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It has been argued that rule-based phonological descriptions can uniformly be expressed as map- 
pings carried out by finite-state transducers, and therefore fall within the class of rational relations. 
If this property of generative capacity is an empirically correct characterization of phonological 
mappings, it should hold of any sufficiently restrictive theory of phonology, whether it utilizes con- 
straints or rewrite rules. In this paper, we investigate the conditions under which the phonological 
descriptions that are possible within the view of constraint interaction embodied in Optimality 
Theory (Prince and Smolensky 1993) remain within the class of rational relations. We show that 
this is true when GEN is itself a rational relation, and each of the constraints distinguishes among 
finitely many regular sets of candidates. 

1. Introduction 

Analyses within generative phonology have traditionally been stated in terms of sys- 
tems of rewrite rules, which, when applied in the appropriate sequence, produce a 
surface form from an underlying representation. As first pointed out by Johnson 
(1972), the effects of phonological rewrite rules can be simulated using only finite- 
state machinery, with iterative application accomplished by sending the output from 
one transducer to the input of the next, a process that can be compiled out into a single 
transducer (Kaplan and Kay 1994). 1 Using this insight, a vast majority of computa- 
tional implementations of phonological rule systems have been done using finite-state 
transducers or extensions thereof (Sproat 1992). 

Recently, there has been a shift in much of the work on phonological theory, from 
systems of rules to sets of well-formedness constraints (Paradis 1988, Scobbie 1991, 
Prince and Smolensky 1993, Burzio 1994). This shift has, however, had relatively little 
impact upon computational work (but see Bird and Ellison 1994). In this paper, we 
begin an examination of the effects of the move from rule-based to constraint-based 
theories upon the generative properties of phonological theories. Specifically, we will 
focus our efforts on the issue of whether the widely adopted constraint-based view 
known as Optimality Theory (OT) may be instantiated in a finite-state transducer. 2 OT 

* Department of Cognitive Science, 3400 N. Charles Street, Baltimore, MD 21218. E-mail: 
rfrank@cogsci.jhu.edu. This author is also affiliated with the Center for Language and Speech 
Processing, Johns Hopkins University. 

f Dipartimento di Elettronica ed Informatica, Via Gradenigo 6/a, 1-35131 Padova, Italy. E-mail: 
satta@dei.unipd.it. Part of the present research was done while this author was visiting the Center for 
Language and Speech Processing, Johns Hopkins University. 

1 An alternative to composition o f  transducers involves running multiple rule transducers in parallel, 
producing so-called two-level phonological systems (Koskenniemi 1984). See Barton, Berwick, and 
Ristad (1987) for discussion of space and time complexity issues. 

2 We are aware of two papers that study related matters. Ellison (1994) addresses the question of 

Q 1998 Association for Computational Linguistics 



Computational Linguistics Volume 24, Number 2 

raises a particularly interesting theoretical quest ion in this context: it allows the speci- 
fication of a ranking among the constraints and allows lower-ranked constraints to be 
violated in order  for higher-ranked constraints to be satisfied. This violability proper ty  
means  that certain wel l -known computat ional  techniques for imposing constraints are 
not directly applicable. Our  s tudy can be seen, therefore, as the beginnings of an in- 
vestigation of the generative complexi ty of constraint ranking and violability. In this 
paper, we present  a general formalization of OT that directly embodies  that theory 's  
notion of constraint violability. We then s tudy the formal propert ies  of one particular 
case of this general  formalization in which the mapping  from input  to possible ou tput  
forms, GEN, is representable as a finite-state transducer, and where  each constraint is 
represented by  means  of some total function from strings to non-negat ive integers, 
with the requirement  that the inverse image of every  integer be a regular set. These 
two formal assumptions are sufficiently generous to allow us to capture most  of the 
current  phonological  analyses within the OT f ramework  that have been presented in 
the literature. We prove  that the generative capacity of the resulting system does not  
exceed that of the class of finite-state t ransducers precisely w h en  each constraint has 
a finite codomain,  i.e., constraints may  distinguish among only a finite set of equiv- 
alence classes of candidates. As will be discussed in Section 6, this result is optimal 
with respect to the finite codomain  assumption,  in the sense that d ropping  this as- 
sumpt ion  allows the representat ion of relations that cannot  be implemented  by  means  
of a finite-state t ransducer (the latter fact has been shown to us by  Markus Hiller, and 
will be discussed here). Before proceeding with the discussion of our  result, however,  
we describe the rudiments  of OT and introduce some technical notions. 

2. Basics of  OT 

As in derivational  systems, the general form of phonological  computa t ion  in OT pro- 
ceeds from an under lying representat ion (UR). 3 Such a UR is fed as input  to the func- 
tion OEN, which produces  as ou tpu t  the set of all possible surface realizations (SRs) 
for this UR, called the candidate  set. The notion of a possible SR, as realized in Prince 
and Smolensky (1993), is governed by  the con ta inment  condi t ion,  requiring any SR 
ou tpu t  by  GEN to include a representat ion of the UR as a (not necessarily contiguous) 
subpart.  Thus, an SR must  at a min imum include all of the structure that is specified 
in the UR, but  may  also include extra structure absent f rom the UR, called epenthet ic  
structure. This is not  to say that all parts  of the input  are necessarily p ronounced  at 
the surface. Rather, the analogue of "delet ion" m ay  occur by  marking that part  of the 
SR corresponding to the deleted material as unparsed ,  meaning  that it is not  visible 
to the phonetic  interface. 

The candidate  set p roduced  by  GEN for any UR will in general be infinite, as there 
is no bound  on the amount  of epenthetic material that m ay  be added  to the UR to pro- 

whether the constraint satisfaction problem for a specific input form can be compiled into a finite-state 
automaton. He provides an algorithm to produce a nondeterministic finite-state automaton that 
represents the set of winning candidates for any particular underlying form given finite-state 
representations of the input and the constraints. We are, however, interested in the more general 
question of whether the input-output mapping specified by OT for the class of inputs as a whole can 
be simulated with finite-state machinery. Another related study is that of Tesar (1995), who shows how 
the set of optimal output forms can be efficiently computed using a dynamic programming technique. 
Tesar does not, however, address the question of the generative complexity of the mappings his 
algorithm computes. 

3 Length constraints prevent us from presenting a more comprehensive introduction to OT. For further 
discussion of the formal structure of the model and its empirical consequences, see Prince and 
Smolensky (1993) and references cited therein. 
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duce the SR. The core of the OT machinery is devoted  to choosing among the members  
of this candidate set to determine which is the actual SR. To do this, OT imposes a set of 
well-formedness constraints on the elements of the candidate set. Note,  however,  that 
these constraints are not  imposed conjunctively, meaning that the "winning"  SR need 
not, and most  often will not, satisfy them all. Instead, OT allows for the specification 
of a language-particular ranking among the constraints, reflecting their relative im- 
portance. The candidate SRs are evaluated with respect to the constraints in a number  
of stages. At each stage, the entire candidate set is subjected to one of the constraints, 
the stage at which a constraint is appl ied being de termined by the specified constraint 
ranking. 4 There are two possible outcomes of such an evaluation. The first arises when  
some members  of the candidate set violate the constraint, but  others do not. In this 
case, the constraint permits  us to distinguish among the members  of the candidate 
set: those that do not  satisfy the constraint are eliminated from the candidate set and 
are not  considered in subsequent  constraint evaluation. (Alternatively, if a constraint 
can be violated multiple times by a single SR, the relevant evaluat ion compares  the 
number  of violations incurred by  each of the SRs in the candidate set. Candidates with 
the fewest violations are preferred and those with more  violations are eliminated.) The 
second possible outcome from a constraint evaluation ensues when  all of the members  
of the candidate set violate the constraint to the same degree, perhaps  massively or 
perhaps  not  at all. When this happens,  the constraint does not  help us in narrowing 
dow n  the candidate  set. Hence, no candidates are el iminated from the candidate set 
and violations of the constraint do not  block any of them from being considered fur- 
ther to be the actual SR. At the end of the last stage, i.e., when  all constraints have 
been applied, what  remains is precisely the subset of the candidate set that are the 
optimal satisfiers of the constraints under  their ranking. This set of candidates, which 
will often contain only a single member  under  the system of constraints suggested by  
Prince and Smolensky (1993), is taken as the set of actual SRs for the original UR. 

OT makes the strong assumption that the constraints used to evaluate the mem- 
bers of the candidate set are universal,  and are therefore active in the phonology  of 
every  language. What  varies from one language to another  is the relative ranking of 
constraints. Thus, as soon as a commitment  is made  concerning the set of constraints, 
there is a concomitant  commitment  concerning the range of possible typological varia- 
tion: every  ordering of the constraints corresponds to a possible phonological  system. 

3. Formal Preliminaries 

Before proceeding with our  formalization of OT, it will be useful to review some 
formal notation. Given a finite alphabet  ~ we denote  by  ~ the set of all strings over  
G, including the empty  string ~, and we denote  by 2 E• the power  set of ~*. 

We assume that the reader is familiar with the notions of finite-state automaton,  
regular language, finite-state transducer, and rational relation; definitions and basic 
propert ies can be found in Gurari  (1989). To recap briefly, a finite-state transducer 
is a finite-state au tomaton  whose transitions are defined over the cross-product set 
(~ U {~}) x (& U {~}), with ~ and & two (finite) alphabets. If we interpret  ~ as the 
alphabet of input  to the machine and & as the alphabet  of output ,  each accepting 

4 We note that there is nothing about the OT system that requires that candidates be evaluated in this 
serial manner. Instead, all of the coostraints could be seen as being imposed in parallel, with the 
relative importance among violations being determined after the evaluation. From the perspective of 
specifying the abstract computation that is determined by the OT model, nothing hinges on this serial 
versus parallel distinction, so far as we can see. 
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computat ion of the transducer can be viewed as defining a mapping between a string 
in E* and a string in A*. Of course, the finite-state transducer may  be nondeterministic, 
in which case a single input string may  give rise to multiple outputs. Thus, every finite- 
state transducer can be associated with what  is called a rational relation, a relation 
over E* x A* containing all possible input -output  pairs. A rational relation R can also 
be regarded as a function [R] from E* to 2 a*, by  taking [R](u) = {v ] (u,v) E R} for 
each u E E*. We will use this latter representation of rational relations throughout  our 
subsequent discussion. 

4. A Model  of OT 

We are now in a position to present our formal model  of the OT system. Let us denote 
as N the set of nonnegative integers. 

Definition 
An optimality system (OS) is a triple G = (E, tEN, C), where E is a finite alphabet, 

GEN is a relation over E* x E" and C = (cl . . . . .  Cp), p > 1, is an ordered sequence 
of total functions from E* to N. 

The basic idea underlying this definition is as follows: If w is a well-formed UR, 
[GEN](W) is the nonempty  set of all associated SR, otherwise [¢nN](W) = 0. Each func- 
tion c in C represents some constraint of the grammar. For a given SR w, the non- 
negative integer c(w) is the "degree of violation" that w incurs with respect to the 
represented constraint. Given a set of candidates S, we are interested in the subset of 
S that violates c to the least degree, i.e., whose value under  the function c is lowest. 
To facilitate reference to this subset, we define 

argminc{S } = {w] w E S, c(w) = min{c(w') ] w' E S}}. 

We can now define the map an OS induces. We do this in stages, each one representing 
the evaluation of the candidates according to one of the constraints. For each w E E* 
and for 0 < i < p we define a function from E* to 2~*: 

OT~(w) = OT~-I (w) 

argminc, {OT~-l(w) } 

if i = 0; 
if i >  1 and argminci{OT~-l(w)} = OT~-l(w); 

if i > 1 and argminc,{OT~-l(w)} # OT~-l(w). 

Function OTPc is called the optimality function associated with G, and is simply de- 
noted as OTc. We drop the subscript when  there is no ambiguity. 

The question of the expressive power  of OT can now be stated precisely: what  is the 
generative capacity of the class of optimality functions? The answer to this question 
depends,  of course, upon the character of the functions that serve as GRN and the 
constraints. Though we will not make any substantive empirical claims about these 
functions, we will make a number  of specific assumptions concerning their formal 
nature. Regarding GEN, we assume that the mapping from the UR to the candidate set 
is specifiable in terms of a finite-state transducer, that is to say, we will consider only 
OSs for which GEN is a rational relation (viewing rational relations as functions, as 
specified in the previous section). Since the question that we focus on in this research 
is that of determining whether  the class of mappings specifiable in OT is beyond the 
formal power  of finite-state transducers, allowing ann  to be beyond the power  of a 
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finite-state t ransducer  would  decide the question byfiat,  s In addition, we assume that 
each constraint c in C is regular  in that it satisfies the following requirement:  For each 
k E N, the set {w I w E ~*, c(w) = k} (i.e., the inverse image of k under  c) is a regular 
language. In other words,  this requires that the set of candidates that violate a given 
constraint to any particular level must  be regular. The choice of regular constraints is 
for reasons essentially identical to those that mot ivated the use of rational relations 
for GEN. 

It turns out  that nearly all of the constraints that have been proposed  in the OT 
phonological  literature are regular in this sense. The reason for this is that OT con- 
straints have tended to take the form of local conditions on the well-formedness of 
phonological  representations, where  local means bounded  in size. Because of this re- 
striction, we can characterize all possible violations of a given constraint c through a 
finite set of configurations Vc. More precisely, a phonological  representations w attests 
as m any  violations of c as the number  of occurrences of strings in Vc appear ing as sub- 
strings of w. Since Vc is finite, it can be represented through some regular expression. 
Under  the s tandard assumption that phonological  representations are not  structurally 
recursive, but  rather are combined using essentially i terated concatenation, we can 
use wel l -known algebraic propert ies  of regular languages (see for instance Kaplan 
and Kay 1994) to show that c is regular. (See Tesar 1995 for further  discussion of a 
related notion of locality in constraints.) 

5. OT as a Rational Relation 

This section presents the main result of this paper. We show that OSs of the sort 
outl ined in the last section can be implemented  through finite-state t ransducers so long 
as each constraint of the system satisfies one additional restriction: that it have a finite 
codomain,  meaning that it distinguishes among only a finite set of equivalence classes 
of candidates. We start with some propert ies of the class of rational relations that will 
be needed  later (proofs of these propert ies  can be found for instance in Gurari  1989). Let 
R be a rational relation. The left projection of R is the language Left(R) = {u I (u, v) E 
R}. Symmetrically, the fight projection is the language Right(R) = {v I (u, v) E R}. It 
is well known that Left(R) and Right(R) are both regular languages. If R' is a rational 
relation, the composit ion of R and R', defined as R o R' = {(u,v) I (u,w) E R, (w,v)  E 
R', for some w}, is still a rational relation. 

Let L be a regular language. We define the left restriction of R to L as the relation 
Lrst(R,L) = {(u,v) I (u,v) E R, u E L}. Symmetrically, Rrst(R,L) = {(u,v) ] (u,v) E 
R, v E L} is the fight restriction of R to L. Both Lrst(R, L) and Rrst(R, L) are rational 
relations. The idea under ly ing  a proof  of this fact is to compose R (to the left or to the 
right) with the identi ty relation {(w, w) I w E L}, which is rational. 

Let G = (G, GEN, C) be an OS. We start the presentat ion of our  result by  restricting 
our  attention to constraints having codomain of size two, that is, each ci in C is a total 
function from ~* to {0,1} such that both  the set L(ci) -- {w I w E ~*, Ci(W) -~ 0} and its 
complement  are regular. Recall that L(ci) denotes the language of all strings in G* that 
satisfy the constraint of the grammar  represented by  ci, and its complement ,  the strings 

5 We recognize that this assumption, while plausible for phonological representations, is perhaps less so 
for syntactic representations. Further, as a reviewer points out, recent developments of OT in the 
domain of reduplication phenomena (McCarthy and Prince 1995), which assume that GEN produces a 
correspondence relation between the UR and SR, might constitute a phonological case in which tEN is 
not a rational relation. If well-formedness conditions on this correspondence relation are guaranteed 
only by the constraints, however, GEN could remain rational, though the constraints would no doubt 
cease to be expressible as regular languages. 
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mapped to I by ci, includes all strings that violate it. Thus, such cis correspond to con- 
straints that can distinguish only between complete satisfaction and violation. Using 
the above restriction, we can reformulate the definition of OT i reported in Section 4: 

[GEN](W) if i =  0; 
OTi(w) = OTi-I(w) if i > 1 and OTi-l(w) f3 L(ci) = O; (1) 

OT i-l(w) N L(ci) if i > 1 and OT i-1 (w) N L(ci) # 0. 

Note that the case where all candidates in OT i-1 (w) satisfy constraint ci falls under  
the second clause of the definition in Section 4, but  under  the third clause of (1). 
However, this case is treated in the same way  in both definitions, since OTi-l(w) = 
OT i-l(w) f3 L(ci) if OT i-1 (w) C L(ci). We are now ready to prove a technical lemma. 

L e m m a  1 
Let G = (G, GEN, C) be an OS such that GEN is a rational relation and each constraint 
in C is regular and has co-domain of size two. Then OTc is a rational relation. 

Let us start with the basic idea underlying the proof of this lemma. Assume that for 
i _> 1 we have already been able to represent OT i-1 by means of a rational relation R. 
Consider some UR w and the set of associated candidate SRs that are optimal with 
respect to OT i-1, that is, the set OTi-l(w) = [R](w). To compute the strings in this set 
that are optimal with respect to ci, we must  perform what  amounts  to a "conditional 
intersection" with the regular language L(ci), as determined by (1). That is, we check 
if there are candidates from [R] (w) that are also compatible with ci, i.e., that are mem- 
bers of L(ci). If there are some some, we eliminate any nonsatisfying candidates by 
intersecting [R](w) with L(ci) (third condition in [1]). However, if no such candidates 
remain, we do nothing to the set of candidates from OT i-1 (second condition in [1]). 
As shown in the proof below, it turns out that this can be done by partitioning the left 
projection of relation R into two regular languages. This results in the "splitting" of R 
into two relations, one of which must  be "refined" by taking its right restriction to lan- 
guage L(ci). The union of the two resulting relations is then the desired representation 
of OT i. Putting these ideas together, we are now ready to present a formal proof. 

Proof  
We show that OT i is a rational relation for 0 < i < p. We proceed by induction on i. 
For i = 0, the claim directly follows from our assumptions about OEN. Let 1 < i < p. 
From the inductive hypothesis, there exists a rational relation R such that [R] = OT i-1. 
Since L(ci) is a regular language, from an already mentioned property it follows that: 

R1 = Rrst(R,L(ci)) 

is a rational relation as well. Function [al] associates a UR to the set of SRs that are 
optimal up to constraint ci-1 and that also satisfy ci, the latter being the effect of the 
right restriction operator. Since R1 is rational, we have that L1 = Left(R1), the set of 
URs for which function JR1] results in some non-empty set, is a regular langua__ ge. By a 
well-known closure property of regular languages, the com_plement of L1, L1 = G* - L1, 
is a regular language as well. Note that, for each UR in L1, no associated SR is both 
optimal up to constraint ci-1 and satisfies ci. It then follows, by an already ment ioned 
property, that: 

R2 = Lrst(R, L1) 
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is a rational relation. Note that function [R2] computes  optimali ty up  to constraint  ci-1, 
but  only over  those URs whose optimal satisfiers do not  satisfy ci. It is not  difficult to 
see from an inspection of (1) that OT i = [R1 U a2]. Then the statement of the lemma 
follows from the fact that the class of rational relations is closed under  finite union 
(see for instance Gurari  1989). [] 

The result in the above lemma can be extended to regular constraints having 
arbitrarily large finite codomain,  corresponding to constraints that rank candidates 
along some finite-valued scale. This is done using a construction, first suggested in 
Ellison (1994), which, expressed intuitively, replaces any such constraint function by  
a finite number  of constraint functions having codomain of size two. More formally, 
assume constraint c has codomain  {0 ,1 , . . . , k} ,  k > 1. We introduce new constraints 
(c,i), 1 < i < k, defined as follows: For each 1 < i < k and w C G*, we let (c,i)(w) = 0 
if c(w) < i, (c, i)(w) -- 1 if c(w) >_ i. Each (c, i) has codomain  of size two. Since the 
class of regular languages is closed under  finite union, if c is regular then each (c, i) is 
regular. 

We can finally state our  main result, which directly follows from the above dis- 
cussion and from Lemma 1. 

Theorem 1 
Let G = (G, GEN, C) be an OS such that ORN is a rational relation and each constraint 
in C is regular and has a finite codomain.  Then OTG is a rational relation. 

6. Discussion 

We have shown that when  GUN is a rational relation and the constraints have a fi- 
nite codomain,  constraint ranking as defined by  OT yields a system whose generative 
capacity does not  exceed that of rational relations. Because of the nature of the con- 
struction in the proof  of Lemma 1 (specifically the union of the relations R1 and R2 
at each stage in the iteration), the finite-state t ransducer that is built crucially exploits 
transition nondeterminism.  We note, however,  that any finite-state t ransducer used to 
implement  an OS will in any case need to be nondeterministic,  since in general OT 
can pair more than one SR with a given UR. 6 

As we have ment ioned above, our  result tolerates only so-called binary and multi- 
valued constraints, constraints that rank the candidates along some finite-valued scale. 
A linguistic example of such a mul t ivalued constraint is Prince and Smolensky's  HNUC, 
which rates the goodness of a ' segment  serving as a syllabic nucleus, the rating being 
determined by the position of the segment  along the finitely part i t ioned sonori ty hi- 
erarchy. Yet, this formal power  is not  sufficient to express the greater propor t ion of 
phonological  analyses that have been given in the OT framework.  In particular, it is 
usually assumed that constraints can be violated an arbitrary number  of times by  a 
single form, and that differences at any level of violation are grammatical ly signifi- 
cant. For example, even in the simple system of syllable structure constraints discussed 
in Prince and Smolensky (1993, Section 6), the computa t ion  of optimality for certain 

6 It is interesting to note that this potential for nondeterminism is not exploited under many of the 
systems of constraints that have actually been proposed by OT practitioners. For example, the existence 
of families of constraints requiring the alignment of particular morphemes with a certain boundaries in 
an SR, members of the family of so-called generalized alignment constraints (McCarthy and Prince 
1993), will often have the effect of linearly ordering all SRs according to their optimality, thereby 
yielding a single SR for each UR. 
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very long forms might require us to distinguish between 300 and 301 violations of the 
PARSE constraint. Consequently, it is a question of significant interest whether our re- 
sult extends to the case of such gradient constraints, or in more formal terms, whether 
OTc remains a rational relation when the (regular) constraints of the system can have 
an unbounded codomain. 

It turns out that this is not true in the general case. The following example (due to 
P. Smolensky, after an idea of M. Hiller who first proved this separation result) shows 
this fact using only a single constraint: 

G = {a,b}, 
GEN = {(anbm, anbm) l n ,m E N}U{(a 'bm,b 'a  m) l n,m E N},  

c(w) = #a(W), 

where #a(w) denotes the number of occurrences of a within w. (Constraint c can be 
seen as a prohibition against the occurrence of the letter a in an SR.) Clearly GEN is 
a rational relation and c satisfies our previous assumptions. It is not difficult to see 
that this system is associated with a function OTc such that a string of the form a'b m 
is mapped to the singleton {anb m} if n < m, to the singleton {b'a m} if m < n, and to 
the set {anb m, b'a m} when n = m. The relation R that realizes such a function is not 
rational, since its right restriction to the regular language {a'b m I n, m E N} does not 
have a regular left projection, namely {anb m I n < m}. This fact shows that the result 
in Theorem 1 is optimal with respect to the finite codomain hypothesis, that is to say, 
no weaker assumption concerning the nature of the constraints will suffice to keep the 
generative capacity of mappings defined by OSs within that of rational relations. It 
remains an open problem to characterize precisely the generative capacity of systems 
with gradient constraints, as well as that of OSs with other assumptions about the 
formal power of GEN and the constraints. 

Finally, it is useful to recall the empirical argument given in Karttunen (1993) that 
attested phonological processes mediating between UR and SR can be modeled by a 
finite-state transducer. Though this argument was given in the context of a different 
conception of phonological derivation, the conclusion, if correct, is general. That is, 
whether the relation between UR and SR is best characterized in terms of rewriting 
sequences or OT optimizations, Karttunen's argument suggests that the generative 
complexity of the resulting mapping need be no greater than that of rational transla- 
tions. If this empirical argument is on the right track, our results diagnose a formal 
deficiency with the OT formal system, namely that it is too rich in generative capacity. 
Our results also suggest a cure, however: constraints should be limited in the number 
of distinctions they can make in levels of violation. We suspect that following this 
regimen will necessitate a shift in the type of optimization carried out in OT, from 
global optimization over arbitrarily large representations to local optimization over 
structural domains of bounded complexity (where only a bounded number of vio- 
lations can possible occur). Following the empirical and formal implications of this 
move would go well beyond the scope of the present work, so we leave this for the 
future. 
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