized using
the learned word embeddings. Predicate and argu-
ment embeddings have dimensionality of 50 and
hidden layers have dimensionality of 50. All the
hyper-parameters were tuned using a dev set.

©" = argmine — J(O)
N

J(O) = Hp(ei | e1, ..., €i—1,€it1, €k, O)

=1
prob. of an event given context

ey

=

plei| e .0) (@)

1 context
events

p(ei ‘ €, @) = p(Ui,di7a§1)7a§2) ‘ €, 9)
=p(v; | €,0)* p(d; | vi,e,0) x

k3

verb prob.

p(az('l) |vi7diaeye) *

dependency prob.

first arg prob.

p(al? | vi,alV e, 0) 3)

second arg prob.
B exp(ul, (W, tanh(WeE)) + by,)

p(vi | e ©) = >, exp(ul (W tanh(WeE)) + by)

“

5 Experiments and Analysis

5.1 Data

There is no standard dataset for evaluating script
models. We experimented with movies summary
corpus1 (Bamman et al., 2014). The corpus is cre-
ated by extracting 42,306 movie summaries from
November, 2012 dump of Wikipedia®>. Each doc-
ument in the corpus concisely describes a movie
plot along with descriptions of various characters
involved in the plot. Average length of a docu-
ment in the corpus is 176 words. But more pop-
ular movies have much more elaborate descrip-
tions going up to length of 1,000 words. The cor-
pus has been processed by the Stanford Corenlp
pipeline (Manning et al., 2014). The texts in the
corpus were tokenized and annotated with POS

"http://www.cs.cmu.edu/~ark/personas/
*http://dumps.wikimedia.org/enwiki/

Data Set | No. of Scripts | No. of Unique
Events
Train Set 104,041 856,823
Dev Set 15,169 119,302
Test Set 29,943 231,539

Table 1: Data statistics

tags, dependencies, NER and coreference (coref)
information. Since, each of the document in the
corpus is about a movie, the scripts in this corpus
involve interesting interactions between different
entities (actors/objects). In order to study and ex-
plore the above mentioned rich script structure, we
selected this corpus for our experiments. Never-
theless, our model is domain agnostic, the experi-
ments performed on this corpus are generalizable
to any other corpus as well.

As mentioned in section 2, we extract scripts
corresponding to each of the entities using the de-
pendency annotations and coref information. The
corpus documents are divided randomly into three
parts: train (~70%), development (~10%) and test
(~20%). Data statistics about the data set are given
in Table 1. As a preprocessing step, low frequency
(< 100) predicates and arguments are mapped to
a special UNK (unknown) symbol. Similarly, ar-
guments consisting of only digits are mapped to a
NUMB (number) symbol. There are 703 unique
predicate lemmas and 46,644 unique argument
lemmas in the train set. Average length of a script
is 10 events. During testing, predicate and argu-
ments not observed during training are mapped to
the same UNK symbol.

5.2 Baselines Systems

We compare our model against two baseline
models: Unigram model and MultiProtagonist
model.

A unigram model is a simple but competitive
script model. This model predicts an event by
sampling from unigram event frequency distribu-
tion of the train set. The events are predicted inde-
pendent of the context.

MultiProtagonist (M-Pr) is the model proposed
by Pichotta and Mooney (2014) and described
as joint model in Pichotta and Mooney (2014).
The model calculates conditional probability of an
event given another context event (P(eq | e1) by
counting the co-occurrence counts of the events in
the corpus. The model predicts the missing event

80

given the context events by maximizing the sum of
log conditional probabilities of an event w.r.t each
of the context events i.e.
e* = argmax, 31— log P(e | e;)+Y i, ., log P(ei |)
For evaluation and comparison purposes, we
reimplemented both baselines on our dataset. In
the experiments described next, we refer our
model as NNSM (Neural Network based Script
Model).

5.3 Evaluation Metrics

We evaluated models for narrative cloze task
with three metrics Recall@50 and Accuracy and
Event Perplexity. Recall@50 is the standard met-
ric used for evaluating script models (Jans et al.,
2012; Pichotta and Mooney, 2014). The idea here
is to evaluate top 50 predictions of a script model
on a test script with a missing event. The metric is
calculated as fraction of the predictions containing
the gold held-out event. Its value lies in the range
0 (worst) and 1(best). Accuracy is a new metric
introduced by Pichotta and Mooney (2014). This
metric evaluates the event prediction, taking into
account prediction of each constituent. Specifi-
cally, it is defined as average of the accuracy of
the predicate, the dependency, the first argument
and the second argument predictions. This is a
more robust metric as it does not treat an event as
an atomic unit. This is in contrast to Recall@50
which penalizes semantically correct guesses and
awards only events which have exactly the same
surface form.

The baseline models and our model are prob-
abilistic by nature. Taking inspiration from lan-
guage modeling community, we propose a new
metric Event Perplexity. We define event perplex-
ity as 9=~ Lilogz pleile(context.)) The perplexity
measure, like the accuracy takes into account the
constituents of an event and is a good indicator of
the model predictions.

5.4 Narrative Cloze Evaluation

Narrative Cloze task was tested on 29,943 test set
scripts. The results are shown in Table 2 and 3.
We evaluated with two versions of the cloze task.
In the first version, events are the predicate ar-
gument tuple as defined before. Second version,
evaluates on predicates only i.e. an event is not
a tuple but only a predicate. Our model, NNSM
outperforms both the unigram and M-Pr models
on both the versions of the task with all the met-
rics. This further strengthens our hypothesis of

Model R@50 Accuracy Event
Perplexity

Unigram 0.32 34.26% 298.45

M-Pr 0.31 35.67% 276.54

NNSMgyp 0.37 44.36% 256.41

Table 2: Model evaluation on test set for narrative
cloze task against the baselines

Model R@50 Accuracy Event
Perplexity

Unigrampeq 0.27 23.79% 264.16

M-Prpeq 0.27 24.04% 260.34

NNSMyeq 0.49 33.40% 247.64

Table 3: Model evaluation on predicate only event
test set for narrative cloze task against the base-
lines

having distributed representation for events rather
than atomic representations. Unigram, although a
simple model, is competitive with the M-Pr model.

We performed an interesting experiment. We
evaluated another simplistic baseline model, most
frequent event. This baseline model predicts
by sampling from top-5 most frequent predi-
cate/argument in the full event narrative cloze task.
Surprisingly, the accuracy reported by this sim-
ple baseline is 45.04% which is slightly more than
our best performing NNSM model and much more
than the M-Pr baseline. This simple looking base-
line is hard to beat by both count-based methods
and NNSM. None of the previous methods have
been evaluated against this baseline. We propose
using this baseline for evaluation of script mod-
els. We think this outperformance is due to skewed
distribution of the predicate and arguments in the
corpus. As we found empirically, these distribu-
tions have a very long tail and this makes it hard
for the models to beat the most frequent baseline.

5.5 Adversarial Narrative Cloze Evaluation

Similar to narrative cloze, adversarial narrative
cloze task was evaluated on 29,943 test set scripts.
In each of the event sequence an event was re-
placed by a random event. The results for the ad-
versarial narrative cloze task are shown in Table 4
and 5. As evident from the results Unigram model
is as good as random. In this task as well, our
model outperforms the count based M-Pr model
by 2.3% and 2.9% for full and pred model respec-

81

Model Accuracy
Unigram 50.07%
M-Pr 53.04%
NNSM 55.32%

Table 4: Model evaluation on test set for adversar-
ial narrative cloze task against the baselines

Model Accuracy
Unigramp;eq 49.97%
M-Pryreq 55.09%
NNSMyeq 57.94%

Table 5: Model evaluation on predicate only test
set for adversarial narrative cloze task against the
baselines

tively.
6 Related Work

Work on scripts dates back to 70’s beginning
with introduction of Frames by Minsky (1974),
schemas by Rumelhart (1975) and scripts by
Schank and Abelson (1977). These early formula-
tions were not statistical in nature and used hand-
crafted complex rules for modeling relations be-
tween events. These formulations were limited to
few scenarios and did not generalize well.

Miikkulainen (1990) proposed DISCERN sys-
tem for learning script knowledge. Their neu-
ral network based model read event sequences
and stored them in episodic memory. The model
was capable of generating expanded paraphrases
of narratives and was able to answer simple ques-
tions. Similarly, Lee et al. (1992) proposed DY-
NASTY (DYNAmic STory understanding sYs-
tem). This system was also based on distributed
representations. It predicted missing events in
event sequences and performed script based infor-
mation retrieval. Their system was limited to only
few scenarios and did not generalize well.

As mentioned previously, in past few years a
number of count based systems for script learning
have been proposed for learning script knowledge
in unsupervised fashion. (Chambers and Juraf-
sky, 2008; Jans et al., 2012; Pichotta and Mooney,
2014; Rudinger et al., 2015a). Recently, Regneri
et al. (2010), Modi et al. (2016) and Wanzare et al.
(2016) used crowd-sourcing methods for acquir-
ing script knowledge. They in the process created
script databases which are used to develop auto-

matic script learning systems. Mclntyre and Lap-
ata (2009) developed a system for generating sto-
ries, they learned an object based script model on
fairy tales.

Orr et al. (2014) proposed hidden markov model
(HMM) approach to learn scripts. The model clus-
ters event descriptions into different event types
and then learns an HMM over the sequence of
event types. Again this model treats an event as
an atomic unit and the inference algorithm may
not generalize well, as the number of event types
increases. Similarly, Frermann et al. (2014) pro-
posed non-parametric Bayesian model for learning
script ordering. The inference procedure may not
scale well, as number of event chains increases.

Manshadi et al. (2008) proposed language
model based approach to learning event se-
quences, in their approach as well, events are
treated as atomic units (a predicate-argument tu-
ple). Recently, Rudinger et al. (2015b) have pro-
posed a neural network approach to learn scripts
by learning a bilinear distributed representation
based language model over events. Their model
is non-compositional in nature and they also con-
sider events as an atomic unit and directly learn
distributed representation for events. Granroth-
Wilding and Clark (2015) also propose a compo-
sitional neural network based model for events.
Our model is more general than their model. They
learn event representations by modeling pair wise
event scores for calculating compatibility between
two events. This score is then used to predict
the missing event by selecting an event that maxi-
mizes the average score between the event and the
context events.

7 Conclusion and Future Work

In this paper we proposed a probabilistic composi-
tional model for scripts. As shown in experiments,
our model outperforms the existing co-occurrence
count based methods. This further reinforces our
hypothesis of having more richer compositional
representations for events. Current tasks to eval-
uate script models are crude, in the sense that they
penalize semantically plausible events. In the fu-
ture, we propose to create a standard data set of
event sequence pairs (correct sequence Vs incor-
rect sequence). The replaced event in the incorrect
sequence should not be a random event but rather
a semantically close but incorrect event. Models
evaluated on this data set would give a better in-

82

dication of script learning capability of the model.
Another area which needs further investigation is
related to developing models which can learn long
tail event distributions. Current models do not cap-
ture this well and hence do not perform better than
most frequent event baseline on accuracy task.

In this paper, we proposed a very simple compo-
sitional feed forward neural network model. In the
future we plan to explore more sophisticated re-
current neural network (RNN) based models. Re-
cently, RNN based models have shown success in
variety of applications (Graves, 2012).

Acknowledgments

We would like to thank anonymous reviewers for
their helpful comments. This research was funded
by the German Research Foundation (DFG) as
part of SFB 1102 ’Information Density and Lin-
guistic Encoding’.

References

David Bamman, Brendan O’Connor, and Noah A
Smith. 2014. Learning latent personas of film
characters. In Proceedings of the Annual Meet-
ing of the Association for Computational Lin-
guistics (ACL). page 352.

Yoshua Bengio, Réjean Ducharme, and Pascal
Vincent. 2001. A neural probabilistic language
model. In Proceedings of NIPS.

Nathanael Chambers and Daniel Jurafsky. 2008.
Unsupervised learning of narrative event chains.
In Proceedings of ACL.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural
language processing (almost) from scratch.

Journal of Machine Learning Research
12:2493-2537.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learn-
ing and stochastic optimization. The Journal of
Machine Learning Research 12:2121-2159.

Lea Frermann, Ivan Titov, and Manfred Pinkal.
2014. A hierarchical bayesian model for un-
supervised induction of script knowledge. In
EACL, Gothenberg, Sweden.

Mark Granroth-Wilding and Stephen Clark. 2015.
What happens next? event prediction using a
compositional neural network model. In Pro-
ceedings of AAAI.

Alex Graves. 2012.
belling. Springer.

Supervised sequence la-

Bram Jans, Steven Bethard, Ivan Vuli¢, and
Marie Francine Moens. 2012. Skip n-grams and
ranking functions for predicting script events.
In Proceedings of the 13th Conference of the
European Chapter of the Association for Com-
putational Linguistics. Association for Com-
putational Linguistics, Stroudsburg, PA, USA,
EACL ’12, pages 336-344.

Geunbae Lee, Margot Flowers, and Michael G
Dyer. 1992. Learning distributed representa-
tions of conceptual knowledge and their ap-
plication to script-based story processing. In
Connectionist Natural Language Processing,
Springer, pages 215-247.

Christopher D Manning, Mihai Surdeanu, John
Bauer, Jenny Rose Finkel, Steven Bethard, and
David McClosky. 2014. The stanford corenlp
natural language processing toolkit. In ACL
(System Demonstrations). pages 55-60.

Mehdi Manshadi, Reid Swanson, and Andrew S
Gordon. 2008. Learning a probabilistic model
of event sequences from internet weblog stories.
In FLAIRS Conference. pages 159—-164.

Neil Mclntyre and Mirella Lapata. 2009. Learn-
ing to tell tales: A data-driven approach to story
generation. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Nat-
ural Language Processing of the AFNLP: Vol-
ume [-Volume 1. Association for Computational
Linguistics, pages 217-225.

Risto Miikkulainen. 1990. DISCERN: A Dis-
tributed Artificial Neural Network Model Of
Script Processing And Memory. Ph.D. thesis,
University of California.

Risto Miikkulainen. 1995. Script-based inference
and memory retrieval in subsymbolic story pro-
cessing. Applied Intelligence 5(2):137-163.

Marvin Minsky. 1974. A framework for represent-
ing knowledge .

Ashutosh Modi, Tatjana Anikina, and Manfred
Pinkal. 2016. Inscript: Narrative texts anno-
tated with script information. In Proceedings of
the 10th International Conference on Language
Resources and Evaluation (LREC 16), PortorozZ,
Slovenia..

83

Ashutosh Modi and Ivan Titov. 2014. Inducing
neural models of script knowledge. In CoNLL.
volume 14, pages 49-57.

John Walker Orr, Prasad Tadepalli, Janardhan Rao
Doppa, Xiaoli Fern, and Thomas G Dietterich.
2014. Learning scripts as hidden markov mod-
els. In AAAI. pages 1565-1571.

Karl Pichotta and Raymond J Mooney. 2014.
Statistical script learning with multi-argument
events. In EACL. volume 14, pages 220-229.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with
web experiments. In Proceedings of ACL.

Rachel Rudinger, Vera Demberg, Ashutosh Modi,
Benjamin Van Durme, and Manfred Pinkal.
2015a. Learning to predict script events from
domain-specific text. Lexical and Computa-

tional Semantics (* SEM 2015) page 205.

Rachel Rudinger, Pushpendre Rastogi, Francis
Ferraro, and Benjamin Van Durme. 2015b.
Script induction as language modeling. In Pro-
ceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing
(EMNLP-15).

David E Rumelhart. 1975. Notes on a schema
for stories. Representation and understanding:
Studies in cognitive science 211(236):45.

R. C Schank and R. P Abelson. 1977. Scripts,
Plans, Goals, and Understanding. Lawrence
Erlbaum Associates, Potomac, Maryland.

Richard Socher, Brody Huval, Christopher D.
Manning, and Andrew Y. Ng. 2012. Seman-
tic compositionality through recursive matrix-
vector spaces. In Proceedings of EMNLP.

Wilson L Taylor. 1953. Cloze procedure: a new
tool for measuring readability. Journalism and
Mass Communication Quarterly 30(4):415.

Joseph Turian, Lev Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and gen-

eral method for semi-supervised learning. In
Proceedings of ACL.
Lilian Wanzare, Alessandra Zarcone, Stefan

Thater, and Manfred Pinkal. 2016. Descript:
A crowdsourced database for the acquisition of
high-quality script knowledge. In Proceedings
of the 10th International Conference on Lan-
guage Resources and Evaluation (LREC 16),
PortoroZ, Slovenia..

