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Graphical presentations can be used to communicate information in relational data sets succinctly
and effectively. However, novel graphical presentations that represent many attributes and rela-
tionships are often difficult to understand completely until explained. Automatically generated
graphical presentations must therefore either be limited to generating simple, conventionalized
graphical presentations, or risk incomprehensibility. A possible solution to this problem would be
to extend automatic graphical presentation systems to generate explanatory captions in natural
language, to enable users to understand the information expressed in the graphic. This paper
presents a system to do so. It uses a text planner to determine the content and structure of the
captions based on: (1) a representation of the structure of the graphical presentation and its map-
ping to the data it depicts, (2) a framework for identifying the perceptual complexity of graphical
elements, and (3) the structure of the data expressed in the graphic. The output of the planner is
further processed regarding issues such as ordering, aggregation, centering, generating referring
expressions, and lexical choice. We discuss the architecture of our system and its strengths and
limitations. Our implementation is currently limited to 2-D charts and maps, but, except for lex-
ical information, it is completely domain independent. We illustrate our discussion with figures
and generated captions about housing sales in Pittsburgh.

1. Introduction

This paper describes a framework for generating natural language captions to accom-
pany complex graphical presentations of diverse data sets. It describes an implemented
system that integrates two robust systems: SAGE—an intelligent graphics presentation
system (Roth et al. 1994), and a natural language generator, consisting of a text planner
(Young and Moore 1994; Young 1997), a microplanner implementing tactical decisions,
and a sentence realizer (Elhadad and Robin 1992).

Graphical presentations can be an effective method for succinctly communicating
information about multiple, diverse data attributes and their interrelationships. More
than 80% of all business reports these days contain graphic presentations of data (Beat-
tie and Jones 1994; Schmid 1983). When a display includes only a small number of
data attributes or can make use of conventionalized graphical styles (e.g., spreadsheet
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graphics), it is easy for a viewer to understand how to interpret it. However, one of
the main goals for automatic presentation systems is to allow users to see complex
relationships between different attributes and perform problem-solving tasks (e.g.,
summarizing, finding correlations or groupings, and analyzing trends in data) that
involve many data attributes at the same time. A number of research groups have de-
veloped systems that can automatically design sophisticated presentations to support
a task—presentations that are both novel and complex (e.g., Casner 1991; Mackinlay
1986; Roth et al. 1994). These graphics are often difficult to understand (Shah 1995).
Clearly, such graphics can only be fully effective for supporting analysis tasks if ac-
companied by explanations designed to enable users to understand how the graphics
express the information they contain. Studies have shown that the presentation of
captions with pictures can significantly improve both recall and comprehension, com-
pared to either pictures or captions alone (Nugent 1983; Large et al. 1995; Hegarty and
Just 1993). This suggests that the generation of captions for statistical graphics is an
important application area in which natural language generation techniques can make
a significant contribution.

In our system, the graphical displays are designed by an automatic presentation
component, SAGE (Roth et al. 1994), and are often complex for several reasons. First,
they typically display many data attributes at once. The mapping of many different
data attributes to multiple graphical objects in a single display can be difficult to
determine from the graphics alone. Second, integrating multiple data attributes in a
display requires designing graphics that are unfamiliar to users accustomed to spread-
sheet graphics that create simple displays of individual data attributes. While these
integrated displays can be very useful once they are explained, it is often difficult to
understand them completely without accompanying explanations. Finally, the nature
of the data with which we are concerned is inherently abstract and does not have an
obvious or natural visual representation. Unlike depictions of real world objects or pro-
cesses (e.g., radios [Feiner and McKeown 1991}, coffee makers [Wahlster et al. 1993],
network diagrams [Marks 1991]) and visualizations of scientific data (e.g., weather,
medical images), visualizations of abstract information lack an obvious physical ana-
logue.

As an example of the type of data we are concerned with, consider the graphic
shown in Figure 1. This is a SAGE-generated version of the famous graphic drawn by
Minard in 1861 depicting Napoleon’s march of 1812 (Roth et al. 1994).! The graphic
relates seven different variables: position (latitude and longitude), size, direction of
movement, temperature, and dates and locations of battles. Unless one has seen this
graphic (or a very similar one) before, it can be very difficult to understand. Indeed,
Minard accompanied the original graphic with a paragraph of text, the first half of
which is about how the graphic expresses the information it contains.’

Consider how the following human-generated caption for the graphic in Figure 1
explains the picture and the underlying data:’

This map shows march segments and battles from Napoleon’s 1812 campaign.
The map shows the relation between the geographic locations, temperature and
number of troops for each segment. Each line shows the start and end locations
for the march segment. Its color shows the temperature, and the thickness shows
the number of troops. The temperature was about 100 degrees for the initial
segments in the west (the wide, dark red lines on the left), about 60 degrees in

1 The original graphic can be found on page 41 in Tufte (1983).
2 Minard’s original caption, translated from French, reads:
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later segments in the east (the narrower, light red lines on the right) and about
—40 degrees in the last segments, also in the west (the narrowest, dark blue lines
on the left). The number of troops was 400,000 in the earliest segments, 100,000
in the later segments, and 10,000 in the last segments. The city and date of each
battle is shown by the labels of a yellow diamond, which shows the battle’s
location.

This caption can help users understand the various attributes and the underlying
relations between them—conveyed so succinctly by the graphic.

Although several projects have focused on the question of how such intelligent
graphical presentations can be automatically generated (e.g., Casner 1991; Mackinlay
1986; Roth and Hefley 1993; Kerpedjiev 1992), they have not addressed the problem
of generating the accompanying textual explanations. Without this ability, automatic
graphical presentation systems will necessarily be limited to generating convention-
alized graphics that do not use novel means to express complex relationships among
data attributes, or risk generating displays that users will find difficult to fully com-
prehend and utilize.

In designing our framework for generating natural language captions we have
adapted and integrated work in natural language generation (NLG) by a number of
researchers—including ourselves—in different subareas: text planning, aggregation,
centering, computing referring expressions, example generation, and linearization.
Given the applied nature of our work, in selecting specific NLG techniques we fol-
lowed a parsimonious approach. For each subtask we selected the simplest technique
that was capable, in conjunction with the behavior of the other subtasks, of producing
coherent text that could express the propositions we needed to convey.

The generation process starts with content selection. For this process, we use
LoNgBOw, a domain-independent discourse planner originally developed as part of
a project aimed at generating tutorial explanations (Young and Moore 1994). Using
plan operators that encode discourse strategies devised for the task of generating
captions, the planner determines what information should be included in the cap-
tions (and consequently what should be left out), and how to organize the selected
information. Operator constraints analyze the structure of the graphic presentation
and the perceptual complexity of the graphical display to enable the planner to se-
lect and apply appropriate strategies. The output of the text planning stage is then
further processed by a microplanner, a sequence of modules implementing inter- and

Figurative map of the losses, expressed in men, of the army during the
Russian campaign. 1812-1813

Print by M. Minard. Retired general inspector of the “Ponts et Chaussees.”

The number of men is represented by the width of the colored zones, where one
millimeter corresponds to ten thousand men; moreover, they (number of men)
are written across the zones. Red indicates men entering Russia, black indicates
men exiting it. The information used to fill this map would have not been
available without M. Thiers, de Segur, de Frezerisac, de Chambray, and the
journal of Jacob, army pharmacist since Oct. 28th. To help the eye judge how the
army shrank, I assumed that the regiments of Price Jeroms and Marchal Davons,
that were detached in Minsk and Mobilov, and rejoined near Orscha and Wiltesk,
always walked together with the army.

3 Note that the original picture generated by SAGE was in color; the paper contains gray scale
reproductions due to printing limitations.
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intraclause ordering, aggregation, and referring expression computation. The module
performing intraclause ordering is of special interest because it uses a novel technique
based on centering theory. Although we have devised such a technique specifically
for generating captions, it is general and can be applied to any discourse structure.
The other three microplanning modules use standard NLG techniques. Ordering and
aggregation are based on text genre (i.e., descriptions of information graphics) and
domain-specific (e.g., real estate sales or stock market data) heuristics. The referring
expression module uses a well-known domain-independent algorithm that, given an
intended referent, builds a description uniquely identifying it. The referential problems
in our application did not require more sophisticated referring algorithms; there was
also no interaction between computing the referring expressions and inter- and intra-
clause ordering. Once microplanning is complete the FUF/SURGE realization module
generates the actual English. The modules of our NLG system are discussed in detail
in Section 5.

In addition to these NLG techniques, generating textual captions for information
graphics requires the following knowledge sources:

e a representation of the syntax of graphical displays, that is, the
structural, spatial and other relations among graphical objects and their
properties. For example, the relationship between the end points of the
lines in Figure 1 to positions on the map, the fact that an axis conveys
the positional values for all the objects within a chart,* the difference
between alternative uses of color: (i) constant color, (ii) color used to
distinguish between different attributes, and (iii) color used to encode
data values

e arepresentation of the semantics of graphical displays, i.e., the mapping
from data objects and their attributes to graphical ones. For example, in
Figure 1 the fact that the temperature during a march segment is
mapped to the color of the corresponding graphical segment.

e amechanism for determining which aspects of graphical displays must
be explained based on their perceptual complexity or the complexity of
the data attributes they express. This mechanism must take into account
information about the underlying data and the perceptual complexity of
the way in which data attributes and relations have been mapped to
graphical entities.

We describe these knowledge sources and the discourse strategies in the following
three sections. '

2. SAGE: A System for Automatic Graphical Explanations

SAGE is a knowledge-based presentation system that designs graphical displays of
combinations of diverse information (e.g., quantitative, relational, temporal, hierarchi-
cal, categorical, geographic). The inputs to SAGE include: (1) sets of data represented
as tuples in a relational database, (2) a characterization of the properties of the data
that are relevant to graphic design, and (3) an optional set of design specifications,
expressing a user’s preferences for visualizing the data set.

4 Except those that are positioned relative to other objects, as explained in Section 4.
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Figure 1
A saGE-generated version of the well-known Minard graphic.

SAGE'’s output consists of one or more coordinated sets of 2-D information graphics
that use a variety of graphical techniques to integrate multiple data attributes in a
single display. SAGE integrates multiple attributes in three ways:

e by representing them as different properties of the same set of graphical
objects. For example, both the left and the right edges of the bars in the
left most chart in Figure 2 are used to map attributes (asking-price and
selling-price respectively)

e by assembling multiple graphical objects into groups that function as
units to express data. For example, the interval bar and the mark in the
left most chart in Figure 2 are used to show different types of
price-related attributes: asking-price, selling-price, and the agency-estimate.

¢ by aligning multiple charts and tables together with respect to a
common axis. For example, the three charts in Figure 2 are aligned on
the Y-axis, which indicates the house.

Creating a graphic that integrates data in this way is partly an encoding process
in which the values of data attributes are converted into graphical values of properties
of objects (e.g., color, shape, and spatial position of polygons). Interpreting the infor-
mation in a graphic is a decoding process, where people must translate visual symbols
back into data values. SAGE creates graphics that enable people to efficiently perform
information-seeking tasks (e.g., searching for clusters of data values that are different
from the rest and looking up other facts to understand what makes them different).
In designing graphics, however, SAGE only considers how effectively attributes can be
mapped to graphical properties to support a task. For example, a requirement to be
able to search for particular values by name might result in the relevant attribute being
arranged along an axis in lexicographic order; on the other hand, if it is important to
find the maximum and minimum values in a set, SAGE might order these values in
terms of magnitude. SAGE, like other automated presentation systems (Casner 1991;
Mackinlay 1986), does not take into account perceptual complexities associated with
the resulting graphic. For instance, SAGE does not explicitly reason about the difficul-
ties users may have in translating bicolor saturation scales to exact numerical values.®

5 The Minard Graphic, shown in Figure 1, uses the bicolor saturation technique to map temperature
values to the march segments shown in the map.

435



Computational Linguistics Volume 24, Number 3

SAGE can also design complex presentations that have overlapping objects, or use
cluster composition to define a novel combination or grouping of graphical objects
in the presentation. This can make understanding some of the graphics that sace
generates quite difficult. Fortunately, the picture representation used in SAGE contains
a complete declarative representation of the content and structure of the graphic in a
form that can be used for reasoning by other components. Thus, this representation
can be used to reason about possible sources of user confusion arising from mappings
that are either complex or ambiguous to the user.

SAGE's representation serves three functions in explanation generation. First, it
helps define what a viewer must understand about a graphic in order to obtain useful
information from it. It does this by defining the elements of a graphic and the way
they combine to express facts (i.e., how they map to data). Second, the representation
describes the structure of both the graphical presentation and the data it presents, so
that they can be explained coherently. Finally, the representation helps derive judg-
ments of complexity for specifying graphical elements needing text explanation. To
understand these three functions, we briefly review the representation.

Graphemes are the basic building blocks for constructing pictures. Marks, text,
lines, and bars are some of the different grapheme classes available in sAGe. Each
grapheme type consists of a definition of the parameters that control the appearance
of all graphemes of that type; different grapheme subtypes can be created by varying
specific parameters. Individual graphemes can be generated by providing appropriate
values for all the input parameters. For instance, individual marks can be generated
by providing values for the parameters: x-coordinate, y-coordinate, shape, size, and color
to an instance of a mark class encoder; individual line segments can be generated by
providing values for the coordinates x1, y1, x2, and y2, thickness; and color to the line
class encoder.

Symbol classes are used to organize graphemes into structures that express facts
in the data set. A labelled-mark, an interval bar, and a bar with an attached label
are some of the more familiar symbol classes available in SAGE. Each symbol class
consists of a definition of the spatial relationship among a set of graphemes and the
correspondence between the parameters of this set and attributes types in a data set.
A labelled-mark, for instance, would be defined as a combination of a mark and a
text label and the spatial relationship between them. Consider the labelled-marks in
the chart shown in Figure 3. The spatial position of the label is dependent on the
position of the mark: it is offset slightly to the right and above the mark. Symbol
classes in SAGE can be either predefined (some of the more common ones, such as
a labelled-mark have already been defined), or created by the system based on rules
about combining different graphemes into clusters.

Encoders are used to relate specific data values and graphical values to each other.
Horizontal/ vertical axes, color keys, size keys, and shape keys are some of the different
encoders available in SAGE. Each encoder class consists of a definition of the relation
between a family of data set attributes and a particular graphical type. SAGE can then
use this information to map data values to graphical values in designing a picture,
and provide a frame of reference (e.g., axes, keys, etc.) that can be used to visually
interpret specific values in the picture. For instance, a color encoder could map data
values “less than 5” to the graphical value “blue” and others to “red.” A schematic of
the encoders used in the chart shown in Figure 3 is shown in Figure 4.

In addition to this knowledge about graphemes, symbols, and encoders, SAGE
uses knowledge of the characteristics of data relevant to graphic design (Roth and
Mattis 1990; Roth and Hefley 1993), including knowledge of data types and scales
of measurement (e.g., quantitative, interval, ordinal, or nominal data sets), structural
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relationships among data (e.g., the relation between the endpoints of ranges or between
the two coordinates of a 2-D geographic location), and the functional dependencies
among attributes in database relations (e.g., one:one, one:many, many:many). As we
will show later, the latter is an important factor in selecting a high-level discourse
strategy for generating explanatory captions.

Finally, SAGE has a library of graphical techniques, knowledge of the appropri-
ateness of the techniques for different data and tasks, and design knowledge for as-
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sembling these techniques into composites that can integrate information in a single
display. SAGE uses this graphic design knowledge together with the data characteri-
zation knowledge to generate displays of information.

To summarize, the portion of SAGE’s knowledge base that is most relevant for
generating explanatory captions is its graphical syntax and semantics. The syntax
includes a definition of the graphical constituents that convey information: spaces
(e.g., charts, maps, tables), graphemes (e.g., labels, marks, bars), their properties (e.g.,
color, shape), and encoders—the frames of reference that enable their properties to be
interpreted/ translated back to data values (e.g., axes, graphical keys). The syntax also
defines the ways in which graphemes can be combined to form symbols—composites
that integrate multiple data attributes (e.g., a label attached to a mark). The syntac-
tic structure of a graphical display, like the linguistic structure of text, can provide
guidance for creating structurally coherent explanations.

The representation of the semantics of graphics conveys the way data is mapped
to the syntactic elements of displays. It also provides guidance for organizing explana-
tory captions by grouping graphical elements that express data attributes that form a
coherent group. The data characterization provides knowledge of the structure of the
data and therefore also influences the structure of the explanation.

3. Discourse Strategies for Generating Captions

Explanations about informational graphics can be classified into at least three cate-
gories based on the structural properties of the picture, the structure of the underly-
ing data attributes, and their mapping to spaces and graphemes. These explanation
strategies reflect the overall structure of the graphic presentation: whether the spaces
are aligned along a common axis, and around the functionally independent attribute
(FIA). An attribute is functionally independent if it uniquely determines the values of
all other attributes. For example, in one of our current data sets about house sales, the
house’s street address has been specified as the F14; it uniquely determines asking-price,
selling-price, and the other attributes in the database. In contrast, the listing agency does
not uniquely determine any of the other attributes in the house-sales relation.

In addition to the factors mentioned above—used to select the overarching dis-
course strategies—the system makes use of additional information about the symbols
and their mappings used in the display to select and organize information to be pre-
sented in the caption. For instance, the system uses graphical information to determine
the order in which information is presented. This reasoning can occur at various levels
of the picture representation: at the space level (all objects in a space are described
before objects in another space), at the grapheme cluster level (all objects in a clus-
ter are described together), and at the encoder level (all objects that map the same
attribute type are described together). SAGE's representation of the graphical display
thus provides additional information that can be considered when text explanations
are generated.

The process of generating natural language explanations can be divided into three
conceptual stages: (i) select a discourse strategy to provide the overall organization of
the explanation based on the structural properties of the graphical presentation, the
relations expressed in the data set, and the data-to-grapheme mappings; (ii) within
each space of the presentation, use the complexity metric to determine the amount of
detail to be included in the explanation; and (iii) reason about the tactical decisions in
sentence planning,.

In our current application, content selection mainly consists of determining the
complex or ambiguous aspects of a graphic presentation. In general, knowledge-based
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Encoders used in mapping attributes to a labelled-mark in the chart shown in Figure 3.

systems cannot afford to generate a paraphrase of the entire knowledge base. As illus-
trated by Figure 5, an explanation that includes all the facts in the underlying picture
representation or data set for even a simple graphic in SAGE would be extremely
verbose. Most of the facts expressed in such a caption would be both obvious and
unnecessary for the average user. Studies have shown approximately three-fourths of
the time spent by users in interpreting a graphic is used in understanding the data-
to-grapheme mappings (Shah 1995; Cleveland and McGill 1987). Therefore, our initial
goal was to generate captions describing only those mappings that might be either
complex or ambiguous for the average user. The system can currently analyze a pic-
ture representation for five different types of complexities and ambiguities; these are
discussed in greater detail in the following section (Section 4). This section discusses
the three strategies used by the system to structure the content during text planning.
The sentence planning phase is discussed in Section 5, where the individual compo-
nents implementing the tactical decisions in the microplanner are described in detail.

3.1 Strategy 1: Graphic Organized Around the Functionally Independent Attribute
As mentioned earlier, the three strategies used by the caption generator depend upon
both the structure of the graphic presentation and the relations in the data set pre-
sented in the graphic. The first strategy can be applied when the data set contains a
functionally independent attribute (F1a) that is used as an organizing device or “an-
chor” for the entire graphic. This occurs either when the graphic has only one space
and the FIA is mapped to one of the axes, or when there are multiple spaces and the
FIA is mapped to the axis of alignment.
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These three charts show information about houses from data set PGH-
23. Each chart has two axes. The Y-axis identifies the houses in the
three charts. The data set countains 17 items. The X-axis in the first
chart indicates house prices. The origin is at zero and there are 4 ticks
on the axis, with the maximum value being $320,000. The difference
between each tick is $80,000. The values mapped to the axis range from
$55,000 to $310,000. The left edge of the bar shows the selling price of
a house whereas the right edge of the bar shows the asking price of
a house. Selling prices shown range from $55,000 to $304,000. Asking
prices range from $61,000 to $310,000. The horizontal position of the
square mark shows the agency estimate. These range from $55,000 to
$305,000. For example . ..

Figure 5
A fragment of one possible verbose caption for the graphic in Figure 6.

In such cases, the strategy attempts to reinforce the organizing role of the func-
tionally independent attribute. The explanation strategy identifies the anchor and the
independent attribute first. Then, it describes each space in the picture relative to the
anchor. Domain attributes mapped in the graphic are also mentioned in the context of
the F1A and the type of relationship defined between them (one:one or one:many). Two
SAGE-generated graphics and the associated explanations that illustrate this organizing
principle are shown in Figures 6 and 7. These two figures illustrate the importance of
a caption generator in this application. Both figures present the same data set about
house sales. However, the presentations generated by SAGE are different, make use of
different mappings, and give rise to different perceptual complexities. Consequently,
the content of the captions generated is also different. However, in both the captions,
the overall discourse strategy is the same: to emphasize the aligning Y-axis, the func-
tionally independent attribute—the house-address—and structure the description of the
other attributes in terms of the FIA.

3.2 Strategy 2: Single Space Organized Around Dependent Attributes

In cases where the graphic is organized around dependent attributes, the explanation
cannot be structured around any of them. This is because the attribute may be defined
in either one:many or many:many relationships in the dataset and cannot therefore
be used as an identifier. This is the case in Figures 8 and 9. In these two figures, the
attributes that are mapped to the axes of the charts are dependent attributes such as
days-on-market, number-of-rooms, and lot-size. Neither of these can be used to refer to
other attributes unambiguously. Thus, the discourse strategy cannot be the same as
in the case where an Fia is mapped along one of the axes. Instead the explanation
empbhasizes the relation between the dependent attribute(s) that serve as organizer(s).
There are two strategies depending on whether or not the figure consists of multiple
spaces. If there is only a single space in the graphic, the explanation emphasizes the re-
lation between the attributes encoded against the two axes. A sAGE-generated graphic
and the associated explanation that illustrates this organizing principle is shown in
Figure 8. The caption generated for the figure illustrates how the strategy emphasizes
the relationship between the attributes mapped along the axes. Figure 8 shows the
relationship between the variation in house prices and the number of days a house is
on the market in the data set.
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These three charts show information about houses from data set PGH-23. The Y-axis identifies
the houses in the three charts. In the first chart, house prices are shown by the X-axis. The house’s
selling price is shown by the left edge of a bar, whereas the asking price is shown by the right
edge. The horizontal position of the mark shows the agency estimate. For example, as shown in
the highlighted tuple, the asking price of 3237 Beechwood is $82K, its selling price is $75K, and
the agency estimate is $81K. In the second chart, the house’s date on the market is shown by the
left edge of a bar, whereas date sold is shown by the right edge. Color indicates the neighborhood.
The third chart shows the listing agency.

Figure 6
Graphic with caption generated using strategy 1.

3.3 Strategy 3: Multiple Spaces Aligned along an Axis with Dependent Attributes
The second strategy discussed above is only applicable if there is a single space in
the presentation. However, SAGE is capable of designing presentations with multiple
spaces that are aligned along dependent attributes in the data set. In such cases, the
explanation generator cannot describe all the concepts in the presentation using strat-
egy 2. This is because if one of the spaces in the presentation happens to have the
FIA mapped to its non-aligned axis, a description such as “this space shows the (one:one) -
relationship between the (FIA) and (attribute-2)” would not be natural. In such cases, it
is more natural to use strategy 1 to describe the mappings in that space. Therefore,
strategy 3 allows the system to organize the caption for each space accordingly, depend-
ing upon whether the FIA is mapped along its nonaligned axis. Figure 9 shows such a
graphic and the corresponding caption. The two charts in Figure 9 are aligned along
the X-axis, which is used to encode house-price. In generating the captions for the two
charts, the system describes each one independently, using either strategy 1 or 2, as
appropriate. It describes the top one first (following the structure of the graphic) and
then the bottom one. Each of them, in this case, is described using strategy 2 because
they both have dependent attributes mapped along the axes.

4. Graphical Complexity: The Need for Clarification
In the previous section, we discussed three strategies used to organize the information
to be presented. As mentioned earlier, it is important to select information about

mappings based on either complexity or ambiguity if the caption is to be both succinct
and informative. We have identified five types of graphical complexities, described
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This chart and table show information about house sales from data set PGH-23. The Y-axis
identifies the houses in the two spaces. In the chart, dates are shown along the X-axis. The house’s
date on the market is shown by the left edge of a bar, whereas the date sold is shown by the right
edge. Color indicates the listing agency. The label to the left of a bar indicates the asking price,
whereas the label to the right indicates the selling price. The table shows the agency estimate.
Figure 7

Caption for an alternative presentation of the dataset used in Figure 6.

below, that can make it difficult for a user to understand complex data-to-grapheme
mappings.®

4.1 Encoder Complexity
To read data values shown in a picture, users must understand the encoders used
in designing the picture. Encoders allow the user to map between graphical values
and attribute values. Two examples of encoders are the axes (which allow users to
map between positional values in the picture and data values along the axes), and
graphical keys (these can illustrate mappings between variables such as size and shape
and attribute values). Complexities can arise either (i) when an encoder is complex,
or (ii) when an encoder mapping uses a scale that is complex.

Consider for instance, Figure 10. Among the encoders used in this picture are the
X and Y axes, which map positional information to house prices and house addresses,
respectively. In the chart shown here, the X-axis does not have a zero origin (presum-
ably in order to make the differences between the data items clearer by having more
screen real estate to display a smaller range of data values). Because of this translation
of the origin, it is no longer possible to conclude in this chart that a bar twice as long
as another bar encodes a value twice as large (for instance, bars representing houses
WALNUT-6343 and VERMONT-637 in Figure 10). Both axis translation and truncation—
to compress empty regions in quantitative data—can lead to false inferences. Similar
decoding problems can occur with other encoding techniques as well, as when a quan-

6 It is clear that explicitly reasoning about individual users and maintaining a record of user capabilities
would result in better individualized descriptions than using a default user model, as is done here.
Our system actually makes use of simple user models but we will not discuss this issue here.

442



Mittal, Moore, Carenini, and Roth Generating Chart Captions

Days on Market

2407
Neighborhood
T I nanna
A M CENTURY-21
180 w0 | @ | ] coLpwELL
1204 | @
e I— & |
o1
<,<C‘_
604 o
e]
D o Ol
[ Qa (@)
0 T T T T
$0K $90K $180K $270K $360K

House Price

This chart shows information about house sales from data set PGH-23. It emphasizes the rela-
tionship between house prices and the number of days on the market. The X-axis shows the house
prices, whereas the Y-axis shows the house’s number of days on the market. The house’s listing
agency is indicated by color. The selling price is shown by the left edge of the bar, whereas the
asking price is shown by the right edge. The position of the mark shows the agency estimate.

Figure 8
Graphic with caption generated using strategy 2.

titative attribute is mapped to the area of a circle, or nonlinear scales are used along
axes.

A more complex example of encoding technique complexity can be seen in Fig-
ure 1. Saturation and color are combined in a single encoding technique to express
temperature. Dark red indicates 100 degrees and dark blue indicates —40 degrees. As
the color gets paler (less saturated) it indicates a less extreme temperature. For exam-
ple, pale red (pink) indicates 65 degrees, while pale blue indicates —5 degrees. White
indicates a transition point.” Thus both the frame of reference (the color saturation
key) and the technique are potentially complex here. Figure 1 also illustrates range
complexity: the user must determine what the transition point is (whether it is the
center of the scale, or some special value, such as 32 degrees F). The graphic is not
explicit about whether the two ranges on both sides of this special transition point are
balanced.

4.2 Grapheme Complexity

Although the encoder (e.g., positional encoding on an axis) and the mapping (e.g., the
scale used along the axis) may both be simple, a grapheme that uses that encoder and
mapping may still be difficult for users to interpret. This may occur for a variety of
reasons ranging from too many mappings to problems in identifying the mappings.

7 Not only is the encoding technique complex, but the user must understand the conventions used—blue
to the cooler side of the scale, red to the warmer.
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These charts show information about house sales from data set PGH-23. In the two charts, the
X-axis shows the selling prices. The top chart emphasizes the relationship between the number
of rooms and the selling price. The bottom chart emphasizes the relationship between the lot size
and the selling price.

Figure 9
Graphic with caption generated using strategy 3.

Complexities of this type can arise from:

¢ multiple grapheme properties: In some cases, the presentations can
include graphemes that have a large number of geometric properties
used in mapping data attributes. Consider, for instance, Figure 11. While
the encoders in the figure are relatively straightforward, the fact that
four different mappings are used here—x-position, y-position, shape, and
color—can hinder comprehension.

e unclear geometric properties: Circular marks and horizontal bars are
usually familiar to most readers and SAGE chooses them whenever
possible. However, in some cases the system may have to use graphemes
that are not as common. In such cases, the reader has to not only
understand the encoder and the mapping technique, but also understand
which property of the grapheme is being used in each encoding.
Consider, for instance, if a triangular mark is used in a plot chart: in
order to interpret its positional property, it is essential to know which of
its three vertices (or the center) is used in the mapping.

e semantic properties: The third type of grapheme complexity occurs in
graphemes that have subcomponents. For instance if an icon of a truck
were to be used as a grapheme, and different subcomponents were used
in the mappings (e.g., speed of the truck to the wheel size, cargo type to
tank color), the reader must understand not only the various data to
grapheme mappings, but also the relationship between the various
subcomponents.
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Figure 10
Comprehension can be hindered by encoding technique complexities (e.g., a truncated X-axis.)

4.3 Ambiguous Mapping Complexity

A user’s ability to identify the mapping of even simple techniques can be hindered
when dissimilar graphemes (or dissimilar properties of a grapheme) are used to map
to similar attribute types. Consider for instance, the charts in Figures 12 and 13. The
left and right edges of the bar in Figure 12 refer to the selling-price and asking-price of
a house in the domain. However, the X-axis represents prices in general, and there is
no way to distinguish between the two from the figure itself. Similarly, in Figure 13,
the two text labels refer to two different prices, but the two attributes cannot be
distinguished from one another solely from the figure.®

4.4 Composition Complexity
When multiple graphemes occur in a space, they can be confusing at first until their
relationships to each other are clarified. Compositions can result in clusters of two

types:

e Cooperative Graphemes: For example, consider the chart shown in
Figure 14. The mark and label graphemes form an aggregate that must
be considered together. In this case, since the label conveying the real
estate agency is slightly offset from the position on the X and Y axes, it
cannot be interpreted as being related to a particular house and a date of
sale on its own. Grapheme composition results in multiple graphemes
being displayed as a spatially grouped conceptual unit—these need to be
understood as such and interpreted accordingly.

o Interfering Graphemes: Unfortunately, grapheme composition does not
always result in a cluster where the graphemes are distinct and

8 In the housing domain, it may be assumed that asking-price is either greater or equal to selling-price, but
in fact, this is not always the case. Buyers sometimes get into bidding wars that cause the selling price
to become greater than the asking price.
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Figure 11

Comprehension difficulties can result from complex graphemes with multiple properties being
used in the encoding.

non-occluding. Consider, for instance, the chart shown in Figure 8. The
mark indicating the agency estimate of the selling price often overlaps
with the interval bar showing the actual asking and selling prices. In
some cases, the asking and selling prices are so close that the mark
indicating the agency estimate actually occludes the interval bar. Clusters
such as this can hinder interpretation and it is important that such
mappings be clarified.

4.5 Alignment Complexity

As illustrated in Figures 6, 7, and 9, alignment of multiple charts and/or tables can be
a useful technique for supporting comparisons, rapid lookups for many attributes of
the same object, and for maintaining consistent scales. Whenever an alignment occurs,
all but one of the charts become separated from the aligning axis labels and the relation
between the aligned axis and the rest of the charts may not be clear.

The complexity assessment module in the system is capable of identifying the
graphemes in the display that are complex for any of the five reasons described in
this section. It annotates the picture representation generated by SAGE to indicate the
graphemes and their types of complexity. The result of the complexity assessment
for the Minard graphic—Figure 1—is shown in Figure 15. As discussed earlier, for
instance, the mapping between the attribute temperature and the color of the line is
complex for two reasons: (i) encoding complexity, because of the use of color and
saturation, and (ii) range complexity, because of the unequal distributions of warm
and cold temperatures. Figure 16 gives the complexity assignment for the graphic
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Figure 12
Complexities can arise from ambiguous mappings (a).
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Figure 13
Complexities can arise from ambiguous mappings (b).

shown in Figure 6. In this case, the mapping between the attribute asking-price and
the bar is complex for three reasons: (i) grapheme complexity, since the interval bar
is a complex grapheme; (ii) ambiguous mapping, since from the graphic, it is not
possible to determine whether the attribute is mapped to the left edge or the right
edge of the bar; and (iii) composition complexity, since the bar and the mark can
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Figure 14
Presentations can have clusters of cooperative graphemes.

Data attribute | Graphical Element | Complexity Type
temperature grapheme, property | encoding complexity

range complexity

troop-size grapheme, property | grapheme complexity
compositionn complexity (i)
start-position | grapheme, property | grapheme complexity
composition complexity (i)
stop-position grapheme, property | grapheme complexity
composition complexity (i)

battle-city grapheme, property | composition complexity (c)
ambiguous mapping

battle-date grapheme, property | composition complexity (c)
ambiguous mapping

battle-location | grapheme composition complexity (c)

Figure 15
Result of the complexity assessment module for the “Minard Graphic” in Figure 1 (i and ¢ are
used to indicate interfering and cooperating graphemes respectively).

overlap and occlude each other (indicated by i for “interfering”). The annotated picture
representation can then be used as one of the knowledge sources in the NLG system
to select and structure information appropriately in generating the captions.

5. Generating Explanatory Captions
A high-level overview of the system divided into functional modules is shown in

Figure 17. A brief description of each module is given below. Detailed descriptions
follow later in the section.
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Data attribute Graphical Element | Complexity Type

house axis alignment complexity
grapheme complexity
asking-price grapheme, property | ambiguous mapping

composition complexity (i)
grapheme complexity

selling-price grapheme, property | ambiguous mapping
composition complexity (i)
agency-estimate | grapheme composition complexity (i)

date-on-market | grapheme, property | grapheme complexity
ambiguous mapping
date-sold grapheme, property | grapheme complexity
ambiguous mapping

listing-agency grapheme

Figure 16
Result of the complexity assessment module for Figure 6.

Text Planning Module. The text planner takes as input the goal to generate a caption, the
picture representation generated by SAGE (annotated by the complexity module), and
generates a partially ordered text plan. The leaves of the text plan represent speech
acts about propositions that need to be conveyed.

Ordering Module. The ordering module takes a partially ordered text plan and imposes
a total order on the speech acts. This may be based on (i) domain-specific knowledge
about orderings (for instance, knowledge about temporal order of events), or in the
absence of this, (ii) knowledge about graphics (e.g., the left edge of a bar is discussed
before the right edge of a bar).

Aggregation Module. The output of the ordering module is passed to an aggregation
module that can combine multiple propositions into fewer, more complex ones. For
instance, the module may combine some propositions regarding a grapheme into one
complex proposition for more natural output.

Centering Module. Once clauses are ordered and aggregated, coherence of the generated
text can be further improved by selecting appropriate orderings between arguments
of each clause. For this task, we have developed a selection strategy based on the
centering model.

Referring Expression Module. The referring expression module analyzes the picture rep-
resentation and uses the discourse plan to determine appropriate referring expressions
for the concepts in the speech acts.

Lexical Choice and Realization Modules. This lexical choice module picks lexical items
and transforms the speech acts to functional descriptors (FDs) to be processed by
FUF/SURGE (Elhadad and Robin 1992; Elhadad 1992), the realization module used to
generate the English text.

5.1 Text Planning Module

The planner constructs text plans from its library of discourse action descriptions.
The representation of communicative action is separated into two types of operators:
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action operators and decomposition operators. Action operators capture the conditions
(preconditions and constraints) under which an action can be executed, and the effects
the action achieves if executed under the appropriate conditions. Preconditions specify
conditions that the agent should plan to achieve (e.g., the hearer knows a certain term),
while constraints specify conditions that the agent should not attempt to plan to change
(e.g., facts and rules about the domain). Effects describe the changes that a discourse
action is intended to have on the hearer’s mental state. If an action is composite, there
must be at least one decomposition operator indicating how to break the action down
into more primitive steps. Each decomposition operator provides a partial specification
for a subplan that can achieve the action’s effects, provided the preconditions are true
at the time the steps in the decomposition are executed.

As an example of how action and decomposition operators are used to encode dis-
course actions, consider the two operators in Figure 18. These two operators describe
the discourse action describe-space-mappings, whose only effect is achieving the state
in which the reader knows all the data-to-grapheme mappings shown. The first oper-
ator is an action operator and it indicates that describe-space-mappings can be used to
achieve the state where the reader knows about the mappings. The second operator
in Figure 18 is one of the decomposition operators for the describe-space-mappings
action. The decomposition of a nonprimitive action can be expressed either in terms
of subactions (:steps slot), or in terms of subgoals of one action’s effect (:rewrite slot),
or in terms of both. For instance, the :reurite slot of the decomposition in Figure 18
specifies that one way to achieve describe-space-mappings’s effect of having the hearer
to know all the mappings in one space is to achieve the three subgoals of having the
hearer to know all the interfering, cooperating, and vanilla mappings in that space.’
This example also illustrates how the graphical complexity metrics are used for con-
tent selection by the text planner: just as this operator can be used to describe spaces
in which all three types of graphemes are present, there are other operators that deal
specifically with encoder complexities, compositional complexities, etc.

As illustrated by the second operator in Figure 18, decomposition operators may
also have constraints, which indicate the conditions under which the decomposition
may be applied. Such constraints often specify the type of information needed for
particular communicative strategies, and satisfying them causes the planner to find
content to be included in explanations. For example, the constraints of the second oper-
ator not only check that a single space is being described, but also find the graphemes
of the three types used in the explanation, and the anchor mapping in this space. When
the planner attempts to use a decomposition operator, it must try to satisfy all of its
constraints. If a constraint contains no unbound variables, it is simply checked against
the knowledge source to which it refers. However, if the constraint contains free vari-
ables (e.g., ?int-graphs in the second operator), the system must search its knowledge
bases for acceptable bindings for these variables. In this way, satisfying constraints
directs the planner to select appropriate content to include in explanations. In the case
of the operator shown in Figure 18, the two preconditions that must be satisfied are
(i) that the reader must be able to recognize the space (i.e., know which space is being
discussed, and the data set being visualized), and (ii) know what the anchor mapping
in the space is (if any). Anchor mappings refer to the mapping between a functionally
independent attribute (F1A}—usually the key in the database schema—and the axis it
is mapped to. Thus, action and decomposition operators specify how information can
be combined in a discourse to achieve effects on the hearer’s mental state.

9 Vanilla graphemes are those that are neither interfering nor cooperating.
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Figure 17
System architecture: A functional-block diagram.
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(define (action describe-space-mappings)
:description "describe all mappings in a space"
:parameters (?space)
:primitive nil
:effect ( (know-all-mappings ?space)))

{define (decomposition describe-space-mappings)
:description "Describe mappings: +C+I+V"
:constraints ( (space-p ?space)
{single-space? ?space)
(get-interfering-graphemes ?space ?int-graphs)
(get-cooperating-graphemes ?space ?coop-graphs)
(get-vanilla-graphemes ?space ?vanilla-graphs)
(get-anchor ?space ?anchor-axis ?anchor-domain))
:preconditions ((recognize-space ?space)
(know-mapping ?space ?anchor-axis ?anchor-domain))
isteps  ( (begin (start ?space))
{end (finish ?space)))
:rewrites ( ( (know-all-mappings ?space)
((forall ?ig in ?int-graphs
(know-all-interfering-mappings ?ig ?space))
(forall ?cg in ?coop-graphs
{know-all-cooperating-mappings ?cg ?space))
(forall ?vg in ?vanilla-graphs
(know-all-vanilla-mappings ?vg ?space))))))

Figure 18
Sample plan operators.

5.1.1 Generating Discourse Plans. Planning begins when a set of communicative goals
are posted to the text planner. The system generates a plan by iterating through a loop
that refines the current plan (either decompositionally or causally), checking the plan
after each refinement to ensure that it has not introduced any errors. Decompositional
refinement selects a composite action and creates a subplan for that action by adding
instances of the steps listed in the decomposition operator to the current plan. Causal
refinement selects an unsatisfied precondition of a step in the plan and adds a causal
link to establish the needed condition. This is done either by finding a step already in
the plan that achieves the appropriate effect, or by using an action operator to create
a new step that achieves the needed condition as one of its effects. For a complete
definition of the algorithm, its computational properties, and its utility for discourse
planning, see Young, Pollack, and Moore (1994), and Young and Moore (1994).

In the remainder of the section, we present the modules that follow the text plan-
ning process and implement tactical decisions. To clarify the discussion, we describe
how each module contributes to the generation of clauses (3) to (5) in the sample
caption shown in Figure 19.

5.2 Ordering Module

The steps in a completed text plan are partially ordered, and thus further processing
must be performed in order to generate a caption. The order of execution of steps
in the plan may either be explicitly specified by the operator writer or may have
constraints imposed on it by causal links. For instance, in the plan operator shown
in Figure 18, all the steps corresponding to the goal recognize-space will be ordered
before the steps corresponding to the goal know-all-mappings because recognize-space
is a precondition. However, most steps in the plan are not explicitly ordered and
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Sample caption

(1) This chart presents information about house sales from data-set TS-2480.
(2) The y-axis shows the houses.

(3) The house’s selling price is shown by the left edge of the bar

(4) whereas the asking price is shown by the right edge.

(5) The horizontal position of the mark shows the agency estimate.

Figure 19
A representative caption used to illustrate our discussions.

do not have causal links between them dictating the ordering. The ordering module
takes as input the discourse plan, with links specifying the ordering relations between
subtrees, and orders the leaf nodes—the speech acts—based on a set of heuristics. In
our application, for instance, unless otherwise indicated, the system will describe the
left edge of the bar before the right edge.

The ordering module sorts first on the basis of the space ordering. This is based
on the assumption that in the absence of any other discourse strategy (such as the
need to emphasize or compare properties of a concept across multiple spaces), the
reader will browse the spaces from left to right. After the plan steps have been sorted
on a space-by-space basis, the module sorts plan steps on the basis of their graphical
mappings, using the following ordering heuristics:

position > color > shape > size > text > others

Finally, within each resulting subset, the module orders steps by grapheme type using
the following ordering:

line set > bar set > mark set > text set > others

The strategy of ordering first by graphical mapping and then by grapheme type is
based on our analysis of hand-generated captions. We found that most captions tended
to be structured along the mappings rather than along the graphemes.

Let us now examine how the system’s ordering rules determine the ordering
among clauses 3-5 of the sample caption shown in Figure 19. First, clauses 3-5 are
grouped together because they are all mappings to position. Second, clauses 3-4 pre-
cede clause 5 because bar set must precede mark set. Finally, clause 3 precedes clause
4, because of the conventional preference for left-to-right ordering between edges of
floating bars.

So far, we have examined the ordering strategy that the system will follow by
default. However, the ordering module can also take an optional input, a functional
specification, which can be used to determine plan step orderings that do not con-
form with the default ordering. Using this optional specification, the system can take
advantage of domain knowledge, such as temporal sequencing, which can play an
important role in discourse sequence. For instance, in general it may be preferable to
state the mappings of the left and right edges of a bar in that order. However, if the
left edge of a bar indicates selling-price and the right edge indicates asking-price, and
the usual temporal ordering between the events suggests that one discuss the asking

10 This is conventional for languages that are written from left to right, and may be different in other
languages that are written from right to left.
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price of a house before the selling price, this would lead to mentioning the right edge
before the left edge, contrary to the default ordering.

5.3 Aggregation Module

Once the speech acts are ordered, they are passed to the aggregation module. In the
. general case, aggregation in natural language is a very difficult problem (Dalianis
1996; Shaw 1995; Huang and Fiedler 1996). Fortunately, our generation task requires
a type of aggregation that is relatively straightforward. Our aggregation strategy only
conjoins pairs of contiguous propositions about the same grapheme type in the same
space. The module checks for grapheme types rather than specific graphemes to cover
circumstances where, for instance, a chart may have a number of grey and black bars
(which are different graphemes of the same type). This enables the system to generate
text of the form “The grey bars indicate the selling price of the house, whereas the black bars
indicate the asking price.”

When two propositions are combinable, namely they are about the same grapheme
type in the same space, the system checks to see if the two properties being discussed
are contrastive in some way. For instance, whether the two properties under consider-
ation are the opposite edges of a bar, or are the X and Y axes, etc. If so, the system
picks a contrastive cue phrase (e.g., whereas) to merge the clauses resulting from the
two propositions, otherwise the system picks the cue phrase and.

Let us now briefly examine how aggregation affected clauses 3-5 of the sample
caption in Figure 19. Clauses 3-4 were conjoined because they are about the same
grapheme type, a horizontal bar, in the same space. Moreover, the module placed a
whereas cue phrase between the two clauses, because the opposite edges of a bar are
considered contrastive properties.

5.4 Centering Module

Once clauses are ordered and aggregated, coherence of the generated text can be fur-
ther improved by selecting appropriate orderings between arguments of each clause.
For this task, we have developed a selection strategy based on the centering model.
Focus (e.g., Sidner 1979; Grosz 1977) and centering (e.g., Grosz, Joshi, and Weinstein
1995) models are attempts at explaining linguistic and attentional factors that con-
tribute to local coherence among utterances. Although focus and centering models
were originally developed as foundations for understanding systems, they have fre-
quently been proposed as effective knowledge sources for NLG systems. In particular,
for generating referring expressions (including pronominalization) (see Dale [1992], Ap-
pelt [1985], and Maybury [1991]), for deciding when to combine clauses (subordination
and aggregation) (see Derr and McKeown [1984]), and finally for choosing appropri-
ate inter/intraclause orderings, namely, ordering between clauses and between their
arguments (see Maybury [1991], Hovy and McCoy [1989], and McKeown [1985]).

Details on centering theory and its relation to discourse structure can be found in
Grosz, Joshi, and Weinstein (1995), Walker (1993), Walker, Iida, and Cote (1994), Grosz
and Sidner (1993), and Gordon, Grosz, and Gilliom (1993); for lack of space in this
paper, we only provide a minimal introduction to the basic terminology of centering
theory.

Centers are semantic objects (not words, phrases, or syntactic forms) that link
an utterance to other utterances in the same discourse segment. Centering theory
provides definitions for three different centers, and for four possible center transitions
between two adjacent utterances. It also states two fundamental constraints on center
movement and realization.
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Table 1 )
Center transitions.

Cb(U;) = Cb(U;-1) Ch(U;) # Ch(Ui—1)

Cb(U;) = Cp(Uy) Continue Smooth-Shift
Cb(LL;) # Cp(U;) Retain Rough-Shift

Basic Center Definitions"

e Cf(U): The set of forward-looking centers, which contains all the entities
that can link the current utterance to the following one. It is not
constrained by features of previous utterances. Elements of Cf(U) are
ordered; the major determinant of the ranking on the Cf(U) is
grammatical role with subject > object > others."

e Cp(U): Highest ranking element of Cf(U)

e  Cb(U): The backward-looking center (unique) is the highest ranking
Cf(U;_1) realized in the current utterance U;. Cb(U) is a discourse
construct, therefore the same utterance in different discourse segments
may have a different Cb.

Center Transitions. The four possible center transitions across pairs of utterances are
shown in Table 1.

The central tenet in centering theory is that discourse coherence of a text span
increases (and a reader’s cognitive load decreases) proportionately to the extent that
discourse within the span follows two fundamental centering constraints (Grosz, Joshi,
and Weinstein 1995). These are:

Constraint on realization: If any element in the set of forward-looking
centers of an utterance (U;) is realized by a pronoun in the following
utterance (U;41), then the backward-looking center of the following
utterance (U;41) must also be realized by a pronoun.

Constraint on movement: (i.e., centering transitions) Sequences of
CONTINUATIONS are preferred over sequences of RETAININGs; and
sequences of RETAININGs are preferred over sequences of SHIFTINGs (and
consequently, smooth shifts are preferred over rough shifts).

Grosz and her colleagues suggest that a competent generation system should apply
the constraint on movement by planning ahead in an attempt to minimize the number
of SHIFTs in a locally coherent discourse segment (Grosz, Joshi, and Weinstein 1995).

Our centering-based strategy implements this suggestion by selecting intraclause
orderings that enforce centering transitions consistent with a given discourse struc-
ture. The strategy is general and can be applied to any discourse structure, but to be
effectively applied to the generation of captions, some assumptions not supported in

11 The following functions Cf(U), Cp(U), and Cb(U) apply to a particular utterance U and a particular
discourse segment DS. As in Grosz, Joshi, and Weinstein (1995), we assume DS fixed and we drop it as
an argument. Whenever the utterance argument U is not critical we drop it too.

12 Other factors influence the ranking of Cf(U) elements. The effects of word ordering, clausal
subordination, and lexical semantics are currently under investigation by other researchers.
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This chart presents information about house sales from data-set TS-1742. The Y-
axis indicates the houses. The dark gray bar shows the house’s selling price whereas

the black bar shows the asking price.
Figure 20

The referring expression module uses color in this case to distinguish between the two types
of bars and the attributes mapped to them.

terms of centering theory must be made. The problem is that the NPs generated in the
captions are often possessive and have complex syntactic structures (e.g., the selling
price of the house, the mark’s horizontal position) and centering theory is not yet clear on
the determination of centers in complex syntactic structures such as possessives and
subordinate clauses (Grosz and Sidner 1993). To accommodate this problem we made
two assumptions. First, given possessives of the form “property of grapheme/entity”,
either the grapheme or the entity is the center, not their properties. Second, even when
only a property (e.g., selling-price, right edge) is mentioned, the corresponding entity
or grapheme is the center.

Our centering strategy processes the ordered speech acts sequentially and assumes
that text spans describing the mappings from properties of a grapheme to properties of
an entity are locally coherent discourse segments. The strategy enforces the constraint
on movement within each of these discourse segments by preferring a CONTINUATION
or a SMOOTH-SHIFT transition to a RETAIN or a ROUGH-SHIFT transition, respectively.
This is done by keeping the highest-ranking forward-looking center of the first clause
of the segment (which is either an entity or a grapheme), as the Cp(U;) of all the
following clauses in the same segment. In this way, in all such clauses the Cb(U;) and
the Cp(U;) will be the same and, according to Table 1, this corresponds to forcing
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either CONTINUATIONS Or SMOOTH-SHIFTS.

Furthermore, the strategy applies an additional constraint on movement: between
segments dealing with different graphemes, the strategy explicitly marks the segment
boundaries by preferring ROUGH-SHIFT over SMOOTH-SHIFT and RETAIN over CONTIN-
UATION. This case is not mentioned in Grosz, Joshi, and Weinstein (1995). However,
since the system maintains local coherence in a segment by minimizing ROUGH-SHIFTS
and RETAINS, it seems intuitive to prefer ROUGH-SHIFTs and RETAINs to emphasize the
change at segment boundaries (i.e., the boundaries between such segments should be
maximally incoherent). Thus, in the caption generation application, when a text span
describing the mapping for a grapheme (a discourse segment) is followed by a descrip-
tion of a mapping for a different grapheme (another discourse segment), the centering
strategy will try to force either a ROUGH-SHIFT or RETAIN to mark the segment bound-
ary. This is done by moving the Cb(U;) of the clause following the boundary out of
the clause front position. That is, if the grapheme is the Cb(ll;), the domain entity is
placed in front of the clause, and vice versa in the other case.

For example, consider the effect of the centering strategy on clauses 3-5 of the
sample caption shown in Figure 19. Since clauses 3 and 4 are about mappings from
properties of the same grapheme—a horizontal bar—they are assumed to belong to
the same discourse segment. Therefore, the system keeps the Cp of clause 4 equal
to the Cp of clause 3 by placing the possessive the house’s asking price in front of the
clause. In contrast, since clauses 4 and 5 are about mappings from properties of dif-
ferent graphemes, a RETAIN centering transition (as opposed to a CONTINUATION) was
enforced by moving the possessive corresponding to the Cb, the house’s agency estimate,
out of the front position. Once intraclause orderings are determined by the centering
strategy, the annotated speech acts are passed to the referring expression module.

5.5 Referring Expression Module
The referring expression module is largely based on the algorithm for incremental
interpretation described in Dale and Reiter (1995). The incremental interpretation al-
gorithm can generate appropriate referring expressions by incrementally constructing
a set of attributes that uniquely identify the desired referent. These identifying at-
tributes are selected based on a domain-specific default ordering. In our case, the only
referential problem is identifying the graphemes, and often the type of the grapheme
(e.g., “bar”) is sufficient to do so.”® However, sometimes, a graphic may contain mul-
tiple graphemes of the same type. In such cases, the system must utilize additional
perceptual properties (e.g., color, saturation, size, shape) to build an appropriate re-
ferring expression. For example, the referring expressions for the bars in the caption
for the chart shown in Figure 20 use color as an additional identifying attribute.
Since our system generates multisentential captions, the referring expression mod-
ule takes into account what is in focus at a given point in the discourse in order to
generate concise and natural expressions. The referring expression module considers
in focus all of the forward-looking centers (i.e., Cf) computed by the centering mod-
ule, and simply removes identifying attributes if they are in the Cf at that point in the
discourse. This strategy results in the more concise rephrasing:

(3) The house’s selling price is shown by the left edge of the bar (4) whereas the asking price
is shown by the right edge. The horizontal position of the mark shows the agency estimate.

13 For instance, we do not have to worry about issues such as implicatures conveyed by lexical choices or
the use of non-basic-level classes, since the set of objects and the available ways of referring to them in
our context is so limited.
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There are other forms of referring expression reduction due to discourse context
that require a more sophisticated treatment. Hand-written captions often radically sim-
plify descriptions to express facts such as: “the third chart shows the neighborhood.”
However, the system-generated caption would express the underlying proposition,
based on the data to grapheme mappings, as: “the position of the mark in the third chart
shows the neighborhood.” The sequence of reductions shown below could achieve
the more natural effect by repeatedly reasoning about the picture and the information
being conveyed by each statement.

the position of the mark in the third chart shows the neighborhood (1)
=> the mark in the third chart shows the neighborhood )
=> the third chart shows the neighborhood v €))

The system would need to realize that position was the only attribute of the mark
being used for a mapping, and position is always clear in a graph and need not ex-
plicitly be mentioned; thus resulting in statement (2). However, since the mark is the
only grapheme used in the graph, the system could leave off mentioning the mark as
well, thus resulting in statement (3). There are two ways of dealing with this issue:
(i) The system could apply iterative refinements of the referring expressions generated
by the planner, as done in the local brevity algorithm (Reiter 1990). However, this
single case would have substantially increased the computational cost of generating
referring expressions in all cases, without significantly improving any of the other
(perfectly appropriate) referring expressions generated by the module. (ii) The sys-
tem could recognize this specific situation at a higher level and process the speech
acts appropriately to avoid this situation completely. Thus, rather than considering
this situation as a problem of generating an appropriate expression for the concept
position of the mark in the third chart, we have chosen to push this problem up to the
planner level during content selection. Consequently, there are operators that look
specifically for situations such as this—single grapheme in a space, mapping a single
property—that are selected by the planner in such situations. While this does tend to
muddy the distinction between the “high-level” planner and the “lower-level” tactical
processing—because the planner is now forced to deal with this one situation regard-
ing referring expressions that should arguably be dealt with more properly by the
referring expression module—it does enable the system to generate appropriate texts
with a simpler, more efficient approach in this application.

It should be noted that there is one additional type of referring expression that
our system is capable of generating. This happens in situations when the graphic
being explained is considered complex enough to require an example. In such cases,
the system attempts to highlight the grapheme corresponding to the tuple being used
in the example. There are a number of ways in which the relevant grapheme can
be highlighted—with arrow, a circle surrounding the grapheme, a change in color,
or another graphical annotation—and a corresponding number of ways in which the
caption can then refer to the grapheme. This is similar to the approaches used for
generating cross-modal references discussed in the context of the coMET (McKeown
et al. 1992) and wiP (André and Rist 1994) projects. This will be illustrated in the next
subsection, which discusses the generation of examples.

5.6 Example Generation Module

If the text planner encounters particularly complex data-to-grapheme mappings, it
can attempt to present an example to clarify the problematic mappings. Our current
implementation is designed to trigger the example generation process in the case of in-
terfering grapheme clusters where occlusion can hinder interpretation. Plan operators
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(described in Section 5.1) contain constraints that check for the appropriate conditions
and establish goals for the generation of an example in the caption. In response, the
example generation module selects a grapheme shown in the picture, finds the data
values associated with the individual grapheme, and constructs an example that can
be used by the text planner. Additionally, the example generator also posts a request
to SAGE to highlight the relevant instance in the picture. If the highlighting request
succeeds, the example generator annotates the example with this information and the
resulting caption mentions the highlighted grapheme. Currently, this is the only case in
which the caption generation mechanism can influence the graphic design. A caption
fragment that includes an example is shown below:

For example, as shown in the highlighted tuple, 3237 Beechwood Boulevard's asking price is
79900 dollars and its selling price is 65000 dollars. Its agency estimate is 79781.625
dollars. Its neighborhood is Squirrel Hill.

There are a number of issues relevant to the generation of captions that integrate
examples and text (Mittal and Paris 1992, 1993). We will not discuss them here in
detail because the context in which our current system generates explanations is very
restricted (as compared to the general case of expository text in which examples are
traditionally used when novel or abstract concepts are being introduced). The main
difference between generating examples for purely textual descriptions and our current
application is in the selection of values used for illustration: one of the constraints in
our current situation is the ability of the reader to identify the grapheme in question.
Rather than use a strategy that finds and uses either extreme, limiting values, or more
prototypical values, the current application requires the selection of a grapheme that
is easy to identify and that facilitates the interpretation of values mapped to it. To
enable this, the system must be able to reason about individual graphemes as well as
the picture as a whole: which graphemes are not crowded by other graphemes, are
not too small, thin or otherwise unconventional to make interpretation difficult, have
data values mapped to them that can be discussed in the caption', etc.

6. System Implementation and Evaluation: A Discussion

In general, it is essential to empirically evaluate theories and systems that purportedly
implement them. Not only do evaluations help others understand the strengths and
limitations of various hypotheses and systems, but they also facilitate comparisons
between competing claims in many cases. However, NLG evaluations are considered
difficult (Hovy and Meteer 1990). NLG systems can be evaluated at many different
levels, some which are orthogonal to each other. Our case is no exception. There are

at least three different, and equally important questions that one could investigate
further:

e validity of the complexity metric: This is perhaps the most critical
aspect, since without a valid complexity metric, the system would not be
able to generate reasonable captions irrespective of how well any/all of
the other components performed. The only way to corroborate the
complexity metrics we discussed here would be through rigorous user
experiments; fortunately, a recent dissertation on graph comprehension

14 This situation often occurs in maps, when certain tuples are better for examples because they’re close
to landmarks that can be used to identify them.
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(Shah 1995) looked at some of the factors in our complexity metrics and
found that many of the factors used were indeed correlated with the
increased times required to interpret graphs and charts.

e validity of the discourse strategies: The paper discussed three discourse
strategies for structuring information presented in the captions. There are
at least two ways to evaluate a set of strategies used: (1) We could
perform a corpus analysis on a different set of charts and captions than
those used to initially infer the strategies, in an effort to see how well
they fit the test set: this is the usual approach in machine learning, where
the learning and test sets are kept separate for precisely this reason. This
would require significant resources to find and code charts and their
captions for both the data displayed and the discourse strategies used,
but it would help determine whether the set of discourse strategies we
had come up with was both consistent and complete. (2) Another way to
evaluate the discourse strategies would be to conduct user
comprehension tests with various charts and captions generated using
different strategies at random: while this would be less efficient at
testing the set of strategies for completeness, it would allow us to
validate that a particular strategy (from our set of three) was best suited
for particular types of charts.

e utility of the captions generated: This is really the “value-added” test:
are the captions and the graphics together better than the graphics alone
for some purpose? If so, the value of generating the captions would be
confirmed. We conducted an informal, subjective evaluation of the
system over a period of two years. Whenever users interacted with sAGE
and were unable to understand a graphic, we suggested that they
generate a caption. Later on, we requested feedback on their experience:
whether the captions were useful or not, and if they would have liked to
see something different. We can categorically state that the captions
clearly help in understanding the graphic being presented. The need for
natural language explanations seems to arise every time a novel,
complex graphic is generated—something that happens quite frequently
with SAGE.

A large part of the work we have discussed in this paper is system-independent
and applicable to any automatic graphic design system. Perhaps the most surpris-
ing aspect about our current implementation is how far one can get with such a
simple architecture. We made certain simplifying decisions initially in order to get
a prototype implemented. Surprisingly few of these simplifying assumptions were
problematic down the line. An example of this is our pipelined architecture. Most
NLG researchers agree that the various modules in a NLG system need to be strongly
interconnected with bidirectional communication and control and use shared data
structures. We started off by using a pipelined architecture and were surprised to find
that the simplifications seemed to be problematic in only one situation (which we
were able to get around by planning appropriately). There are several advantages of
a pipelined approach as in our case: not only is it easy to design, implement, and test
each module independently, it also becomes easy to extend the functionality of any
individual module without significantly affecting the others. While such a simplified
architecture will certainly not suffice for all generation tasks, this is a strong argument
for trying this minimal approach to see where it falls short and why.
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Over the last two years, this system has been used to generate captions for several
hundred figures in different domains (housing-sales, Napoleon’s march of 1812, logis-
tics transportation, scheduling, etc.). Porting the system from one domain to another
usually requires only specifying the lexicon for the new domain (e.g., battle, troops,
etc.). The fact that the captions generated in each of these—quite different—domains
are deemed useful and natural by users is testimony to the effectiveness of the caption
generation mechanism currently in place.

It should be noted that there are two shortcomings in the system that will be
addressed in future work: (1) the caption generation system, as described here, cannot,
in general, modify the graphics designed by SAGE. There are several cases where this
capability would be extremely useful, but the caption generation system described
here was designed to work after SAGE had designed and rendered the graphic. There
is one specialized case where coordination currently occurs, which is when the caption
generator presents an example. In that case, the caption generator can request that the
graphemes corresponding to the tuple values used in the example be highlighted in the
picture; (2) the system does not, as yet, analyze the data set for interesting patterns or
clusters of data points. To do this, the system will need a clustering analysis module
that can be used by the caption generator. As a result, the system cannot generate
captions of the sort “this chart shows that sales were flat throughout 1995, but rose sharply in
1996.”

7. Related Work

Most previous efforts in generating intelligent multimedia presentations have focused
on coordinating natural language and graphical depictions of real world devices (e.g.,
military radios [Feiner and McKeown 1991] and coffee makers [Wahlster et al. 1993])
for generating instructions about their repair or proper use. These projects tackled
important problems such as apportioning content to media and generating cross-
references between them. Research has also focused on issues regarding the generation
of coordinated presentations in applications where the graphics are familiar, or possess
an obvious mapping between the data set and a graphical image (e.g., weather maps
[Kerpedjiev 1992] and network diagrams [Marks and Reiter 1990]).

Our work differs from these projects in two ways. The first difference concerns
the type of data that our system deals with. Unlike the presentations generated by
the systems mentioned above, presentations generated by SAGE are usually based on
abstract or relational information (e.g., census reports, logistics data, hospital admin-
istration data, real estate sales data), lacking any obvious graphical depiction. Second,
although our long term goal is to generate coordinated multimedia explanations using
informational graphics and natural language, our focus in this paper was on generat-
ing effective natural language explanations about the graphical presentations. In order
to do this, the system had to explicitly reason about the perceptual complexity of the
presentation. Generating such captions is an important component of constructing
multimedia explanations involving integrative graphical displays.

The PosTGRAPHE system (Fasciano 1996; Fasciano and Lapalme 1996) is the clos-
est related research effort. As in our work, POSTGRAPHE generates statistical graphics
and accompanying captions. However, the issues considered in our work differ from
those in POSTGRAPHE in several ways and both the text and the graphics generated
by PosTGRAPHE emphasize aspects orthogonal to the ones considered in our project.
For instance, POSTGRAPHE can take as input a list of aspects that should be con-
veyed by the presentation. (These goals are represented in the system as a predefined
set of templates, such as, “show the evolution of (attribute-name-1) with respect to
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(attribute-name-2).”) This information is then used by POSTGRAPHE not only to gen-
erate an appropriate type of diagram (e.g., a line chart), but also to generate a caption
that explicitly captures the specific aspects of interest, such as: “The profits were at
their highest in 1975 and lowest in 1974, with about haif their 1975 value.” This is in
contrast to our system, which does not reason about trends or relationships between
different data points shown in the graphic. Instead, our work has focused on describing
complex data-to-grapheme mappings and deriving metrics for perceptual complexity.
This is due, in part, to the nature of the graphical presentations that the two systems
can design. SAGE, for instance, is capable of designing novel graphical presentations
for very complex data sets, using techniques such as multiple grapheme composition
and space alignment to facilitate cross-attribute comparisons. The range of graphical
capabilities in POSTGRAPHE is more limited. Combined with the fact that the graphics
are generated in response to an explicit user goal, user comprehension problems in
POSTGRAPHE are less likely than in our system. Perhaps in light of this, POSTGRAPHE
does not need to explicitly analyze its graphic presentations for potential ambiguities
or perceptual complexities, and the captions accompanying the graphic do not take
these factors into account.

However, our current implementation, described in the paper, should not be
confused with our long term research agenda; it was designed as a framework to
evaluate more sophisticated capabilities. These include some of the capabilities that
POSTGRAPHE has, particularly those dealing with the generation of information about
trends and patterns. We plan to extend the approach used by POSTGRAPHE to take
into account both the writer’s goals and domain- and data-specific aspects. To this
end, we are developing a language to express presentation intentions, taking into ac-
count our experiences as well as the language used in PosTGRAPHE. Furthermore,
whereas the sequence of presentation goals to be achieved are part of the input to
POSTGRAPHE, our new framework generates these dynamically by integrating a data
analysis module with a discourse planner. The data analysis module is being designed
to identify all possible relevant aspects of the data based on the domain specification
and an analysis task. The planner can use a variety of strategies to select and organize
these aspects into complex arguments that can be realized as presentations combining
both text and graphics (see Kerpedjiev et al. [1997] for further details on our new
framework).

8. Conclusions and Future Work

Captions that explain novel or creative graphics can be crucial in understanding how
data and various relations are expressed in them. This paper presents a framework
for generating explanatory captions for information graphics. The system generates
captions based on: (1) a representation of the structure of the graphical presentation
and its mapping to the data it depicts, (2) a framework for identifying the perceptual
complexity of graphical elements, and (3) the structure of the data expressed in the
graphic.

One of the strengths of our approach is that the system is able to generate surpris-
ingly effective and comprehensible descriptions in the absence of a detailed semantic
model for the domain. The captions shown in this document were generated using
only the data characterization used by sAGE for designing the visual presentation and
an extremely basic lexical representation. Thus, the caption generation mechanism can
be quickly and easily transferred to another domain (the only thing required is a
lexicon for the new terms). However, this is also a limitation, because under certain
circumstances, the system generates seemingly odd descriptions. This occurs in cases
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where the underlying database representation happens to contain attribute specifica-
tions that differ from the way they would normally be described in discourse. For
instance, if the database schema happened to relate house attributes such as house
address, number of rooms, and sale price to the owner of the house, rather than the
house itself, the system would generate statements such as “John’s sale price is ...".

A secondary limitation of our implementation is that it does not generate general
graphical annotations. While the system can (and does) highlight specific graphemes
in the presentation if so required by the planner (currently done to single out the
tuple being used in an example), the system does not coordinate the generation of
graphical keys and the captions. This is because our speech act language does not
permit bidirectional communication between the text planner and SAGE. The ability
to specify arbitrary graphical annotations in the speech act language would make the
current simple specification quite complex. As we extend the planning framework to
generate both the text and the graphics, this will be remedied as well.

There are two ways to facilitate an effective use of a graphic: (1) explaining how the
graphic expresses its data, and (2) conveying what aspects of the data are relevant to
the current user’s analysis task. In the work described in this paper, we have addressed
the first issue. We are currently working on the second one.

Appendix A: The Speech Act Specification

<speech-act> ::= ((PROCESS <symbol>)
(CIRCUM  <circum-expr>)
(AGENT <entity-expr>)
(AFFECTED <entity-expr>))
|
((PROCESS ASCRIPTIVE)
(CIRCUM <circum-expr>)
(IDENTIFIED <entity-expr>)
(IDENTIFIER <entity-expr>))

:NONE |

(<symbol>+) |

(ONLY-ONE  <symbol>) |
(<position> <symbol>) |
(EXAMPLE <symbol>)

<circum-expr> ::

:NONE|

(<symbol>+) |

(ONLY-ONE <symbol>) |

(:SET (<symbol>+))

(:PROP <entity-expr> <entity-expr>) |

(RELATIONSHIP (:SET (<symbol>+))

(:SET (<symbol>+))) |

(DATA-SET (NAME (<symbol>))
(RELATION (<symbol>))) |

(<number> <symbol>)

<entity-expr> ::

<position> ::= LEFT | RIGHT | MIDDLE | TOP | BOTTOM

Figure 21
The BNF for specifying speech acts in our system.
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STEP: (SPEECH-ACT
((PROCESS PRESENT)
(CIRCUM :NONE) (AGENT (CHART))
(AFFECTED
(DATA-SET (NAME (:SET (TS-2480)))
(RELATION (:SET (HOUSE-SALES-INF0))))
(ANCHOR DOM-2516))))

STEP: (SPEECH-ACT
((PROCESS SHOW)
(CIRCUM (:ONLY-ONE CHART)) (AGENT (Y-AXIS))
(AFFECTED
(ANCHOR (Y-AXIS) DOM-2589))))

STEP: (SPEECH-ACT

((PROCESS SHOW)

(CIRCUM (:ONLY-ONE CHART))

(GRAPHEME HORIZONTAL-INTERVAL-BAR-SET)

(AGENT

(:PROP (X1) (HORIZONTAL-INTERVAL-BAR-SET)))
(AFFECTED

(:PROP ((:SET (DOM-2512))) (DOM-2589 DOM-2516)))

(ANCHOR DOM-2516)))

STEP: (SPEECH-ACT

((PROCESS SHOW)

(CIRCUM (:ONLY-ONE CHART))

(GRAPHEME HORIZONTAL-INTERVAL-BAR-SET)

(AGENT

(:PROP (X2) (HORIZONTAL-INTERVAL-BAR-SET)))

(AFFECTED

(:PROP ((:SET (DOM-2517))) (DOM-2589 DOM-2516)))
(ANCHOR DOM-2516}))

STEP: (SPEECH-ACT
((PROCESS SHOW)
(CIRCUM (:0ONLY-ONE CHART))
(GRAPHEME NIL)
(AGENT (MARK-SET))
(AFFECTED
(:PROP ((:SET (DOM-2590))) (DOM-2589 DOM-2516)))
(ANCHOR DOM-2516)))

This chart presents information about house sales from data-set TS-2480. The y-axis shows the
houses. The left edge of the bar shows the house’s selling price whereas the right edge shows the
-asking price. The mark shows the agency estimate.

Figure 22

Plan steps and the corresponding caption generated. (Terms such as DOM-2516 are pointers to
domain concepts and attributes in the KB.)
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