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Abstract

This paper describes our system for Shal-
low Discourse Parsing - the CoNLL 2015
Shared Task. We regard this as a classi-
fication task and build a cascaded system
based on Maximum Entropy to identify
the discourse connective, the spans of two
arguments and the sense of the discourse
connective. We trained the cascaded mod-
els with a variety of features such as lexi-
cal and syntactic features. We also report
the results achieved by our team.

1 Introduction

Discourse parsing is one of the most challenging
tasks in natural language processing (NLP) field.
It focuses on parsing the structure of a piece of
text into a set of discourse relations between in-
ter sentences. There is considerable interest in
discourse parsing, both as an end in itself and as
an intermediate step in a variety of NLP appli-
cations like question answering (Verberne et al.,
2007), text summarization (Louis et al., 2010),
sentiment analysis and opinion mining (Somasun-
daran, 2010).

There are many approaches working on identi-
fying the discourse relations and data-driven ap-
proaches are dominated. A number of pioneers
take the discourse relations identification as a clas-
sification task (Marcu and Echihabi, 2002; Pitler
et al., 2009; Duverle and Prendinger, 2009) by the
construction of features like lexical, syntactic and
constituent features. Some take the argument seg-
mentation task as a semantic role detection task
(Wellner and Pustejovsky, 2007) and a sequence
labeling task (Ghosh et al., 2011). However, some
of the previous research is based on different cor-
pus, lacking an common evaluation data set. This
has been addressed with the release of Penn Dis-
course Treebank (PDTB) 2.0 corpus (Prasad et al.,

2008) which provides detailed annotations about
the discourse relations and argument spans ad-
dresses this problem. Besides, much research
about discourse parsing working on the PDTB ap-
pears (Prasad et al., 2010; Lin et al., 2009) and
they put more attention on the “harder” part - la-
belling the arguments. Lin (Lin et al., 2014) de-
signed an end-to-end discourse parser with the
PDTB including the explicit, implicit sense and
the argument spans identification.

Shallow Discourse Parsing (Xue et al., 2015)
is the CoNLL shared task this year1 which takes
a piece of newswire text as input and returns all
the discourse relations in the form of a discourse
connective (explicit or implicit) taking two argu-
ments (which can be clauses, sentences, or multi-
sentence segments) in JSON format. A relation
will be parsed as correct if the explicit discourse
connective (e.g., “because”, “however”) once it
has, the spans of text that serve as the two argu-
ments for each discourse connective and the sense
(e.g., “Comparison”) are all correct. The F1 score
of the parser’s performance is the evaluation met-
ric.

In this paper, we describe our system details in
Section 2, the evaluation result and subsequent ex-
periments in Section 3. Finally, we draw some
conclusions in Section 4.

2 Our System

2.1 Resources

The resources used in our system are as follows:
Labeled training and development data: The
training and development (dev) data is derived
from the PDTB 2.0 Section 2-21 and Section 22
in JSON format . There are 32535 relations and
1436 relations annotated in the training data and
the dev data respectively. Table 1 shows the dis-
tribution of the four types in the data. There are

1http://www.cs.brandeis.edu/ clp/conll15st/
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Type Train data Dev data
Explicit 14,727 680
Implicit 13,163 522
EntRel 4,133 215
AltLex 524 19

all 32,535 1,436

Table 1: Distribution of the four discourse relation
types in the data sets.

Sense level 1 Sense level 2or3 Train Dev

Temporal
A.P 1,277 78
A.S 1,014 55
Synchrony 499 100

Contingency
Cause.Reason 3,344 147
Cause.Result 2,137 81
Condition 1,197 52

Comparison
Contrast 4,714 257
Concession 1,293 17

Expansion

Conjunction 7,817 310
Instantiation 1,403 58
Restatement 2,699 110
Alternative 210 6
A.C 241 6
Exception 15 0
EntRel 4,133 215

Table 2: Distribution of the 15 senses from the
different data sets. A.P, A.S, A.C are the abbre-
viations of “Asynchronous.Precedence”, “Asyn-
chronous.Succession”, “Alternative.Chosen alter-
native” respectively .

15 valid senses including the second-level “types”
as well as a selected number of third-level “sub-
types”. Table 2 shows the distribution of the 15
senses in the data.

Test data: There are two test data sets. One
is the blind set which contains 20,000 to 30,000
words of newswire text annotated following the
PDTB annotation guidelines. The other test set is
Section 23 of the PDTB which is used for compar-
ison with previous work.

The connectives list: A list contains 100 dis-
course connectives in the PDTB and three syntac-
tic categories form (Knott, 1996).

Opennlp-maxent: We used the open source
package Opennlp-maxent2 to construct the classi-
fication models.

2http://sourceforge.net/projects/maxent/files/

Figure 1: The structure of the system.

2.2 System overview and Features

Our system mainly follows the work of (Lin et
al., 2014), which consists of two parts: the ex-
plicit relation parser and the non-explicit relation
parser. The explicit relation parser is composed
of the connective classifier, the argument posi-
tion classifier, the argument extractor and the ex-
plicit sense classifier while the non-Explicit rela-
tion parser contains the AltLex classifier and the
implicit classifier. The structure of our system is
shown in Figure 1.

The set of features used in our system are listed
in Table 3. All the features fall into four classes:
lexical features, part-of-speech (POS) features,
syntactic features and positional features.

• Lexical features: The lexical features (F1-
F10) contain the connectives C, their contex-
tual words and word-pair features (i.e., F7
(wi,wj) where wi is a word from Arg1 and
wj is a word from Arg2) .

• POS features: F11-F17 belong to the POS
features .

• Syntactic features: The syntactic features
(F18-F26) include the connectives’ syntactic
category (F18): subordinating, coordinating,
or discourse adverbial, the path of syntactic
trees (F19, F20, F23), the number of siblings
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Feature Description
F1. C string
F2. the first word before C
F3. the second word before C
F4. F2 + C
F5. F3 + C
F6. C + the next word after C
F7. word-pair
F8. the first word of Arg2
F9. the second word of Arg2
F10. the third word of Arg2
F11. the POS of C
F12. the POS of F2
F13. F11 + F12
F14. the POS of the word after C
F15. F11 + F14
F16. the POS of F3
F17. F11 + F16
F18. the syntactic category of C
F19. the path of C’s parent to root
F20. the compressed path of F19
F21. the number of left siblings of C
F22. the number of right siblings of C
F23. the path of C’s parent to N

F24.
whether the C’s left sibling number
is greater than 1

F25. the constituent rules
F26. the dependency rules
F27. the relative position of N to C
F28. the position of C in the sentence

Table 3: The features used in our system. “C” de-
notes the connectives. N means a current node in
the constituent tree used in Section 2.3.2.

(F21, F22, F24), constituent rules (F25) and
dependency rules (F26).

• Position features: F27 is the relative posi-
tion in the syntactic tree structure (left, mid-
dle or right), while F28 is the connectives’
positions in the sentence (start, middle or
end).

2.3 Training
2.3.1 The Connective Classifier
All the 100 connectives that appeared in one dis-
course were extracted whether it functioned as a
connective or not. We converted all upper case let-
ters in connective to lower case ones.

The connective classifier decides whether a con-
nective is functioned as a discourse connective.

The features used were F4, F6, F11-F15, F19-F20
in Table 3.

2.3.2 The Argument Labeller
Once the connective is identified, the argument la-
beller identifies the Arg1 and Arg2 spans of this
instance. This is accomplished in two steps: (1)
Classifying the locations of Arg1 by the Argument
Position Classifier. (2) Labelling the spans of Arg1
and Arg2 by the Argument Extrator.

The Argument Position Classifier: Normally
Arg2 immediately follows the connective while
the position of Arg1 is uncertain. In this model,
we classified the Arg1’s locations into two classes:
Arg1 was located within the same sentence of the
connective (SS) or in the previous sentence of con-
nective (PS) (Prasad et al., 2008).

We implemented this as a binary classification
task. In this step, features F1-F5, F11, F13, F16-
F17, F28 in Table 3 were adopted to train the
model. After the position label of Arg1 was de-
termined, the result was passed to the argument
extractor.

The Argument Extractor: In this module, our
classifier labelled the previous sentence as Arg1
immediately for the PS case. The argument spans
for the SS case were extracted described as below.

• Classify each internal node N in the con-
stituent tree as Arg1-node, Arg2-node, or
None with features F1, F18, F21-F24, F27 in
Table 3.

• Label a node as Arg1-node once its Arg1-
node predicted probability is greater than 0.1
(which is tuned on the dev data set).

• Select only one Arg1-node and one Arg2-
node in one instance with the maximal prob-
ability of the respective label.

• Extract the Arg1 and Arg2 spans by tree sub-
traction. If the Arg1 node is the ancestor
of the Arg2 node, the span of Arg1 should
be subtracted from the Arg2 span, and vice
versa.

• Remove punctuation tokens and connectives
out of the exact argument spans.

2.3.3 The Explicit Sense Classifier
After recognizing the discourse connective and its
two arguments spans, the next step is to decide the
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Data Connective Span Sense Parser
Dev 0.9152 0.2668 0.1367 0.1814
Test 0.9064 0.2336 0.1191 0.1505

Blind 0.826 0.2195 0.1232 0.1262

Table 4: The results F1 score obtained by our team

sense of the connective. We trained this model us-
ing features F1, F4, F11 in Table 3. We picked the
output whose maximal sense probability is greater
than 0.45 which was experientially determined on
dev data set.

2.3.4 The AltLex classifier

We extracted all adjacent sentence pairs within
each paragraph and removed the pairs that were
identified by the explicit relation parser. Then
we trained the AltLex Classifier which decided
whether the pairs were AltLex pairs and classified
the senses with features F8-F10 in Table 3. The
pairs labelled as non-AltLex relations were passed
to the next implicit relation classifier.

2.3.5 The Implicit relation classifier

The implicit relation classifier classified the sense
of each pair into one of the 15 valid senses or
NoRel with F7, F25-F26 in Table 3. After predict-
ing, we kept the implicit discourse relations whose
maximal sense probability were greater than a
threshold (0.25 in our case) which was determined
on the dev data set .

3 Experiments and Results

There are two test data sets this year as described
in Section 2.1 and the organizers reported the re-
sults on the two test data sets and the dev data set.
The results of our system obtained are shown in
Table 4. We ranked the 10th on every data set.

After the deadline of evaluation, we made some
improvements in the module of implicit relation
classifier inspired by (Lin et al., 2009). We se-
lected the word-pair features (F7) while the ex-
periments showed a little degradation in F1 score
through selecting the constituent rules and the de-
pendency rules (F25, F26) on the dev data set.

We computed the mutual information between
each word-pair feature and the 15 valid senses and
then selected the top N as the features. Table 5
shows the improvement of different N.

N Non-Explicit Overall
50 0.0683 0.1876
100 0.0683 0.1876
200 0.0614 0.1870
300 0.0603 0.1870

Baseline 0.0435 0.1814

Table 5: The F1 score in non-explict and overall
parser when selecting features F7 using different
N on dev data set.

4 Conclusion

We divided the complex task of discourse pars-
ing into a set of classification subtasks and glued
them together. A variety of features, including lex-
ical, part-of-speech, syntactic and positional fea-
ture were employed to train the baseline with open
Maximum Entropy package, then the system was
improved by setting probability-output threshold.
We did not utilize any additional resources and
only used the annotations the official provided.
Our system ranked the 10th among seventeenth
teams on the two test data sets.
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