
Machine Transliteration 

Kevin Knight* 
University of Southern California 

Jonathan Graehl* 
University of Southern California 

It is challenging to translate names and technical terms across languages with different alphabets 
and sound inventories. These items are commonly transliterated, i.e., replaced with approxi- 
mate phonetic equivalents. For example, "computer" in English comes out as "konpyuutaa" in 
Japanese. Translating such items from Japanese back to English is even more challenging, and 
of practical interest, as transliterated items make up the bulk of text phrases not found in bilin- 
gual dictionaries. We describe and evaluate a method for performing backwards transliterations 
by machine. This method uses a generative model, incorporating several distinct stages in the 
transliteration process. 

1. Introduction 

One of the most frequent problems translators must deal with is translating proper 
names and technical terms. For language pairs like Spanish/English, this presents no 
great challenge: a phrase like Antonio Gil usually gets translated as Antonio Gil. How- 
ever, the situation is more complicated for language pairs that employ very different 
alphabets and sound systems, such as Japanese/English and Arabic/English. Phonetic 
translation across these pairs is called transliteration. We will look at Japanese/English 
transliteration in this article. 

Japanese frequently imports vocabulary from other languages, primarily (but not 
exclusively) from English. It has a special phonetic alphabet called katakana, which is 
used primarily (but not exclusively) to write down foreign names and loanwords. The 
katakana symbols are shown in Figure 1, with their Japanese pronunciations. The two 
symbols shown in the lower right corner ( --,  7 ) are used to lengthen any Japanese 
vowel or consonant. 

To write a word like golfbag in katakana, some compromises must be made. For 
example, Japanese has no distinct L and R sounds: the two English sounds collapse 
onto the same Japanese sound. A similar compromise must be struck for English H 
and F. Also, Japanese generally uses an alternating consonant-vowel structure, making 
it impossible to pronounce LFB without intervening vowels. Katakana writing is a 
syllabary rather than an alphabet--there is one symbol for ga (~"), another for gi 

( 4 ~" ), another for gu ( Y" ), etc. So the way to write golfbag in katakana is ~',,t, 7 ~,< 7 Y', 
roughly pronounced go-ru-hu-ba-ggu. Here are a few more examples: 

* USC/Inforrnation Sciences Institute, Marina del Rey, CA 90292 and USC/Computer Science 
Department, Los Angeles, CA 90089 

t USC/Computer Science Department, Los Angeles, CA 90089 

(~) 1998 Association for Computational Linguistics 



Computational Linguistics Volume 24, Number 4 

T (a) ~ (ka) ~-(sa) ~ (ta) ~(na) ¢" (ha) ~(ma) ~ (ra) 
(i) ~ (k±) ~ (shi) Y-(ch±) ~ (ni) a (hi) ~ (mi) ~ (ri) 
(u) ~ (ku) X (su) 7 (tsu) % (nu) 7 (hu) ~ (mu) 2~ (ru) 

:n(e) ~(ke) ~ (se) ~ (te) ~ (he) ~-(he) fl (me) , ~ (re) 
M- (o) = (ko) Y (so) b (to) ] (no) • (ho) ~ (mo) ~ (ro) 
-~ (ba) 2"(ga) -< (pa) -Y(za) ~(da) T (a) -V (ya) ~ (ya) 

(bi) @'(gi) ff (pi) ~ (ji) Y(de) 4 (i) ~ (yo) ~ (yo) 
Y (bu) ~ ( g u )  ~ (pu) X'(zu) F (do) ~ (u) :~(yu)  ~ (yu) 
-<(be) ~(ge) ~ (pe) ~'(ze) ~ (n) ~ (e) ~ (v) 

(bo) ~(go) ~:(po) / (zo) ~'(chi) ~ (o) V (wa) -- 

Figure 1 
Katakana symbols and their Japanese pronunciations. 

Angela Johnson 

(a n jira jyo n son)  

New York Times 

(nyu uyo oku ta imuzu) 

ice cream 

(a isukurfimu) 

Omaha Beach 

(omahabiit chi) 

pro soccer 

(purosakkaa) 

Tonya Harding 

(toonya haadingu) 

ramp lamp casual fashion team leader 

~yT"  ? y ~  ~ J = T J ~ 7 ~ y  ~ - - ~ - - ~ ' - -  
(ranpu) (ranpu) (kaj yuaruhas shyon) (chifmuriidaa) 

Notice how the transliteration is more phonetic than orthographic; the letter h in 
Johnson does not produce any katakana. Also, a dot-separator (,) is used to sepa- 
rate words, but not consistently. And transliteration is clearly an information-losing 
operation: ranpu could come from either lamp or ramp, while aisukuri imu loses the 
distinction between ice cream and I scream. 

Transliteration is not trivial to automate, but we will be concerned with an even 
more challenging problem--going from katakana back to English, i.e., back-translit- 
eration. Human translators can often "sound out" a katakana phrase to guess an 
appropriate translation. Automating this process has great practical importance in 
Japanese/English machine translation. Katakana phrases are the largest source of text 
phrases that do not appear in bilingual dictionaries or training corpora (a.k.a. "not- 
found words"), but very little computational work has been done in this area. Yamron 
et al. (1994) briefly mention a pattern-matching approach, while Arbabi et al. (1994) 
discuss a hybrid neural-net/expert-system approach to (forward) transliteration. 

The information-losing aspect of transliteration makes it hard to invert. Here are 
some problem instances, taken from actual newspaper articles: 

? ? ? 

(aasudee) (robaato shyoon renaado) (masutaazutoonamento) 

600 



Knight and Graehl Machine Transliteration 

English translations appear later in this article. 
Here are a few observations about back-transliteration that give an idea of the 

difficulty of the task: 

• Back-transliteration is less forgiving than transliteration. There are many 
ways to write an English word like switch in katakana, all equally valid, 
but we do not have this flexibility in the reverse direction. For example, 
we cannot drop the t in switch, nor can we write arture when we mean 
archer. Forward-direction flexibility wreaks havoc with dictionary-based 
solutions, because no dictionary will contain all katakana variants. 

• Back-transliteration is harder than romanizat ion .  A romanization scheme 
simply sets down a method for writing a foreign script in roman letters. 

For example, to romanize T y "Y ~ ,  we look up each symbol in Figure 1 
and substitute characters. This substitution gives us (romanized) anj i ra ,  
but not (translated) angela. Romanization schemes are usually 
deterministic and invertible, although small ambiguities can arise. We 
discuss some wrinkles in Section 3.4. 

• Finally, not all katakana phrases can be "sounded out" bv back- 
transliteration. Some phrases are shorthand, e.g., V -  7 ° ~ (waapuro) 
should be translated as word processing. Others are onomatopoetic and 
difficult to translate. These cases must be solved by techniques other 
than those described here. 

The most desirable feature of an automatic back-transliterator is accuracy. If pos- 
sible, our techniques should also be: 

• portable to new language pairs like Arabic/English with minimal effort, 
possibly reusing resources. 

• robust against errors introduced by optical character recognition. 

• relevant to speech recognition situations in which the speaker has a 
heavy foreign accent. 

• able to take textual (topical/syntactic) context into account, or at least be 
able to return a ranked list of possible English translations. 

Like most problems in computational linguistics, this one requires full world 
knowledge for a 100% solution. Choosing between Katarina and Catalina (both good 

guesses for ~ ~ ~J ~- ) might even require detailed knowledge of geography and figure 
skating. At that level, human translators find the problem quite difficult as well, so 
we only aim to match or possibly exceed their performance. 

2. A Modular  Learning Approach 

Bilingual glossaries contain many entries mapping katakana phrases onto English 

phrases, e.g., (aircraft carrier ~ s T  ~ ~ ~ 1- ~ -~- ~J T ). It is possible to automatically 
analyze such pairs to gain enough knowledge to accurately map new katakana phrases 
that come along, and this learning approach travels well to other language pairs. A 
naive approach to finding direct correspondences between English letters and katakana 

601 



Computational Linguistics Volume 24, Number 4 

symbols, however, suffers from a number of problems. One can easily wind up with 
a system that proposes iskrym as a back-transliteration of aisukuriimu. Taking letter 
frequencies into account improves this to a more plausible-looking isclim. Moving to 
real words may give is crime: the i corresponds to ai, the s corresponds to su, etc. 
Unfortunately, the correct answer here is ice cream. 

After initial experiments along these lines, we stepped back and built a generative 
model of the transliteration process, which goes like this: 

. 

2. 

3. 

4. 

5. 

An English phrase is written. 

A translator pronounces it in English. 

The pronunciation is modified to fit the Japanese sound inventory. 

The sounds are converted into katakana. 

Katakana is written. 

This divides our problem into five subproblems. Fortunately, there are techniques 
for coordinating solutions to such subproblems, and for using generative models in the 
reverse direction. These techniques rely on probabilities and Bayes' theorem. Suppose 
we build an English phrase generator that produces word sequences according to 
some probability distribution P(w). And suppose we build an English pronouncer that 
takes a word sequence and assigns it a set of pronunciations, again probabilistically, 
according to some P(plw). Given a pronunciation p, we may want to search for the 
word sequence w that maximizes P(wlp ). Bayes' theorem lets us equivalently maximize 
P(w) • P(plw),  exactly the two distributions we have modeled. 

Extending this notion, we settled down to build five probability distributions: 

. 

2. 

3. 

4. 

5. 

P(w) - -  generates written English word sequences. 

P(elw) - -  pronounces English word sequences. 

P(jle) - -  converts English sounds into Japanese sounds. 

P(klj ) - -  converts Japanese sounds to katakana writing. 

P(o]k) - -  introduces misspellings caused by optical character recognition 
(OCR). 

Given a katakana string o observed by OCR, we want to find the English word 
sequence w that maximizes the sum, over all e, j, and k, of 

P(w). P(elw). P(jle). P(klj) • P(olk) 

Following Pereira and Riley (1997), we implement P(w) in a weighted finite-state ac- 
ceptor (WFSA) and we implement the other distributions in weighted finite-state trans- 
ducers (WFSTs). A WFSA is a state/transition diagram with weights and symbols on 
the transitions, making some output sequences more likely than others. A WFST is a 
WFSA with a pair of symbols on each transition, one input and one output. Inputs 
and outputs may include the empty symbol ¢. Also following Pereira and Riley (1997), 
we have implemented a general composition algorithm for constructing an integrated 
model P(xlz) from models P(xly ) and P(y[z), treating WFSAs as WFSTs with identical 
inputs and outputs. We use this to combine an observed katakana string with each 

602 



Knight and Graehl Machine Transliteration 

of the models in turn. The result is a large WFSA containing all possible English 
translations. 

We have implemented two algorithms for extracting the best translations. The first 
is Dijkstra's shortest-path graph algorithm (Dijkstra 1959). The second is a recently 
discovered k-shortest-paths algorithm (Eppstein 1994) that makes it possible for us to 
identify the top k translations in efficient O(m + n log n + kn) time, where the WFSA 
contains n states and m arcs. 

The approach is modular. We can test each engine independently and be confident 
that their results are combined correctly. We do no pruning, so the final WFSA contains 
every solution, however unlikely. The only approximation is the Viterbi one, which 
searches for the best path through a WFSA instead of the best sequence (i.e., the same 
sequence does not receive bonus points for appearing more than once). 

3. Probabilistic Models 

This section describes how we designed and built each of our five models. For consis- 
tency, we continue to print written English word sequences in italics (golf ball), English 
sound sequences in all capitals (G AA L F B A0 L), Japanese sound sequences in lower 
case (g o r u h u b o o r u )and  katakana sequences naturally (~, ,~7,~--) t , ) .  

3.1 Word Sequences 
The first model generates scored word sequences, the idea being that ice cream should 
score higher than ice creme, which should score higher than aice kreem. We adopted a 
simple unigram scoring method that multiplies the scores of the known words and 
phrases in a sequence. Our 262,000-entry frequency list draws its Words and phrases 
from the Wall Street Journal corpus, an on-line English name list, and an on-line 
gazetteer of place names, l A portion of the WFSA looks like this: 

los / 0.000087 

federal / 0 . 0 0 1 ~  angeleP D 

month / 0.000992 

An ideal word sequence model would look a bit different. It would prefer exactly 
those strings which are actually grist for Japanese transliterators. For example, people 
rarely transliterate auxiliary verbs, but surnames are often transliterated. We have 
approximated such a model by removing high-frequency words like has, an, are, am, 
were, their, and does, plus unlikely words corresponding to Japanese sound bites, like 
coup and oh. 

We also built a separate word sequence model containing only English first and 
last names. If we know (from context) that the transliterated phrase is a personal name, 
this model is more precise. 

3.2 Words to English Sounds 
The next WFST converts English word sequences into English sound sequences. We 
use the English phoneme inventory from the on-line CMU Pronunciation Dictio- 

1 Available from the ACL Data Collection Initiative. 

603 



Computational Linguistics Volume 24, Number 4 

nary, minus the stress marks. 2 This gives a total of 40 sounds, including 14 vowel 
sounds (e.g., AA, AE, UN), 25 consonant sounds (e.g., K, HH, R), plus one special symbol 
(PAUSE). The dictionary has pronunciations for 110,000 words, and we organized a 
tree-based WFST from it: 

E:E 

ff:z 

Note that we insert an optional PAUSE between word pronunciations. 
We originally thought to build a general letter-to-sound WFST (Divay and Vitale 

1997), on the theory that while wrong (overgeneralized) pronunciations might occa- 
sionally be generated, Japanese transliterators also mispronounce words. However, 
our letter-to-sound WFST did not match the performance of Japanese transliterators, 
and it turns out that mispronunciations are modeled adequately in the next stage of 
the cascade. 

3.3 English Sounds to Japanese Sounds 
Next, we map English sound sequences onto Japanese sound sequences. This is an in- 
herently information-losing process, as English R and L sounds collapse onto Japanese 
r, the 14 English vowel sounds collapse onto the 5 Japanese vowel sounds, etc. We 
face two immediate problems: 

1. What is the target Japanese sound inventory? 

2. How can we build a WFST to perform the sequence mapping? 

An obvious target inventory is the Japanese syllabary itself, written down in 
katakana (e.g., = ) or a roman equivalent (e.g., ni). With this approach, the English 

sound K corresponds to one of ~ (ka), ~ (ki), ~ (ku), ~r (ke), or = (ko), depend- 
ing on its context. Unfortunately, because katakana is a syllabary, we would be un- 
able to express an obvious and useful generalization, namely that English K usually 
corresponds to Japanese k, independent of context. Moreover, the correspondence of 
Japanese katakana writing to Japanese sound sequences is not perfectly one-to-one (see 
Section 3.4), so an independent sound inventory is well-motivated in any case. Our 
Japanese sound inventory includes 39 symbols: 5 vowel sounds, 33 consonant sounds 
(including doubled consonants like kk), and one special symbol (pause). An English 
sound sequence like (P R 0W PAUSE S AA K ER) might map onto a Japanese sound 
sequence like (p u r o pause s a kk a a). Note that long Japanese vowel sounds 

2 The CMU Pronunciation Dictionary can be found on-line at 
http ://www. speech, cs. cmu. edu/cgi-bin/cmudict. 

604 



Knight and Graehl Machine Transliteration 

are written with two symbols (a a) instead of just one (aa). This scheme is attractive 
because Japanese sequences are almost always longer than English sequences. 

Our WFST is learned automatically from 8,000 pairs of English/Japanese sound 
sequences, e.g., ((S AA K ER) ~ (s a kk a a) ). We were able to produce these pairs 
by manipulating a small English-katakana glossary. For each glossary entry, we con- 
verted English words into English sounds using the model described in the previous 
section, and we converted katakana words into Japanese sounds using the model we 
describe in the next section. We then applied the estimation-maximization (EM) al- 
gorithm (Baum 1972; Dempster, Laird, and Rubin 1977) to generate symbol-mapping 
probabilities, shown in Figure 2. Our EM training goes like this: 

1. For each English/Japanese sequence pair, compute all possible 
alignments between their elements. In our case, an alignment is a 
drawing that connects each English sound with one or more Japanese " 
sounds, such that all Japanese sounds are covered and no lines cross. For 
example, there are two ways to align the pair ((L 0W) <-> (r o o)): 

L OW L OW 
/ /k \ 

r o o r o o 

In this case, the alignment on the left is intuitively preferable. The 
algorithm learns such preferences. 

2. For each pair, assign an equal weight to each of its alignments, such that 
those weights sum to 1. In the case above, each alignment gets a weight 
of 0.5. 

3. For each of the 40 English sounds, count up instances of its different 
mappings, as observed in all alignments of all pairs. Each alignment 
contributes counts in proportion to its own weight. 

4. For each of the 40 English sounds, normalize the scores of the Japanese 
sequences it maps to, so that the scores sum to 1. These are the 
symbol-mapping probabilities shown in Figure 2. 

5. Recompute the alignment scores. Each alignment is scored with the 
product of the scores of the symbol mappings it contains. Figure 3 shows 
sample alignments found automatically through EM training. 

6. Normalize the alignment scores. Scores for each pair's alignments should 
sum to 1. 

7. Repeat 3--6 until the symbol-mapping probabilities converge. 

We then build a WFST directly from the symbol-mapping probabilities: 

PAUSE:pause 

f ~  I ~ . : o  / 0.018 AA:a / 0.024 

C¢ e :a ~/~ e:O 

v A A : a  / 0 .382  

Our WFST has 99 states and 283 arcs. 

605 



Computational Linguistics Volume 24, Number 4 

e j P(j]e) 
AA o 0 . 5 6 6  

a 0 . 3 8 2  

a a 0 . 0 2 4  
o o 0 . 0 1 8  

AE a 0.942 

y a 0.046 

AH a 0.486 

o 0.169 

e 0 . 1 3 4  

i 0 . 1 1 1  
u 0 . 0 7 6  

A0 o 0 . 6 7 1  
o o 0 . 2 5 7  
a 0 . 0 4 7  

AN a u 0 . 8 3 0  
a w "0 .095  
o o 0.027 

a o 0 . 0 2 0  
a 0 . 0 1 4  

AY a i 0 . 8 6 4  
i 0 . 0 7 3  
a 0 . 0 1 8  
a i y 0 . 0 1 8  

B '  b 0 . 8 0 2  
b u 0 . 1 8 5  

CH ch y 0.277 

ch 0.240 

tab i 0.199 

c h  i 0 . 1 5 9  
t c h  0 . 0 3 8  
c h  y u 0 . 0 2 1  
tch y 0 . 0 2 0  

DH 

EH 

ER 

d 0 . 5 3 5  
d o 0 . 3 2 9  
d d  o 0 . 0 5 3  
j 0.032 
z 0 . 6 7 0  
z u 0 . 1 2 5  
j 0.125 
a z 0 . 0 8 0  

0 . 9 0 1  
0 . 0 6 9  

a a 0 . 7 1 9  
a 0 . 0 8 1  
a r 0 . 0 6 3  
e r 0 . 0 4 2  
o r 0 . 0 2 9  

e j P ( j I e )  

EY e e 0 . 6 4 1  
a 0 . 1 2 2  
e 0 . 1 1 4  
e i 0 . 0 8 0  
a i 0 . 0 1 4  

F h 0 . 6 2 3  
h u 0 . 3 3 1  
h h  0 . 0 1 9  
a h u 0 . 0 1 0  

G g 0 . 5 9 8  
g u 0 , 3 0 4  
g g  u 0.059 

g g  0 . 0 1 0  

HH h 0 . 9 5 9  
w 0 . 0 1 4  

IH i 0 . 9 0 8  
e 0 . 0 7 1  

IY i i 0 . 5 7 3  
i 0 . 3 1 7  
e 0 . 0 7 4  
e e 0 . 0 1 6  

JH j 0 . 3 2 9  
j y 0 . 3 2 8  
j i 0 . 1 2 9  
jj i 0 . 0 6 6  
e j i 0 . 0 5 7  
z 0 . 0 3 2  
g 0 . 0 1 8  
j j  0 . 0 1 2  
e 0 . 0 1 2  

K k 0 . 5 2 8  
k u 0 . 2 3 8  
k k  u 0 . 1 5 0  
k k  0 . 0 4 3  
k i 0 . 0 1 5  
k y 0 . 0 1 2  

[L  r 0 . 6 2 1  
I r u 0 . 3 6 2  
M m 0 . 6 5 3  

i 

m u 0 . 2 0 7  
n 0 . 1 2 3  
n m 0 . 0 1 1  

N n 0 . 9 7 8  

NG n g u 0 . 7 4 3  
n 0 . 2 2 0  
n g 0 . 0 2 3  

e j P ( j l e )  

OW o 0 . 5 1 6  
o o 0 . 4 5 6  
o u 0 . 0 1 1  

0Y o i 0.828 

o o i 0.057 

i 0.029 

o i y 0.029 

o 0.027 

o o y 0.014 

o o 0.014 

P p 0 . 6 4 9  

p u 0 . 2 1 8  
p p  u 0 . 0 8 5  
p p  0 . 0 4 5  

PAUSE p a u s e  1 . 0 0 0  

R r 0 . 6 6 1  
a 0 . 1 7 0  
o 0 . 0 7 6  

r u 0 . 0 4 2  
u r 0 . 0 1 6  
a r 0 . 0 1 2  

S s u 0 . 5 3 9  
s 0 . 2 6 9  
s h  0 . 1 0 9  
u 0 . 0 2 8  
s s  0 . 0 1 4  

SH s h y  0 . 4 7 5  
s h  0 . 1 7 5  
s s h  y u 0 . 1 6 6  
s s h  y 0 . 0 8 8  
s h  i 0 . 0 2 9  

s s h  0 . 0 2 7  
s h y  u 0 . 0 1 5  

T t 0 . 4 6 3  
t o 0 . 3 0 5  
t t  o 0 . 1 0 3  
c h  0 . 0 4 3  
t t  0 . 0 2 1  
t s  0 . 0 2 0  
t s  u 0 . 0 1 1  

TH s u 0 . 4 1 8  
s 0 . 3 0 3  
s h  0 . 1 3 0  
c h  0 . 0 3 8  
t 0 . 0 2 9  

e j PUle) 
i UH u 0 . 7 9 4  

u u 0 . 0 9 8  
d d  0 . 0 3 4  

a 0 . 0 3 0  
o 0 . 0 2 6  

UW u u 0 . 5 5 0  
u 0 . 3 0 2  
y u u 0 . 1 0 9  
y u 0 . 0 2 1  

V b 0 . 8 1 0  
b u 0 . 1 5 0  
w 0 . 0 1 5  

W w 0 . 6 9 3  
u 0 . 1 9 4  
o 0 . 0 3 9  
i 0 . 0 2 7  
a 0 . 0 1 5  
e 0 . 0 1 2  

Y y 0 . 6 5 2  
i 0 . 2 2 0  
y u 0 . 0 5 0  
u 0 . 0 4 8  
b 0 . 0 1 6  

Z z 0 . 2 9 6  
z u 0 . 2 8 3  
j 0 . 1 0 7  
s u 0 . 1 0 3  
u 0 . 0 7 3  
a 0 . 0 3 6  
o 0 . 0 1 8  

s 0 . 0 1 5  
n 0 . 0 1 3  
i 0 . 0 1 1  
s h  0 . 0 1 1  

ZH j y 0 . 3 2 4  
s h  ± 0 . 2 7 0  
j i 0 . 1 7 3  
j 0 . 1 3 5  
a j y u 0 . 0 2 7  
s h y  0 . 0 2 7  
s 0 . 0 2 7  
a j ± 0 . 0 1 6  

Figure 2 
E n g l i s h  s o u n d s  ( i n  c a p i t a l s )  w i t h  p r o b a b i l i s t i c  m a p p i n g s  t o  J a p a n e s e  s o u n d  s e q u e n c e s  ( i n  

l o w e r  c a s e ) ,  a s  l e a r n e d  b y  e s t i m a t i o n - m a x i m i z a t i o n .  O n l y  m a p p i n g s  w i t h  c o n d i t i o n a l  

p r o b a b i l i t i e s  g r e a t e r  t h a n  1 %  a r e  s h o w n ,  s o  t h e  f i g u r e s  m a y  n o t  s u m  t o  1. 

We have also built  models  that allow individual  English sounds to be "swal lowed"  
(i.e., p roduce  zero Japanese sounds). However ,  these models  are expensive to compute  
(many more  alignments) and lead to a vast number  of hypotheses  dur ing  WFST com- 
position. Furthermore,  in disallowing "swallowing," we were able to automatically 
remove hundreds  of potential ly harmful  pairs f rom our  training set, e.g., ((B AA R 
B ER SH AA P) ~ (b a a b a a ) ) .  Because no al ignments are possible, such pairs 
are skipped by  the learning algorithm; cases like these must  be solved by  dict ionary 

606 



Knight and Graehl Machine Transliteration 

b&cuit 

English sound sequence: 

Japanese sound sequence: 

~vider 

English sound sequence: 

Japanese 

f i l~r  

English 

Japanese 

Figure 3 

B IH S K AH T 

B I S U K E TT O 

D IH V AY D 

I / / \ 
sound sequence : D I B A I D 

ER 

sound sequence : F IH L T ER 

sound sequence : H I R U T A A 

p-.... 
A A 

Alignments between English and Japanese sound sequences, as determined by EM training. 
Best alignments are shown for the English words biscuit, divider, and filter. 

lookup anyway. Only two pairs failed to align when we wished they had--both in- 
volved turning English Y UW into Japanese u, as in ((Y uw K AH L EY L IY) ~ (u k 
ur e r e)). 

Note also that our model translates each English sound without regard to context. 

We have also built context-based models, using decision trees recoded as WFSTs. For 

example, at the end of a word, English T is likely to come out as (t o) rather than (t). 

However, context-based models proved unnecessary for back-transliteration. They are 

more useful for English-to-Japanese forward transliteration. 

3.4 Japanese Sounds to Katakana 
To map Japanese sound sequences like (m o o t a a) onto katakana sequences like 

(~ - -  ~ -  ), we manually constructed two WFSTs. Composed together, they yield an 
integrated WFST with 53 states and 303 arcs, producing a katakana inventory contain- 
ing 81 symbols, including the dot-separator (-). The first WFST simply merges long 
Japanese vowel sounds into new symbols aa, i i ,  uu, ee, and oo. The second WFST 
maps Japanese sounds onto katakana symbols. The basic idea is to consume a whole 
syllable worth of sounds before producing any katakana. For example: 

o:  

pause: • / 0. 7 

607 



Computational Linguistics Volume 24, Number 4 

This fragment shows one kind of spelling variation in Japanese: long vowel sounds 

(oo) are usually written with a long vowel mark ( ~ - )  but  are sometimes written 

with repeated katakana ( ~ -  ). We combined corpus analysis with guidelines from a 
Japanese textbook (Jorden and Chaplin 1976) to turn up many  spelling variations and 
unusual  katakana symbols: 

• the sound sequence (j i) is usually written "Y, but  occasionally Y .  

• (g u a) is usually P 'T , but  occasionally p" 7 .  

• (w o o) is variously ~ ~-- - ,  9 ~ - - ,  or with a special old-style katakana 
for wo. 

• (y e) m a y b e  an, 4 a n , o r  4 

• (w ±) is either 9 4 or ~ 4 

• (n y e) is a rare sound sequence, but  is writ ten = ~ when  it occurs. 

• (t y u) is rarer than (ch y u), but  is writ ten ~ =- when  it occurs. 

and so on. 
Spelling variation is clearest in cases where an English word like switch shows 

up transliterated variously ( :z 4 7 ~-, :z 4 ~, ~ ,  :z ~ 4 ~ ~ ) in different dictionaries. 
Treating these variations as an equivalence class enables us to learn general sound 
mappings even if our bilingual glossary adheres to a single narrow spelling conven- 
tion. We do not, however, generate all katakana sequences with this model; for exam- 
ple, we do not output  strings that begin with a subscripted vowel katakana. So this 
model  also serves to •ter out some ill-formed katakana sequences, possibly proposed 
by optical character recognition. 

3.5 Katakana to OCR 
Perhaps uncharitably, we can view optical character recognition (OCR) as a device that 
garbles perfectly good katakana sequences. Typical confusions made by our commer- 

cial OCR system include '~ for ~-', ~ for ~ ,  T for 7 ,  and 7 for 7". To generate 
pre-OCR text, we collected 19,500 characters wor th  of katakana words, stored them in 
a •e, and printed them out. To generate post-OCR text, we OCR'd the printouts. We 
then ran the EM algorithm to determine symbol-mapping ("garbling") probabilities. 
Here is part of that table: 

k o P(olk) 
~" 0.492 
t:" 0.434 

0.042 
7 0.011 

~" ~ 1.000 
z* ~,- 0.964 

/ • 0.036 

608 



Knight and Graehl Machine Transliteration 

This model outputs a superset of the 81 katakana symbols, including spurious 
quote marks, alphabetic symbols, and the numeral 7. 3 

4. A S a m p l e  Back- trans l i t erat ion  

We can now use the models to do a sample back-transliteration. We start with a 
katakana phrase as observed by OCR. We then serially compose it with the models, in 
reverse order. Each intermediate stage is a WFSA that encodes many possibilities. The 
final stage contains all back-transliterations suggested by the models, and we finally 
extract the best one. 

We start with the masutaazutoonamento problem from Section 1. Our OCR ob- 
serves: 

vx~-x'F-T} w F 

This string has two recognition errors: ~ (ku) for 9 (ta), and ~ (chi) for 9- (na). 
We turn the string into a chained 12-state/11-arc WFSA and compose it with the P(klo ) 
model. This yields a fatter 12-state/15-arc WFSA, which accepts the correct spelling 
at a lower probability. Next comes the P(jlk) model, which produces a 28-state/31-arc 
WFSA whose highest-scoring sequence is: 

m a s u t a a z u t  oochiment o 

Next comes P(elj ), yielding a 62-state/241-arc WFSA whose best sequence is: 

M AE S T AE AE DH UH T A0 A0 CH IH M EH N T A0 

Next to last comes P(wle ), which results in a 2982-state/4601-arc WFSA whose best 
sequence (out of roughly three hundred million) is: 

masters tone am ent awe 

This English string is closest phonetically to the Japanese, but we are willing to trade 
phonetic proximity for more sensical English; we rescore this WFSA by composing it 
with P(w) and extract the best translation: 

masters tournament 

Other Section I examples (aasudee and r o b a a t o  s h y o o n  renaado)  are translated cor- 
rectly as earth day and robert sean leonard. 

We may also be interested in the k best translations. In fact, after any composition, 
we can inspect several high-scoring sequences using the algorithm of Eppstein (1994). 
Given the following katakana input phrase: 

3 A more thorough OCR model would train on a wide variety of fonts and photocopy distortions. In 
practice, such degradations can easily overwhelm even the better OCR systems. 

609 



Computational Linguistics Volume 24, Number 4 

(pronounced anj i r a h o o r a s u t e r u n a i t o ) ,  the top five English sound sequences are 

AE N JH IH K AE HH A0 A0 K AE S T EH g UH N AE IH T A0 

AE N JH IH R AE HH A0 A0 K AE S T EH K UH N AY T A0 

AE N JH IH L AE HH A0 A0 K AE S T EH R UH N AE IH T A0 

AE N JH IH R AE HH A0 A0 R AE S T EH L UH N AE IH T A0 

AE N JH IH i~ AE HH A0 A0 L AE S T EH R UH N AE IH T A0 

Notice that different K and L combinations are visible in this list. The top five final 
translations are: 

angela forrestal knight 
angela forrester knight 
angela forest el knight 
angela forester knight 
angela forest air knight 

P(w) * P(klw) 
3.6e-20 
8.5e-21 
2.7e-21 
2.5e-21 
1.7e-21 

P (k l e )  
0.00753 
0.00742 
0.00735 
0.00735 
0.00735 

Inspecting the k-best list is useful for diagnosing problems with the models.  If the 
right answer appears  low in the list, then some numbers  are probably off somewhere.  
If the right answer does not  appear  at all, then one of the models  may  be missing a 
word  or suffer f rom some kind of brittleness. A k-best list can also be used as input  
to a later context-based disambiguator,  or as an aid to a h u m a n  translator. 

5. Experiments 

We have per fo rmed  two large-scale experiments,  one using a full-language P(w) model,  
and one using a personal  name language model.  

In the first experiment,  we extracted 1,449 unique katakana phrases f rom a corpus 
of 100 short news articles. Of these, 222 were missing from an on-line 100,000-entry 
bilingual dictionary. We back-transliterated these 222 phrases. Many of the translations 
are perfect: technical program, sex scandal, omaha beach, new york times, ramon diaz. Others  
are close: tanya harding, nickel simpson, danger washington, world cap. Some miss the 
mark: nancy care again, plus occur, patriot miss real. 4 While it is difficult to judge overall  
accuracy- - some of the phrases are onomatopoet ic ,  and others are simply too hard  even 
for good h u m a n  translators-- i t  is easier to identify system weaknesses,  and most  of 
these lie in the P(w) model.  For example,  nancy kerrigan should be preferred over  nancy 
care again. 

In a second experiment,  we took (non-OCR) katakana versions of the names of 100 

U.S. politicians, e.g.: -Y~ y • 7 " ~ -  ( jyon .buroo) ,  T ~ I , , ~ y x  • :9"-v.;, }- (aruhonsu.  

damatto),  and -v 4 ~ • Y V 4 Y (maiku. dewain). We back-transliterated these by  ma- 
chine and asked four h u m a n  subjects to do the same. These subjects were native 
English speakers and news-aware;  we gave them brief instructions. The results were 
as in Table 1. 

There is room for improvement  on both  sides. Being English speakers, the h u m a n  
subjects were good at English name spelling and U.S. politics, but  not  at Japanese 
phonetics. A native Japanese speaker might  be expert  at the latter but  not  the former. 
People who  are expert  in all of these areas, however,  are rare. 

4 Correct translations are tonya harding, nicole simpson, denzel washington, world cup, nancy kerrigan, pro 
soccer, and patriot missile. 

610 



Knight and Graehl Machine Transliteration 

Table 1 
Accuracy of back-transliteration by human subjects and machine. 

Human Machine 

correct 27% 64% 
(e.g., spencer abraham / spencer abraham) 

phonetically equivalent, but misspelled 7% 12% 
(e.g., richard brian / richard bryan) 

incorrect 66% 24% 
(e.g., olin hatch / orren hatch) 

On the automatic side, many errors can be corrected. A first-name/last-name 
model would rank richard bryan more highly than richard brian. A bigram model would 
prefer orren hatch over olin hatch. Other errors are due to unigram training problems, or 
more rarely, incorrect or brittle phonetic models. For example, Long occurs much more 
often than Ron in newspaper text, and our word selection does not exclude phrases 
like Long Island. So we get long wyden instead of ron wyden. One way to fix these prob- 
lems is by manually changing unigram probabilities. Reducing P(long) by a factor of 
ten solves the problem while maintaining a high score for P(long I rongu). 

Despite these problems, the machine's performance is impressive. When word 
separators (o) are removed from the katakana phrases, rendering the task exceedingly 
difficult for people, the machine's performance is unchanged. In other words, it offers 
the same top-scoring translations whether or not the separators are present; how- 
ever, their presence significantly cuts down on the number of alternatives considered, 
improving efficiency. When we use OCR, 7% of katakana tokens are misrecognized, 
affecting 50% of test strings, but translation accuracy only drops from 64% to 52%. 

6. D i s c u s s i o n  

In a 1947 memorandum, Weaver (1955) wrote: 

One naturally wonders if the problem of translation could conceivably 
be treated as a problem of cryptography. When I look at an article in 
Russian, I say: "'This is really written in English, but it has been coded 
in some strange symbols. I will now proceed to decode." (p. 18) 

Whether this is a useful perspective for machine translation is debatable (Brown et 
al. 1993; Knoblock 1996)--however, it is a dead-on description of transliteration. Most 
katakana phrases really are English, ready to be decoded. 

We have presented a method for automatic back-transliteration which, while far 
from perfect, is highly competitive. It also achieves the objectives outlined in Section 1. 
It ports easily to new language pairs; the P(w) and P(elw ) models are entirely reusable, 
while other models are learned automatically. It is robust against OCR noise, in a rare 
example of high-level language processing being useful (necessary, even) in improving 
low-level OCR. 

There are several directions for improving accuracy. The biggest problem is that 
raw English frequency counts are not the best indication of whether a word is a possi- 
ble source for transliteration. Alternative data collection methods must be considered. 

611 



Computational Linguistics Volume 24, Number 4 

We may  also consider changes to the model  sequence itself. As we have pre- 
sented it, our  hypothet ical  human  transliterator produces  Japanese sounds from En- 
glish sounds only, wi thout  regard for the original English spelling. This means  that 
English h o m o n y m s  will p roduce  exactly the same katakana strings. In reality, though,  
transliterators will sometimes key off spelling, so that tonya and tanya produce  toonya  
and taanya.  It might  pay  to carry along some spelling information in the English 
pronuncia t ion lattices. 

Sentential context should be useful for determining correct translations. It is often 
clear f rom a Japanese sentence whether  a katakana phrase is a person, an institution, 
or a place. In many  cases it is possible to nar row things fu r the r - -g iven  the phrase 
"such-and-such,  Arizona,"  we can restrict our  P(w) model  to include only those cities 
and towns in Arizona. 

It is also interesting to consider transliteration for other  languages. In Arabic, for 
example,  it is more  difficult to identify candidates for transliteration because there is 
no distinct, explicit alphabet  that marks them. Furthermore,  Arabic is usually wri t ten 
wi thout  vowels,  so we must  generate vowel  sounds f rom scratch in order  to produce  
correct English. 

Finally, it may  be possible to embed  phonetic-shift  models  inside speech recogniz- 
ers, to explicitly adjust for heavy  foreign accents. 

Acknowledgments 
We would like to thank Alton Earl Ingrain, 
Yolanda Gil, Bonnie Glover Stalls, Richard 
Whitney, Kenji Yamada, and the anonymous 
reviewers for their helpful comments. We 
would also like to thank our sponsors at the 
Department of Defense. 

References 
Arbabi, Mansur, Scott M. Fischthal, 

Vincent C. Cheng, and Elizabeth Bart. 
1994. Algorithms for Arabic name 
transliteration. IBM Journal of Research and 
Development, 38(2):183-193. 

Baum, Leonard E. 1972. An inequality and 
associated maximization technique in 
statistical estimation of probabilistic 
functions of a Markov process. 
Inequalities, 3:1-8. 

Brown, Peter E, Stephen A. Della Pietra, 
Vincent J. Della Pietra, and Robert L. 
Mercer. 1993. The mathematics of 
statistical machine translation: Parameter 
estimation. Computational Linguistics, 
19(2):263-311. 

Dempster, A. P., N. M. Laird, and D. B. 
Rubin. 1977. Maximum likelihood from 
incomplete via the EM algorithm. Journal 
of the Royal Statistical Society, 39(B):1-38. 

Dijkstra, Edsgar W. 1959. A note on two 
problems in connexion with graphs. 
Numerische Mathematik, 1:269-271. 

Divay, Michel and Anthony J. Vitale. 1997. 
Algorithms for grapheme-phoneme 

translation for English and 
French:Applications. Computational 
Linguistics, 23(4):495-524. 

Eppstein, David. 1994. Finding the k 
shortest paths. In Proceedings of the 
35thSymposium on the Foundations of 
Computer Science, pages 154-165. 

Jorden, Eleanor H. and Hamako I. Chaplin. 
1976. Reading Japanese. Yale University 
Press, New Haven. 

Knoblock, Craig. 1996. Trends and 
controversies: Statistical versus 
knowledge-based machine translation. 
IEEE Expert, 11(2):12-18. 

Pereira, Fernando C. N. and Michael Riley. 
1997. Speech recognition by composition 
of weighted finite automata. In E. Roche 
and Y. Schabes, editors, Finite-State 
Language Processing, pages 431-453. MIT 
Press. 

Weaver, Warren. 1955. Translation. In 
William N. Locke and A. Donald Booth, 
editors, Machine Translation of Languages. 
Technology Press of MIT and John Wiley 
& Sons, New York (1949 memorandum, 
reprinted, quoting a 1947 letter from 
Weaver to Norbert Wiener). 

Yamron, Jonathan, James Cant, Anne 
Demedts, Taiko Dietzel, and Yoshiko Ito. 
1994. The automatic component of the 
LINGSTAT machine-aided translation 
system. In Proceedings of the ARPA 
Workshop on Human Language Technology, 
pages 163-168. Morgan Kaufmann. 

612 


