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Abstract

We present a compositional distributional
semantic model which is an implementa-
tion of the tensor-based framework of Co-
ecke et al. (2011). It is an extended skip-
gram model (Mikolov et al., 2013) which
we apply to adjective-noun combinations,
learning nouns as vectors and adjectives
as matrices. We also propose a novel
measure of adjective similarity, and show
that adjective matrix representations lead
to improved performance in adjective and
adjective-noun similarity tasks, as well as
in the detection of semantically anomalous
adjective-noun pairs.

1 Introduction

A number of approaches have emerged for com-
bining compositional and distributional seman-
tics. Some approaches assume that all words and
phrases are represented by vectors living in the
same semantic space, and use mathematical op-
erations such as vector addition and element-wise
multiplication to combine the constituent vectors
(Mitchell and Lapata, 2008). In these relatively
simple methods, the composition function does
not typically depend on its arguments or their syn-
tactic role in the sentence.

An alternative which makes more use of gram-
matical structure is the recursive neural network
approach of Socher et al. (2010). Constituent vec-
tors in a phrase are combined using a matrix and
non-linearity, with the resulting vector living in the
same vector space as the inputs. The matrices can
be parameterised by the syntactic type of the com-
bining words or phrases (Socher et al., 2013; Her-
mann and Blunsom, 2013). Socher et al. (2012)
extend this idea by representing the meanings of
words and phrases as both a vector and a matrix,
introducing a form of lexicalisation into the model.
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A further extension, which moves us closer to
formal semantics (Dowty et al., 1981), is to build
a semantic representation in step with the syntac-
tic derivation, and have the embeddings of words
be determined by their syntactic type. Coecke et
al. (2011) achieve this by treating relational words
such as verbs and adjectives as functions in the
semantic space. The functions are assumed to
be multilinear maps, and are therefore realised as
tensors, with composition being achieved through
tensor contraction.! While the framework speci-
fies the “shape” or semantic type of these tensors,
it makes no assumption about how the values of
these tensors should be interpreted (nor how they
can be learned).

A proposal for the case of adjective-noun com-
binations is given by Baroni and Zamparelli
(2010) (and also Guevara (2010)). Their model
represents adjectives as matrices over noun space,
trained via linear regression to approximate the
“holistic” adjective-noun vectors from the corpus.

In this paper we propose a new solution to the
problem of learning adjective meaning represen-
tations. The model is an implementation of the
tensor framework of Coecke et al. (2011), here
applied to adjective-noun combinations as a start-
ing point. Like Baroni and Zamparelli (2010), our
model also learn nouns as vectors and adjectives as
matrices, but uses a skip-gram approach with neg-
ative sampling (Mikolov et al., 2013), extended to
learn matrices.

We also propose a new way of quantifying ad-
jective similarity, based on the action of adjec-
tives on nouns (consistent with the view that ad-
jectives are functions). We use this new measure
instead of the naive cosine similarity function ap-
plied to matrices, and obtain competitive perfor-
mance compared to the baseline skip-gram vec-
tors (Mikolov et al., 2013) on an adjective simi-
larity task. We also perform competitively on the

"Baroni et al. (2014) have developed a similar approach.
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Figure 1: Learning the vector for apple in the con-
text pick one ripe apple from the tree. The vector
for apple is updated in order to increase the inner
product with green vectors and decrease it with red
ones, which are negatively sampled.

adjective-noun similarity dataset from Mitchell
and Lapata (2010). Finally, the tensor-based skip-
gram model also leads to improved performance in
the detection of semantically anomalous adjective-
noun phrases, compared to previous work.

2 A tensor-based skip-gram model

Our model treats adjectives as linear maps over the
vector space of noun meanings, encoded as matri-
ces. The algorithm works in two stages: the first
stage learns the noun vectors, as in a standard skip-
gram model, and the second stage learns the adjec-
tive matrices, given fixed noun vectors.

2.1 Training of nouns

To learn noun vectors, we use a skip-gram model
with negative sampling (Mikolov et al., 2013).
Each noun n in the vocabulary is assigned two d-
dimensional vectors: a content vector n, which
constitutes the embedding, and a context vector
n'. For every occurrence of a noun n in the corpus,
the embeddings are updated in order to maximise
the objective function

Z logo(n-c') + Z logo(—n-c),

c'eC c'eC

)

where C is a set of contexts for the current noun,
and C is a set of negative contexts. The contexts
are taken to be the vectors of words in a fixed win-
dow around the noun, while the negative contexts
are vectors for £ words sampled from a unigram
distribution raised to the power of 3/4 (Goldberg,
2014). In our experiments, we have set k = 5.
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Figure 2: Learning the matrix for unripe in the
context the green small unripe apple tasted very
sour. The matrix for unripe is updated to increase
the inner product of the vector for unripe apple
with green vectors and decrease it with red ones.

After each step, both content and context vec-
tors are updated via back-propagation. This pro-
cedure leads to noun embeddings (content vectors)
which have a high inner product with the vectors
of words in the context of the noun, and a low
inner product with vectors of negatively sampled
words. Fig. 1 shows this intuition.

2.2 Training of adjectives

Each adjective a in the vocabulary is assigned a
matrix A, initialised to the identity plus uniform
noise. First, all adjective-noun phrases (a,n) are
extracted from the corpus. For each (a, n) pair, the
corresponding adjective matrix A and noun vec-
tor n are multiplied to compute the adjective-noun
vector An. The matrix A is then updated to max-
imise the objective function

Z logo(An - c') + Z logo(—An-¢). (2)

c'eC ¢eC

The contexts C are taken to be the vectors of words
in a window around the adjective-noun phrase,
while the negative contexts C are again vectors of
randomly sampled words. Matrices are initialised
to the identity, while the context vectors C are the
results of Section 2.1.

Finally, the matrix A is updated via back-
propagation. Equation 2 means that the induced
matrices will have the following property: when
multiplying the matrix with a noun vector, the re-
sulting adjective-noun vector will have a high in-
ner product with words in the context window of
the adjective-noun phrase, and low inner product
for negatively sampled words. This is exemplified
in Figure 2.



2.3 Similarity measure

The similarity of two vectors n and m is gener-
ally measured using the cosine similarity function
(Turney and Pantel, 2010; Baroni et al., 2014),

n-m

vecsim(n,m) = ————.

In|l [m]

Based on tests using a development set, we found
that using cosine to measure the similarity of ad-
jective matrices leads to no correlation with gold-
standard similarity judgements. Cosine similarity,
while suitable for vectors, does not capture any in-
formation about the function of matrices as linear
maps. We postulate that a suitable measure of the
similarity of two adjectives should be related to
how similarly they transform nouns.

Consider two adjective matrices A and B. If
An and Bn are similar vectors for every noun
vector n, then we deem the adjectives to be simi-
lar. Therefore, one possible measure involves cal-
culating the cosine distance between the images of
all nouns under the two adjectives, and taking the
average or median of these distances. Rather than
working on every noun in the vocabulary, which
is expensive, we instead take the most frequent
nouns, cluster them, and use the cluster centroids
(obtained in our case using k-means). The result-
ing distance function is given by

matsim(A, B) = median vecsim(An,Bn),
neN
3)
where the median is taken over the set of cluster
centroids .2

3 Evaluation

The model is trained on a dump of the English
Wikipedia, automatically parsed with the C&C
parser (Clark and Curran, 2007). The corpus con-
tains around 200 million noun examples, and 30
million adjective-noun examples. For every con-
text word in the corpus, 5 negative words are sam-
pled from the unigram distribution. Subsampling
is used to decrease the number of frequent words
(Mikolov et al., 2013). We train 100-dimensional
noun vectors and 100 x 100-dimensional adjective
matrices.

3.1 Word Similarity

First we test word, rather than phrase, similarity
on the MEN test collection (Bruni et al., 2014),

2We chose the median instead of the average as it is more
resistant to outliers in the data.
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MODEL CORRELATION
SKIPGRAM-300 0.776
TBSG-100 0.769

Table 1: Spearman rank correlation on noun simi-
larity task.

MODEL CORRELATION
TBSG-100x100 0.645
SKIPGRAM-300 0.638

Table 2: Spearman rank correlation on adjective
similarity task.

which contains a set of POS-tagged word pairs to-
gether with gold-standard human similarity judge-
ments. We use the POS tags to select all noun-
noun and adjective-adjective pairs, leaving us with
a set of 643 noun-noun pairs and 96 adjective-
adjective pairs. For the noun-noun dataset, we are
testing the quality of the 100-dimensional noun
vectors from the first stage of the tensor-based
skip-gram model (TBSG), which is essentially
word2vec applied to just learning noun vectors.
These are compared to the 300-dimensional SKIP-
GRAM vectors available from the word2vec
page (which have been trained on a very large
news corpus).?

The adjective-adjective pairs are used to test
the 100 x 100 matrices obtained from our TBSG
model, again compared to the 300-dimensional
SKIPGRAM vectors. The Spearman correlations
between human judgements and the similarity of
vectors are reported in Tables 1 and 2. Note that
for adjectives we used the similarity measure de-
scribed in Section 2.3. Table 1 shows that the
noun vectors we use are of a high quality, perform-
ing comparably to the SKIPGRAM noun vectors
on the noun-noun similarity data. Table 2 shows
our TBSG adjective matrices, plus new similarity
measure, to also perform comparably to the SKIP-
GRAM adjective vectors on the adjective-adjective
similarity data.

3.2 Phrase Similarity

The TBSG model aims to learn matrices that act
in a compositional manner. Therefore, a more in-
teresting evaluation of its performance is to test
how well the matrices combine with noun vectors.

‘http://word2vec.googlecode.com/



MODEL CORRELATION
TBSG-100 0.50
SKIPGRAM-300 (add) 0.48
SKIPGRAM-300 (N only) 043
TBSG-100 (N only) 0.42
REG-600 0.37
humans 0.52

Table 3: Spearman rank correlation on adjective-
noun similarity task.

We use the Mitchell and Lapata (2010) adjective-
noun similarity dataset, which contains pairs of
adjective-noun phrases such as last number — vast
majority together with gold-standard human simi-
larity judgements. For the evaluation, we calculate
the Spearman correlation between non-averaged
human similarity judgements and the cosine simi-
larity of the vectors produced by various composi-
tional models.

The results in Table 3 show that TBSG has
the best correlation with human judgements of
the other models tested. It outperforms SKIP-
GRAM vectors with both addition and element-
wise multiplication as composition functions (the
latter not shown in that table, as it is worse than
addition). Also reported is the baseline perfor-
mance of SKIPGRAM and TBSG when using only
nouns to compute similarity (ignoring the adjec-
tives). It is interesting to note that TBSG also out-
performs the result of the matrix-vector linear re-
gression method (REG-600) of Baroni and Zam-
parelli (2010) as reported by Vecchi et al. (2015)
on the same dataset. Their method trains a matrix
for every adjective via linear regression to approx-
imate corpus-extracted “holistic” adjective-noun
vectors, and is therefore similar in spirit to TBSG.

3.3 Semantic Anomaly

Finally, we use the model to distinguish between
semantically acceptable and anomalous adjective-
noun phrases, using the data from Vecchi et al.
(2011). The data consists of two sets: a set of un-
observed acceptable phrases (e.g. ethical statute)
and one of deviant phrases (e.g. cultural acne).
Following Vecchi et al. (2011) we use two indices
of semantic anomaly. The first, denoted COSINE,
is the cosine between the adjective-noun vector
and the noun vector. This is based on the hypothe-
sis that deviant adjective-noun vectors will form a
wider angle with the noun vector. The second in-
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COSINE DENSITY

MODEL t sig. t sig.
TBSG-100 5.16  xxx 572 #*x
ADD-300  0.31 2.63  xx
MUL-300 -0.56 2.68  xx
REG-300  0.48 312 %%

Table 4: Correlation on test data for semantic
anomalies. Significance levels are marked s=x for
p < 0.001, = for p < 0.01.

dex, denoted DENSITY, is the average cosine dis-
tance between the adjective-noun vector and its 10
nearest noun neighbours. This measure is based
on the hypothesis that nonsensical adjective-nouns
should not have many neighbours in the space
of (meaningful) nouns.* These two measures are
computed for the acceptable and deviant sets, and
compared using a two-tailed Welch’s ¢-test.

Table 4 compares the performance of TBSG
with the results of count-based vectors using
addition (ADD) and element-wise multiplication
(MUL) reported by Vecchi et al. (2011), as well as
the matrix-vector linear regression method (REG-
300) of Baroni and Zamparelli (2010). TBSG ob-
tains the highest scores with both measures.

4 Conclusions

In this paper we have implemented the tensor-
based framework of Coecke et al. (2011) in the
form of a skip-gram model extended to learn
higher-order embeddings, in this case adjectives as
matrices. While adjectives and nouns are learned
separately in this study, an obvious extension is
to learn embeddings jointly. We find the tensor-
based skip-gram model particularly attractive for
the obvious ways in which it can be extended to
other parts-of-speech (Maillard et al., 2014). For
example, in this framework transitive verbs are
third-order tensors which yield a sentence vector
when contracted with subject and object vectors.
Assuming contextual representations of sentences,
these could be learned by the tensor-based skip-
gram as a straghtforward extension from second-
order (matrices) to third-order tensors (and poten-
tially beyond for words requiring even higher or-
der tensors).

“Vecchi et al. (2011) also use a third index of semantic
anomaly, based on the length of adjective-noun vectors. We
omit this measure as we deem it unsuitable for models not
based on context counts and elementwise vector operations.
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