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This paper proposes a new computational treatment of lexical rules as used in the HPSG frame- 
work. A compiler is described which translates a set of lexical rules and their interaction into a 
definite clause encoding, which is called by the base lexical entries in the lexicon. This way, the 
disjunctive possibilities arising from lexical rule application are encoded as systematic covariation 
in the specification of lexical entries. The compiler ensures the automatic transfer of properties 
not changed by a lexical rule. Program transformation techniques are used to advance the en- 
coding. The final output of the compiler constitutes an efficient computational counterpart of the 
linguistic generalizations captured by lexical rules and allows on-the-fly application of lexical 
rules. 

1. Introduct ion 

In the paradigm of HPSG, lexical rules have become one of the key mechanisms used 
in current linguistic analysis. Computationally, lexical rules have mainly been dealt 
with in two ways: On the one hand, lexical rules are used to expand out the full 
lexicon at compile-time. On the other hand, lexical rules are encoded as unary phrase 
structure rules. Both of these computational treatments of lexical rules, however, have 
significant shortcomings with respect to lexical rules as used in HPSG. 

A computational treatment expanding out the lexicon cannot be used for the in- 
creasing number of HPSG analyses that propose lexical rules that would result in an 
infinite lexicon. Most current HPSG analyses of Dutch, German, Italian, and French 
fall into that category. 1 Furthermore, since lexical rules in such an approach only serve 
in a precompilation step, the generalizations captured by the lexical rules cannot be 
used at run-time. Finally, all such treatments of lexical rules currently available pre- 
suppose a fully explicit notation of lexical rule specifications that transfer properties 
not changed by the lexical rules to the newly created lexical entry. This conflicts with 
the standard assumption made in HPSG that only the properties changed by a lexical 
rule need be mentioned. As shown in Meurers (1994) this is a well-motivated conven- 
tion since it avoids splitting up lexical rules to transfer the specifications that must be 
preserved for different lexical entries. 

• The authors are listed alphabetically. SFB 340, Kleine Wilhelmstr. 113, D-72074 Tiibingen, Germany. 
email: {dm,minnen}@sfs.nphil.uni-tuebingen.de URL: http://www.sfs.nphil.uni-tuebingen.de/sfb 
/b4home.html 

1 This is, for example, the case for all proposals working with verbal lexical entries that raise the 
arguments of a verbal complement (Hinrichs and Nakazawa 1989) that also use lexical rules such a s  

the Complement Extraction Lexical Rule (Pollard and Sag 1994) or the Complement Cliticization 
Lexical Rule (Miller and Sag 1993) to operate on those raised elements. Also an analysis treating 
adjunct extraction via lexical rules (van Noord and Bouma 1994) results in an infinite lexicon. 

(~) 1997 Association for Computational Linguistics 



Computational Linguistics Volume 23, Number 4 

Treatments of lexical rules as unary phrase structure rules also require their fully 
explicit specification, which entails the last problem mentioned above. In addition, 
computationally treating lexical rules on a par with phrase structure rules fails to 
take computational advantage of their specific properties. For example, the interaction 
of lexical rules is explored at run-time, even though the possible interaction can be 
determined at compile-time given the information available in the lexical rules and 
the base lexical entries. 2 

Based on the research results reported in Meurers and Minnen (1995, 1996), we 
propose a new computational treatment of lexical rules that overcomes these short- 
comings and results in a more efficient processing of lexical rules as used in HPSG. 
We developed a compiler that takes as its input a set of lexical rules, deduces the nec- 
essary transfer of properties not changed by the individual lexical rules, and encodes 
the set of lexical rules and their interaction into definite relations constraining lexical 
entries. Each lexical entry is automatically extended with a definite clause encoding of 
the lexical rule applications which the entry can undergo. The definite clauses thereby 
introduce what we refer to as systematic covariation in lexical entries. 

Definite relations are a convenient way of encoding the interaction of lexical rules, 
as they readily support various program transformations to improve the encoding: We 
show that the definite relations produced by the compiler can be refined by program 
transformation techniques to increase efficiency. The resulting encoding allows the 
execution of lexical rules on-the-fly, i.e., coroutined with other constraints at some 
time after lexical lookup. The computational treatment of lexical rules proposed can 
be seen as an extension to the principled method discussed by G6tz and Meurers 
(1995, 1996, 1997b) for encoding the main building block of HPSG grammars--the 
implicative constraints--as a logic program. 

The structure of the paper is as follows: We start with a brief introduction of the 
formal background on which our approach is based in Section 2. We then describe 
(Section 3) how lexical rules and their interaction can be encoded in a definite clause 
encoding that expresses systematic covariation in lexical entries. We show how the 
encoding of lexical rule interaction can be improved by specializing it for different 
word classes and, in Section 4, focus on an improvement of this specialization step 
by means of program transformation techniques. A further improvement relevant to 
on-the-fly application of lexical rules is presented in Section 5. In Section 6, we dis- 
cuss implementation results and illustrate the efficiency of the proposed encoding. A 
comparison with other computational approaches to lexical rules (Section 7) and some 
concluding remarks (Section 8) end the paper. 

2. Background 

In this section we introduce the formal setup of HPSG grammars that we assume and 
discuss two ways to formalize a lexical rule mechanism and their consequences for a 
computational treatment. 

2.1 A Formal Setup for HPSG Grammars 
An HPSG grammar formally consists of two parts (Pollard and Sag 1994): The signature 
defines the ontology of linguistic objects, and the theory, i.e., the usually implicative 
constraints encoding the grammatical principles, describes the subset of those linguistic 

2 This is not to say that a special precompilation treatment along those lines would not be profitable for 
phrase structure rules. In fact, such a proposal is made by Torisawa and Tsuji (1996). 
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objects that are grammatical. The constraints constituting the theory are expressions 
of a formal language that define the set of grammatical objects, in the sense that every 
grammatical object is described by every principle in the theory. 

The signature consists of the type hierarchy defining which types of objects ex- 
ist and the appropriateness conditions specifying which objects have which features 
defined on them to represent their properties. 3 A signature is interpreted as follows: 
Every object is assigned exactly one most specific type, and in case a feature is ap- 
propriate for some object of a certain type, then it is appropriate for all objects of this 
type. 4 

A logic that provides the formal architecture required by Pollard and Sag (1994) 
was defined by King (1989, 1994). The formal language of King allows the expression 
of grammatical principles using type assignments to refer to the type of an object 
and path equalities to require the (token) identity of objects. These atomic expressions 
can be combined using conjunction, disjunction, and negation. The expressions are 
interpreted by a set-theoretical semantics. 

2.2 Lexical Rules  in HPSG 
While the setup of King provides a clear formal basis for basic HPSG grammars, 
nothing is said about how special linguistic mechanisms like lexical rules fit into this 
formal setup. Two formalizations of lexical rules as used by HPSG linguists have been 
proposed, the meta-level lexical rules (MLRs; Calcagno 1995; Calcagno and Pollard 
1995) and the .description-level lexical rules (DLRs; Meurers 1995). 5 

2.2.1 Meta-Level  Lexical Rules. The MLR approach sees lexical rules in the more 
traditional sense as relations between lexical entries, i.e., descriptions of word objects. 
The set of lexical entries constituting the lexicon is closed under the application of 
lexical rules, which results in a (possibly infinite) set of lexical entries. In order to be 
grammatical, every word object occurring in a sentence has to be described by one of 
the descriptions in this expanded lexicon set. In the MLR setup, lexical rules are thus 
external to the rest of the theory, they only serve to provide an expanded lexicon set. 
Licensing grammatical words is then done by this set--the lexical rules play no direct 
role. Externalizing the lexicon and lexical rule application from the theory in such a 
way has an interesting consequence, namely that the lexical entries serving as input 
to a lexical rule are not tested for grammaticality. 

A computational treatment of lexical rules that expands out the lexicon at compile- 
time closely resembles the MLR interpretation of lexical rules. The work on MLRs can 
therefore be seen as providing a semantics for such a computational treatment. It also 
allows a clear view of its restrictions: First, no restrictions on lexical entries serving 
as input to a lexical rule can be enforced that cannot be executed on the basis of 
the information present in the lexical entry alone, 6 and second, grammars including 
lexical rules that, under the MLR formalization, result in an infinite lexicon, can only 

3 The terminology used in the literature varies. Types are also referred to as sorts, appropriateness 
conditions as feature declarations, and features as attributes. To avoid confusion, we will only use the 
terminology introduced in the text. 

4 This interpretation of the signature is sometimes referred to as closed world (Gerdemann and King 
1994; Gerdemann 1995). 

5 An in-depth discussion including a comparison of both approaches is provided in Calcagno, Meurers, 
and Pollard (in preparation). 

6 The Partial-VP Topicalization Lexical Rule proposed by Hinrichs and Nakazawa (1994, 10) is a 
linguistic example. The in-specification of this lexical rule makes use of an append relation to constrain 
the valence attribute of the auxiliaries serving as its input. In the lexicon, however, the complements of 
an auxiliary are uninstantiated because it raises the arguments of its verbal complement. 
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simple-word ---* LE1 v . .  • V LEn 

derived-word ~ ([IN LRl- in]  A LRl-out )  V . . .  V ([IN LRm-in] A LRm-oUt) 

Figure 1 
The extended lexicon under the DLR approach. 

partially be dealt with, for example, by using a depth bound on lexical rule application 
to ensure that a finite number of lexical entries is obtained. 7 

2.2.2 Description-Level Lexical Rules. The DLR approach formalizes lexical rules 
as relations between word objects. Lexical rules under this approach are part of the 
theory, just like any other constraint of the grammar, and they relate the word objects 
licensed by the base lexical entries to another set of well-formed word objects. Thus, 
under the DLR approach, no new lexical entries are created, but the theory itself is 
extended in order to include lexical rules. One possibility for extending the theory is 
to introduce two subtypes of word, i.e., simple-word and derived-word, and define an 
additional feature IN with appropriate value word for objects of type derived-word. The 
principles encoding the extended lexicon in such an approach are shown in Figure 1. 
Each basic lexical entry is a disjunct LE in an implicative constraint on simple-word. 
This disjunction thus constitutes the base lexicon. The disjuncts in the constraint on 
derived-word, on the other hand, encode the lexical rules. The in-specification of a 
lexical rule specifies the IN feature, the out-specification, the derived word itself. Note 
that the value of the IN feature is of type word and thus also has to satisfy either a 
base lexical entry or an out-specification of a lexical rule. While this introduces the 
recursion necessary to permit successive lexical rule application, it also grounds the 
recursion in a word described by a base lexical entry. Contrary to the MLR setup, the 
DLR formalization therefore requires all words feeding lexical rules to be grammatical 
with respect to the theory. 

Since lexical rules are expressed in the theory just like any other part of the theory, 
they are represented in the same way, as unary immediate dominance schemata. 8 This 
conception of lexical rules thus can be understood as underlying the computational 
approach that treats lexical rules as unary phrase structure rules as, for example, 
adopted in the LKB system (Copestake 1992). Both the input and output of a lexical 
rule, i.e., the mother and the daughter of a phrase structure rule, are available during 
a generation or parsing process. As a result, in addition to the information present 
in the lexical entry, syntactic information can be accessed to execute the constraints 
on the input of a lexical rule. The computational treatment of lexical rules that we 
propose in this paper is essentially a domain-specific refinement of such an approach 
to lexical rules. 9 

2.2.3 Lexical Rule Specification and Framing. An important difference between unary 
immediate dominance schemata and lexical rules, however, is that immediate dom- 
inance schemata are fully specified in the linguistic theory and can thus be directly 
interpreted as a relation on objects. Lexical rules, on the other hand, are usually not 

7 This approach  is, for example ,  taken in the ALE sys tem.  See Section 7 for more  d iscuss ion  of different 
computa t iona l  approaches.  

8 Elaborating this analogy, the IN feature of der ived words  can be unde r s tood  as the  DTRS feature of  a 
phrase .  

9 See Section 7 for a more  detai led d iscuss ion  of the relation be tween  our  approach  and  this perspect ive  
on lexical rules. 
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Figure 2 
A passivization lexical rule. 

written as fully specified relations between words, rather, only what is supposed to 
be changed is specified. 

Consider, for example, the lexical rule in Figure 2, which encodes a passive lexicai 
rule like the one presented by Pollard and Sag (1987, 215) in terms of the setup of 
Pollard and Sag (1994, ch. 9). This lexical rule could be used in a grammar of English 
to relate past participle forms of verbs to their passive form2 ° The rule takes the index 
of the least oblique complement of the input and assigns it to the subject of the output. 
The index that the subject bore in the input is assigned to an optional prepositional 
complement in the output. 

Only the verb form and some indices are specified to be changed, and thus other 
input properties, like the phonology, the semantics, or the nonlocal specifications, are 
preserved in the output. This is so since the lexical rule in Figure 2 "(like all lexical rules 
in HPSG) preserves all properties of the input not mentioned in the rule." (Pollard and 
Sag [1994, 314], following Flickinger [1987]). This idea of preserving properties can be 
considered an instance of the well-known frame problem in AI (McCarthy and Hayes 
1969), and we will therefore refer to the specifications left implicit by the linguist as the 
frame specification, or simply frame, of a lexical rule. Not having to represent the frame 
explicitly not only enables the linguist to express only the relevant things, but also 
allows a more compact representation of lexical rules where explicit framing would 
require the rules to be split up (Meurers 1994). 

One thus needs to distinguish the lexical rule specification provided by the linguist 
from the fully explicit lexical rule relations integrated into the theory. The formalization 
of DLRs provided by Meurers (1995) defines a formal lexical rule specification language 
and provides a semantics for that language in two steps: A rewrite system enriches the 
lexical rule specification into a fully explicit description of the kind shown in Figure 1. 
This description can then be given the standard set-theoretical interpretation of King 
(1989, 1994). 11 

10 Note that the passivization lexical rule in Figure 2 is only intended to illustrate the mechanism. We do 
not make the linguistic claim that passives should be analyzed using such a lexical rule. For space 
reasons, the SYNSEM feature is abbreviated by its first letter. The traditional (First I Rest) list notation is 
used, and the operator • stands for the append relation in the usual way. 

1l Manandhar (1995) proposes to unify these two steps by including an update operator in the 
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The computat ional  t reatment we discuss in the rest of the paper  follows this setup 
in that it automatically computes,  for each lexical rule specification, the frames neces- 
sary to preserve the propert ies not  changed by  it. 12 We will show that the detection 
and specification of frames and the use of p rogram transformation to advance their 
integration into the lexicon encoding is one of the key ingredients of the covariation 
approach to HPSG lexical rules. 

3. Lexical Covariation: Encoding Lexical Rules and their Interaction 
as Definite Relations 

Having situated the computat ional  approach presented in this paper  as a computa-  
tional t reatment of DLRs that emphasizes  their domain-specific properties,  we now 
turn to the compiler  that realizes this approach. We describe four compilat ion steps 
that translate a set of lexical rules, as specified by  the linguist, and their interaction 
into definite relations to constrain lexical entries. To give the reader  a global idea of 
our  approach,  we focus on those aspects of the compiler  that are crucial to the pre- 
sented conception of lexical rules. The different steps of the compiler  are discussed 
with emphasis  on understandabi l i ty  and not  on formal  details. 13 

Figure 3 shows the overall setup of the compiler. The first compilat ion step, dis- 
cussed in Section 3.1, translates lexical rules into a definite clause representat ion and 
derives, for each lexical rule, a frame predicate that ensures the transfer of propert ies  
that remain unchanged.  In the second compilat ion step (Section 3.2), we determine the 
possible interaction of the lexical rules. This results in a finite-state au tomaton  repre- 
senting global lexical rule interaction, i.e., the interaction of lexical rules irrespective 
of the lexical entries in the lexicon. In the subsequent  step of word  class specialization 
(Section 3.3) this finite-state au tomaton  is f ine-tuned for each of the natural  classes 
of lexical entries in the lexicon. In the fourth compilat ion step (Section 3.4) these au- 
tomata are translated into definite relations and the lexical entries are adapted  to call 
the definite relation corresponding to the au tomaton  fine-tuned for the natural  class 
to which they belong. 

3.1 Lexical Rules as Definite Relations and the Automatic Specification of Frames 
We start by  translating each lexical rule into a definite clause predicate,  called the 
lexical rdle predicate. The first a rgument  of a lexical rule predicate corresponds to the 
in-specification of the lexical rule and the second a rgument  to its out-specification. 

Assume the signature in Figure 4 on which we base the example th roughout  the 
paper  and suppose the lexical rule specification shown in Figure 5.14 This lexical rule 
applies to base lexical entries that unify 15 w i t h  the in-specification, i.e., lexical entries 
specifying B and Y as - .  The der ived lexical entry licenses word  objects with + as the 
value of x and Y, and b as that of A. 

The translation of the lexical rule into a predicate is trivial. The result is d isplayed 

description language. 
12 In order to focus on the computational aspects of the covariation approach, in this paper we will not go 

into a discussion of the full lexical rule specification language introduced in Meurers (1995). The reader 
interested in that language and its precise interpretation can find the relevant details in that paper. 

13 A more detailed presentation can be found in Minnen (in preparation). 
14 We use rather abstract lexical rules in the examples to be able to focus on the relevant aspects. 
15 Hinrichs and Nakazawa (1996) show that the question of whether the application criterion of lexical 

rules should be a subsumption or a unification test is an important question deserving of more 
attention. We here assume unification as the application criterion, which formally corresponds to the 
conjunction of descriptions and their conversion to normal form (G6tz 1994). Computationally, a 
subsumption test could equally well be used in our compiler. 
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i nput :  
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Figure 3 
The compiler setup. 
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in Figure 6. Though this predicate represents what was explicitly specified in the lexi- 
cal rule, it does not accomplish exactly what is intended. As discussed in Section 2.2.3, 
features specified in a lexical entry unifying with the in-specification of the lexical rule 
that are not specified differently in the out-specification of the lexical rule are intended 
to receive the same value on the derived word as on the input: The compiler imple- 
ments this by enriching the lexical rule with type specifications and path equalities 
between the in- and the out-specification to arrive at an explicit representation of its 
frame. 

The detection of which additional specifications are intended by the linguist cru- 
cially depends on the interpretation of the signature assumed in HPSG, discussed in 
Section 2.1. This interpretation makes it possible to determine which kind of word 
objects (by ontological status fully specified) may undergo the rule. A type can always 
be replaced by a disjunction of its most specific subtypes and the appropriate features 
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T 

t[w bool 1 val ] 
x bool| 

t, t2[z list] 

Figure 4 
An example signature. 

list bool val 

AA 
elist [HD val] + _ a b 

nelist TL list] 

[c,Y 
Figure 5 
Lexical rule 1. 

lex-rule-l([B [ y - - ] ] , [ ~  [ bX ~ ] ] )  

Figure 6 
Definite clause representation of lexical rule 1. 

word[C tl] 

Figure 7 
A sample lexical entry. 

of each type are known. So, on the basis of the signature, we can determine which 
"appropriate" paths the linguist left unspecified in the out-specification of the lexical 
rule. For those appropriate paths not specified in the out-specification, one can then 
add path  equalities between the in- and the out-specifications of the lexical rule to 
ensure framing of those path values. 

Frame specification becomes slightly more difficult when  one considers type spec- 
ifications of those paths in words serving as input to a lexical rule that occur in the 
out-specification of the lexical rule but  are not assigned a type value. For example, the 
lexical rule 1 of Figure 6 applies to word objects with tl as their c value and to those 
having t2 as their c value. With respect to frame specification this means that there 
can be lexical entries, such as the one in Figure 7, for which we need to make sure 
that tl as the value of c gets transferred. 16 

One would  think that the type information tl, which is more specific than that 

16 A linguistic example based on the signature given by Pollard and Sag (1994) would be a lexical rule 
deriving predicative signs from nonpredicative ones, i.e., changing the PRD value of substantive signs 
from - to +, much like the lexical rule for NPs given by Pollard and Sag (1994, p. 360, fn. 20). In such 
a Predicative Lexical Rule (which we only note as an example and not as a linguistic proposal) the 
subtype of the head object undergoing the rule as well as the value of the features only appropriate for 
the subtypes of substantive either is lost or must be specified by a separate rule for each of the subtypes. 
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b lex lel, [:, _,]ollx framel  
Figure 8 
Lexical rule predicate representing lexical rule 1. 

[B o lIB ] c  w r frame_l( , ). frame_l( |W 
tl [ ~1] Ch[W ~] L t2LZ 

Figure 9 
Definition of the frame predicate for lexical rule 1. 

g iven in the ou tpu t  of the lexical rule, can be specified on the out-specification of the 
lexical rule if the specification of c is t ransferred as a whole  (via structure sharing of 
the value of c). This is not  possible, though,  since the values  of x and  Y are specified 
in the out-specification of the lexical rule. The p rob lem seems to be that  there is no 
notion of shar ing just the type of an object. However ,  int roducing such type sharing 
would  not  actually solve the problem,  since one also needs  to account  for addi t ional  
appropr ia te  features. The subtypes  of t have  different appropr ia te  features, the values  
of which have  to be preserved.  In particular, in case the lexical entry has t2 as the 
value of c, we  need to ensure  that  the value of the feature z is t ransferred properly.  

To ensure that  no informat ion is lost as a result of app ly ing  a lexical rule, it 
seems to be  necessary to split up  the lexical rule to make  each instance deal wi th  
a specific case. In the above  example ,  this would  result in two lexical rules: one for 
words  wi th  tl as their c value and  one for those wi th  t2 as their c value. In the 
latter case, we  can also take care of t ransferr ing the value of z. However ,  as discussed 
by  Meurers  (1994), creating several  instances of lexical rules can be avoided.  Instead,  
the disjunctive possibilities in t roduced by  the f rame specification are at tached as a 
constraint  to a lexical rule. This is accompl ished by  hav ing  each lexical rule predicate  
call a so-called frame predicate, which can have  mult iple  defining clauses. So for the 
lexical rule 1, the f rame specification is taken care of by  extending the predicate  in 
Figure 6 with a call to a f rame predicate,  as shown  in Figure 8.17 

On the basis of the lexical rule specification and the signature,  the compi ler  de- 
duces the f rame predicates  wi thout  requir ing addi t ional  specifications by  the linguist. 
The f rame predicate for lexical rule 1 is defined by  the two clauses d isplayed in Fig- 
ure 9. The first case applies  to lexical entries in which c is specified as tl. We have  to 
ensure that the value of the feature w is transferred. In the second case, w h e n  feature 
c has t2 as its value, we  addi t ional ly have  to ensure that  z gets transferred. Note  that  
neither clause of the f rame predicate  needs  to specify the features A, X, and  Y since 
these features are changed by  lex_rule_l. Furthermore,  filling in features of the struc- 
ture be low z is unnecessary  as the value of z is structure shared as a whole.  Finally, if 
a lexical entry  specifies c as t, bothframe_l clauses apply. TM 

17 We use indexing of predicate names to be able to indicate later on which lexical rule a frame predicate 
belongs to. 

18 Since in computational systems, in contrast to the general theoretical case, we only need to ensure 
transfer for the properties actually specified in the lexical entries of a given grammar, some of the 
distinctions made in the signature can possibly be ignored. One could therefore improve the 
calculation of frame predicates by taking the base lexical entries into account at this stage of the 
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i V - - . V  n 

Figure 10 
Finite-state automaton representing free application. 

Summing up, we distinguish the lexical rule predicates encoding the specification 
of the linguist from the frame predicates taking care of the frame specification. Based 
on the signature, the frame predicates are automatically derived from the lexical rule 
predicates and they can have a possibly large number of defining clauses. In Sec- 
tion 4 we will show that the encoding can be advanced in a way that eliminates the 
nondeterminism introduced by the multiply defined frame predicates. 

3.2 Determining Global Lexical Rule Interaction 
In the second compilation step, we use the definite clause representation of a set 
of lexical rules, i.e., the lexical rule and the frame predicates, to compute a finite- 
state automaton representing how the lexical rules interact (irrespective of the lexical 
entries). 

In general, any lexical rule can apply to the output of another lexical rule, which is 
sometimes referred to as free application. As shown in Figure 10, this can be represented 
as a finite-state automaton that consists of a single state with a cycle from/into this 
state for all lexical rules. 19 When looking at a specific set of lexical rules though, one 
can be more specific as to which sequences of lexical rule applications are possible. One 
can represent this information about the interaction of lexical rules as a more complex 
finite-state automaton, which can be used to avoid trying lexical rule applications at 
run-time that are bound to fail. To derive a finite-state automaton representing global 
lexical rule interaction, we first determine which lexical rules can possibly follow which 
other lexical rules in a grammar. The set of follow relationships is obtained by testing 
which in-specifications unify with which out-specifications. 2° 

To illustrate the steps in determining global lexical rule interaction, let us add 
three more lexical rules to the one discussed in Section 3.1. Figure 11 shows the full 
set of four lexical rules. 

Figure 12 shows the definite clause representations of lexical rules 2, 3, and 4 and 
the frame predicates derived for them. The definite clauses representing lexical rule 1 
and its frame were already given in Figures 8 and 9. The follow relation obtained for 
the set of four lexical rules is shown in Figure 13, where follow(LR,ListOfLRs) specifies 

compilation process. 
19 We use the following conventions with respect to finite-state automata to represent  lexical rule 

interaction: The state annotated wi th  an angle bracket represents the initial state. All states (including 
the initial state) are final states. The labels of the transitions from one state to another are (disjunctions 
of) the lexical rule predicate indices, i.e., the lexical rule names  constitute the alphabet of the finite-state 
automaton. 

20 For the computat ion of the follow relationships, the specifications of the frame predicates are taken into 
account. In case the frame relation called by a lexical rule has several defining clauses, the 
generalization of the frame possibilities is used. 
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Rule 1: 

Rule 3: 

C[Y --] ~ C[ X Rule 2: 

c r w +]] [c[Y 
t2 LZ ] TL ~ ~ Rule 4: 

Figure 11 
A set of four lexical rules. 
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Figure 12 
The definite clause encoding of lexical rules 2, 3, and 4. 

IA BO IA iBO fra~e~, c [X~ 'C X ~  ~ 

L t2 Lz t2 z 

wo 1][;i 1 [] frame-4( Ct2 zY ~ ' t2 Z yW [.~ ). 

follow(I, [2, 3, 4]). follow(2, [1, 3, 4]). follow(3, [3, 4]). follow(4, []). 

Figure 13 
The follow relation for the four lexical rules of the example. 

that only the lexical rules in ListOfLRs can possibly be appl ied  to a word  result ing 
f rom the applicat ion of lexical rule LR. 

Once the follow relation has been  obtained,  it can be used  to construct  an au toma-  
ton that  represents  which lexical rule can be appl ied after which sequence of lexical 
rules. Special care has to be taken in case the same lexical rule can app ly  several  t imes 
in a sequence. To obtain afinite automaton ,  such a repeti t ion is encoded as a transit ion 
cycling back to a state in the lexical rule sequence preceding  it. 

In order  to be able (in the following steps) to r emove  a transit ion represent ing 
a certain lexical rule appl icat ion in one sequence wi thout  el iminating the lexical rule 
applicat ion f rom other sequences,  every  transition, except  those introducing cycles, is 
taken to lead to a new state. The finite-state au toma ton  in Figure 14 is constructed on 
the basis of the follow relation of Figure 13. 
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q19 

q2 1 1 3 4 q15 3 4 q20 

q5 4 ~ )  q l  2 

Figure 14 
Finite-state automaton representing global lexical rule interaction. 

The finite-state automaton representing global lexical rule interaction can be used 
as the backbone of a definite clause encoding of lexical rules and their interaction 
(see Section 3.4). Compared to free application, the finite-state automaton in Figure 14 
limits the choice of lexical rules that can apply at a certain point. However, there still 
are several places where the choices can be further reduced. One possible reduction 
of the above automaton consists of taking into account the propagation of specifications 
along each possible path through the automaton. This corresponds to actually unifying 
the out-specification of a lexical rule with the in-specification of the following lexical 
rule along each path in the automaton, instead of merely testing for unifiability, which 
we did to obtain the follow relation. 21 As a result of unifying the out-specification 
of a lexical rule in a path of the finite-state automaton with the in-specification of 
the following lexical rule, the out-specification of the second rule can become more 
specific. This is because of the structure sharing between the second lexical rule's in- 
and out-specifications, which stem from the lexical rule and its frame specification. 
This makes it possible to eliminate some of the transitions that seem to be possible 
when judging on the basis of the follow relation alone. 22 

For example, solely on the basis of the follow relation, we are not able to discover 
the fact that upon the successive application of lexical rules 1 and 2, neither lexical rule 
1 nor 2 can be applied again. Taking into account the propagation of specifications, 
the result of the successive application of lexical rule 1 and lexical rule 2 in any order 
(leading to state q7 or q9) bears the value + on features w and Y. This excludes lexical 

21 The reason for first determining the automaton on the basis of the follow relation alone, instead of 
taking propagat ion of specifications into account right from the start, is that the follow relations allow 
a very simple construction of a finite-state automaton representing lexical rule interaction. Using 
unification right away would  significantly complicate the algorithm, in particular for automata 
containing cycles. 

22 Note that in the case of transitions belonging to a cycle, only those transitions can be removed that are 
useless at the first visit and after any traversal of the cycle. 
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lex_entry( C X i 

Z ,b 
t2 

Figure 15 
A lexical entry. 

rules 1 and 2 as possible followers of that sequence since their in-specifications do not 
unify with those values. As a result, the arcs 1(q7, q2) and 2(q9, q3), which are marked 
with grey dots in Figure 14, can be removed. 

Two problems remain: First, because of the procedural interpretation of lexical 
rules, duplicate lexical entries can possibly be derived. And second, relative to a spe- 
cific lexical entry, many sequences of lexical rules that are bound to fail are tried any- 
way. We tackle these problems by means of word class specialization, i.e., we prune 
the automaton with respect to the propagation of specifications belonging to the base 
lexical entries. 

3.3 Word Class Specialization of Lexical Rule Interaction 
In the third compilation step, the finite-state automaton representing global lexical 
rule interaction is fine-tuned for each base lexical entry in the lexicon. The result is 
a pruned finite-state automaton. The pruning is done by performing the lexical rule 
applications corresponding to the transitions in the automaton representing global 
lexical rule interaction. To ensure termination in case of direct or indirect cycles, we 
use a subsumption check. If the application of a particular lexical rule with respect 
to a lexical entry fails, we know that the corresponding transition can be pruned for 
that entry. In case of indirect or direct cycles in the automaton, however, we cannot 
derive all possible lexical entries, as there may be infinitely many. Even though one can 
prune certain transitions even in such cyclic cases, it is possible that certain inapplicable 
transitions remain in the pruned automaton. However, this is not problematic since the 
lexical rule application corresponding to such a transition will simply fail at run-time. 

Consider the base lexical entry in Figure 15. With respect to this base lexical en- 
try, we fine-tune the finite-state automaton representing global lexical rule interaction 
by pruning transitions. In the automaton of Figure 14, we can prune the transitions 
{3(q2, q8), 4(q2, q6), 3(q3, q11), 4(q3, ql0), 3(ql, q4), 4(ql, q5)}, because the lexical rules 
3 and 4 can not be applied to a (derived) lexical entry that does not have both w 
and x of value +. As a consequence, the states q8, q15, q11, q18, q4, and q12 are no 
longer reachable and the following transitions can be eliminated as well: {3(q8,q8), 
4(q8, q15), 3(q11, q11), 4(q11, q18), 3(q4, q4), 4(q4, q12)}. We can also eliminate the tran- 
sitions {4(q7,q13),4(q9, q17)}, because the lexical rule 4 requires the value of z to be 
empty list. Note that the lexical rules 3 and 4 remain applicable in q14 and q16. 

Furthermore, due to the procedural interpretation of lexical rules in a computa- 
tional system (in contrast to the original declarative intention), there can be sequences 
of lexical rule applications that produce identical entries. 23 To avoid having arcs in 
the pruned automaton leading to such identical entries, we use a tabulation method 

23 Note that  the order  in which  two lexical rules are appl ied is immater ia l  as long as bo th  rules modify  
the value  of different features of a lexical entry. 
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Figure 16 
Pruned finite state automaton representing lexical rule interaction for a lexical entry. 

during word class specialization that keeps track of the feature structures obtained for 
each node. If we find a feature structure for a node qn that is identical to the feature 
structure corresponding to another node qm, the arc leading to qn or the arc leading 
to qm is discarded. 24 In the example, q7 and q9 are such identical nodes. So we can 
discard either 2(q2, q7) or 1(q3, q9) and eliminate the arcs from states that then become 
unreachable. Choosing to discard 1(q3, q9), the pruned automaton for the example 
lexical entry looks as displayed in Figure 16. 25 

Note that word class specialization of lexical rule interaction does not influence the 
representation of the lexical rules themselves. Pruning the finite-state automaton rep- 
resenting global lexical rule interaction only involves restricting lexical rule interaction 
in relation to the lexical entries in the lexicon. 

The fine-tuning of the automaton representing lexical rule interaction results in 
a finite-state automaton for each lexical entry in the lexicon. However, identical au- 
tomata are obtained for certain groups of lexical entries and, as shown in the next 
section, each automaton is translated into definite relations only once. We therefore 
automatically group the lexical entries into the natural classes for which the linguist 
intended a certain sequence of lexical rule applications to be possible. 26 No additional 
hand-specification is required. Moreover, the alternative computational treatment to 
expand out the full lexicon at compile-time is just as costly and, furthermore, impos- 
sible in case of an infinite lexicon. 

An interesting aspect of the idea of representing lexical rule interaction for partic- 
ular word classes is that this allows a natural encoding of exceptions to lexical rules. 
More specifically, the linguist specifies exceptions as a special property of either a lex- 
ical rule or a lexical entry. During word class specialization, the compiler then deals 
with such specifications by pruning the corresponding transitions in the finite-state 
automaton representing global lexical rule interaction for the particular lexical entry 
under consideration. This results in an encoding of exceptions to a lexical rule in the 
interaction predicate called by the irregular lexical entries. An advantage of the setup 
presented is that entries that behave according to subregularities will automatically be 
grouped together again and call the same interaction predicate. The final representa- 

24 In general, there is not always enough information available to determine whether two sequences of 
lexical rule applications produce identical entries. This is because in order to be able to treat recursive 
lexical rules producing infinite lexica, we perform word class specialization of the interaction predicate 
instead of expanding out the lexicon. 

25 Note that an automaton can be made even more deterministic by unfurling instances of cycles prior to 
pruning. In our example, unfurling the direct cycle by replacing 3(q14, q14) with 
{3(q14, q14~), 3(q14 ~, q14~), 4(q14 ~, q19~)} would allow pruning of the cyclic transition 3(q14 ~, q14 ~) and 
the transition 4(q14, q19). Note, however, that unfurling of the first n instances of a cycle does not 
always allow pruning of transitions, i.e., reduce nondeterminism. 

26 The pruned finite-state automaton constitutes valuable feedback, as it represents the interaction of the 
set of lexical rules possible for a word class in a succinct and perspicuous manner. 
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Figure 17 
An extended lexical entry. 

tion of the lexical rules and the lexical entries remains, without a special specification 
of exceptions. 27 

3.4 Lexical Rule  Interaction as Def ini te  Relat ions  
In the fourth compilation step, the finite-state automata produced in the last step are 
encoded in definite clauses, called interaction predicates. The lexical entries belonging 
to a particular natural class all call the interaction predicate encoding the automaton 
representing lexical rule interaction for that class. Figure 17 shows the extended version 
of the lexical entry of Figure 15. The base lexical entry is fed into the first argument 
of the call to the interaction predicate q_l. For each solution to a call to q_l the value 
of ~ is a derived lexical entry. 

Encoding a finite-state automaton as definite relations is rather straightforward. 
In fact, one can view the representations as notational variants of one another. Each 
transition in the automaton is translated into a definite relation in which the corre- 
sponding lexical rule predicate is called, and each final state is encoded by a unit 
clause. Using an accumulator passing technique (O'Keefe 1990), we ensure that upon 
execution of a call to the interaction predicate q_l a new lexical entry is derived as 
the result of successive application of a number of lexical rules. Because of the word 
class specialization step discussed in Section 3.3, the execution avoids trying out many 
lexical rule applications that are guaranteed to fail. 

We illustrate the encoding with the finite-state automaton of Figure 16. As the 
lexical rules themselves are already translated into a definite clause representation in 
the first compilation step, the interaction predicates only need to ensure that the right 
combination of lexical rule predicates is called. The interaction predicate encoding the 
finite-state automaton of Figure 16 is shown in Figure 18. 28 

We now have a first complete encoding of the lexical rules and their interaction repre- 
sented as covariation in lexical entries. The encoding consists of three types of definite 
clause predicates: 

1. Lexical rule predicates representing the lexical rules; 

2. Frame predicates specifying the frame for the lexical rule predicates; and 

3. Interaction predicates encoding lexical rule interaction for the natural 
classes of lexical entries in the lexicon. 

The way these predicates interconnect is represented in Figure 19. 

27 Briscoe and Copestake (1996) argue that semi-productivity of lexical rules, which can be unders tood as 
a generalization of exceptions to lexical rules, can be integrated wi th  our approach by assigning 
probabilities to the automaton associated wi th  a particular lexical entry. 

28 In order  to dist inguish the different interaction predicates for the different classes of lexical entries, the 
compiler  indexes the names  of the interaction predicates. Since for expository reasons we will only 
discuss one kind of lexical entry in this paper, we will not  show those indices in the examples given. 
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q_l(E]~):- lex_rule_l([~,~, 

q_l([~]):-  lexxule.2([~[g/~, 

q_2([~]~]):- lexn'ule.2([~],[~), 

q_7(D~],[-6-~):- lex_rule_3(E],[~), 

q_14 ([~],[~) :-lex ~-ule _3 (E],[X~, 

q_14 ([/T],[O~):-lex ~ule _4 (E],[X~), 

q~2(~[~) .  

q_3([NNN~. 

q_7([d~[~]). 

q_14([x~],[~]). 

q_14([-X~,[~]). 

q_l 9(rA-~,[~]). 

q_l(E]~]), q2(E]E), q_3(E]~, q_7([~[~]), q_14([~E]), q_19([~[~]). 

Figure 18 
The definite relations representing the pruned finite state automaton of Figure 16. 

extended lexical entries 

call I 
= i n t e r a c t i o n  predicates 

call I 
= l e x i c a l  ru le  predicates 

call [ 
--- frame predicates 

Figure 19 
Schematic representation of definite clause encoding of lexical rules and their interaction. 

4. Partial Unfolding of Frame Predicates 

The automata resulting from word class specialization group the lexical entries into 
natural classes. In case the automata corresponding to two lexical entries are identical, 
the entries belong to the same natural class. However, each lexical rule application, i.e., 
each transition in an automaton,  calls a frame predicate that can have a large number  
of defining clauses. Intuitively understood,  each defining clause of a frame predicate 
corresponds to a subclass of the class of lexical entries to which a lexical rule can be 
applied. During word class specialization, though, when  the finite-state automaton 
representing global lexical rule application is pruned with respect to a particular base 
lexical entry, we know which subclass we are dealing with. For each interaction defini- 
tion we can therefore check which of the f lame clauses are applicable and discard the 
non-applicable ones. We thereby eliminate the redundant  nondeterminism resulting 
from mult iply defined frame predicates. 

The elimination of redundant  nondeterminism is based on Unfo ld /Fold  trans- 
formation techniques (Tamaki and Sato 1984). 29 The unfolding transformation is also 
referred to as partial execution, for example, by Pereira and Shieber (1987). Intuitively 
understood, unfolding comprises the evaluation of a particular literal in the body  of 
a clause at compile-time. As a result, the literal can be removed from the body of 

29 This improvement of the covariation encoding can also be viewed as an instance of the program 
transformation technique referred to as deletion of clauses with a finitely failed body (Pettorossi and Proietti 
1994). 
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extended lexical entries 

call I 
.~ interaction predicates 

call unfolding 

c unfolding 

Figure 20 
Schematic representation of the successive unfolding transformation. 

extended lexical entries 

call I 
,, interaction predicates 

c a l l  

,, lexical rule predicates " ~  unfolding 

/ 
call 

.~ frame predicates / 

Figure 21 
Schematic representation of the partial unfolding transformation. 

the clause. Whereas unfolding can be viewed as a symbolic way of going forward in 
computation, folding constitutes a symbolic step backwards in computation. 

Given a lexical entry as in Figure 15, we can discard all frame clauses that presup- 
pose tl as the value of c, as discussed in the previous section. To eliminate the frame 
predicates completely, we can successively unfold the frame predicates and the lexical 
rule predicates with respect to the interaction predicates. 3° The successive unfolding 
steps are schematically represented in Figure 20. 

Such a transformation, however, would  result in the loss of a representation of the 
lexical rule predicates that is independent  of a particular word class, but an indepen- 
dent representation of lexical rules constitutes an advantage in space in case lexical 
rules can be applied across word classes. Our compiler therefore performs what  can 
be viewed as "partial" unfolding: it unfolds the frame predicates directly with respect 
to the interaction predicates, as shown in Figure 21. 

One can also view this transformation as successive unfolding of the frame predi- 
cates and the lexical rule predicates with respect to the interaction predicates followed 
by a folding transformation that isolates the original lexical rule predicates. The defi- 
nite clause encoding of the interaction predicates resulting from unfolding the frame 
predicates for the lexical entry of Figure 15 with respect to the interaction predicate of 
Figure 18 is given in Figure 22. The lexical rule predicates called by these interaction 
predicates are defined as in Figures 8 and 12, except that the frame predicates are no 
longer called. 

30 Note that it is only possible to eliminate the frame predicates, since they are never called 
independently of the covariation encoding. 
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Figure 22 
Unfolding the frame predicates for the example entry with respect to the interaction predicate. 

5. On-the-f ly  Appl i ca t ion  of  Lexical Rules  

We want our compiler to produce an encoding of lexical rules that allows us to execute 
lexical rules on-the-fly, i.e., at some time after lexical lookup. This is advantageous 
because postponing the execution of the interaction predicates allows more constraints 
on the word to be collected. When the interaction predicate is finally called, as a result 
of syntactic information being present, many of its possible solutions simply fail. The 
search tree that would have resulted from pursuing these possibilities at the beginning 
of processing does not have to be explored. 31 

As it stands, our encoding of lexical rules and their application as covariation in 
lexical entries does not yet support the application of lexical rules on-the-fly. With 
respect to processing, the extended lexical entry of Figure 17 is problematic because 
before execution of the call to q_l, it is not known which information of the base lexical 
entry ends up in a derived lexical entry, i.e., tag ~ is completely uninstantiated. This 
means that there is no way of indexing the lexical entries according to what kind of 

31 According to Pollard and Sag (1987) on-the-fly application of lexical rules is also well-suited to playing 
a role in a model of language use. 
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derived entry one is looking for. As a result, it is necessary to execute the call to q_l 
immediately when  the lexical entry is used during processing. Otherwise, there would  
be no information available to restrict the search-space of a generation or parsing 
process. 

Flickinger, Pollard, and Wasow (1985) solve this problem using additional specifi- 
cations: "By providing with each lexical rule a generic class frame which specifies the 
general form and predictable properties of the rule's output,  we avoid unnecessary 
work when  the lexical rule applies" (p. 264). In the following, we show that the addi- 
tional specifications on the extended lexical entry needed to guide processing can be 
deduced automatically. 

5.1 Constraint Propagation 
The intuitive idea behind this improvement  of the covariation encoding is to lift into 
the extended lexical entry the information that is ensured after all sequences of possible 
lexical rule applications for a particular base lexical entry have occurred. Note that this 
is not an unfolding step. Unfolding the interaction predicates with respect to the lexical 
entries basically expands out the lexicon off-line. Instead, what  we do is factor out the 
information common to all definitions of the called interaction predicate by computing 
the most specific generalization of these definitions. 

The most specific generalization does not necessarily provide additional constrain- 
ing information. However, usually it is the case that lexical entries resulting from lexical 
rule application differ in very few specifications compared to the number  of specifica- 
tions in a base lexical entry. Most of the specifications of a lexical entry are assumed to 
be passed unchanged via the automatically generated frame specification. Therefore, 
after lifting the common information into the extended lexical entry, the out-argument 
in many  cases contains enough information to permit a postponed execution of the 
interaction predicate. When C is the common information, and D1, . . . ,  Dk are the 
definitions of the interaction predicate called, we use distributivity to factor out C in 
(C A D1) V -..  V (C A Dk): We compute C A (D1 V . . .  V Dk), where the r) are assumed 
to contain no further common factors. Once we have computed c, we use it to make 
the extended lexical entry more specific. This technique closely resembles the off-line 
constraint propagation technique described by Marriott, Naish, and Lassez (1988). The 
reader is referred to Meurers and Minnen (1996) for a more detailed discussion of our 
use of constraint propagation. 32 

We illustrate the result of constraint propagation with our example grammar. Since 
the running example of this paper was kept small, for expository reasons, by only 
including features that do get changed by one of the lexical rules (which violates 
the empirical observation mentioned above), the full set of lexical rules would  not 
provide a good example. Let us therefore assume that only the lexical rules 1 and 2 
of Figure 11 are given. We then only obtain seven of the clauses of Figure 22: those 
calling lex_rule_l or lex_rule_2, as well as the unit  clauses for q_l, q_2, q3, and q_7. 
Applying constraint propagation to the extended lexical entry of Figure 17 yields the 
result shown in Figure 23. The information common to all solutions to the interaction 
call is lifted up into the lexical entry and becomes available upon lexical lookup. 

32 In certain cases an extension of the constraint language with named disjunctions or contexted 
constraints (Maxwell and Kaplan 1989; Eisele and D6rre 1990; Griffith 1996) can be used to circumvent 
constraint propagation. Encoding the disjunctive possibilities for lexical rule application in this way, 
instead of with definite clause attachments, makes all relevant lexical information available at lexical 
lookup. For analyses proposing infinite lexica, though, a definite clause encoding of disjunctive 
possibilities is still necessary and constraint propagation is indispensable for efficient processing. 
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Figure 23 
An entry suitable for on-the-fly application (lexical rules 1 and 2 only). 

5.2 Dynamic and Static Coroutining 
Even though we see on-the-fly application as a prerequisite of a computational treat- 
ment of lexical rules, it is important to note that a postponed evaluation of lexical 
rule application is not always profitable. For example, in the case of generation, un- 
derspecification of the head of a construction can lead to massive nondeterminism or 
even nontermination when not enough restricting information is available to generate 
its complements (Martinovi4 and Strzalkowski 1992; Minnen, Gerdemann, and G6tz 
1995). Criteria to determine when it is most profitable to execute calls to an interaction 
predicate are required. 

One possibility is to annotate the lexical rule encoding with such criteria by means 
of delay statements, as, for example, suggested by van Noord and Bouma (1994). While 
we consider this kind of control facility (Naish [1986] and references therein) to be, in 
general, indispensable for efficient processing, it also has disadvantages that make it 
desirable to search for alternative or additional mechanisms: Delay statements presup- 
pose the procedural annotation of an otherwise declarative specification. Substantial 
computational expertise is required to provide restrictions on the instantiation status 
of a goal, which must be fulfilled before the goal can be executed. Furthermore, the 
computational bookkeeping necessary for the delaying mechanism is very expensive. 
An interesting alternative, therefore, is to automatically determine certain control prob- 
lems and deal with them in an off-line fashion along the lines of Minnen, Gerdemann, 
and G6tz (1995) and Minnen, Gerdemann, and Hinrichs (1996). They describe the 
use of a dataflow analysis for an off-line improvement of grammars that determines 
automatically when a particular goal in a clause can best be executed. 

6. Efficiency Evaluation 

The computational treatment of lexical rules as covariation in lexical entries was im- 
plemented in Prolog by the authors in cooperation with Dieter Martini for the ConTroll 
system (Gerdemann and King 1994; G6tz and Meurers 1997a). We tested the covaria- 
tion approach with a complex grammar implementing an HPSG analysis covering the 
so-called aux-flip phenomenon, and partial-VP topicalization in the three clause types 
of German (Hinrichs, Meurers, and Nakazawa 1994). This test grammar includes eight 
lexical rules; some serve syntactic purposes, like the Partial-VP Topicalization Lexical 
Rule, others are of morphological nature as, for example, an inflectional lexical rule 
that relates nonfinite verbs to their finite form. Our compiler distinguished seven word 
classes. Some nouns and most verbal lexical entries fed lexical rules, and a single base 
lexical entry resulted in up to 12 derivations. 

6.1 Time Efficiency 
To evaluate the time efficiency of the covariation encoding, we compared the parse 
times for our test grammar with three different computational encodings of the lexicon: 
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the expanded out lexicon, the basic covariation encoding, and the covariation encoding 
improved by constraint propagation. 33 

As discussed in Section 5.1, the parsing times with a covariation lexicon without 
constraint propagation suffer significantly from the lack of information directly avail- 
able upon lexical lookup. For the test grammar, the resulting extended search-space of 
parsing with the basic covariation encoding leads to a performance that is, on average, 
18 times slower than that with the expanded out lexicon. 

The use of constraint propagation, however, makes it possible to exploit the covari- 
ation encoding of lexical rule application such that it results in an increase in speed. 
Parsing with the test grammar using the constraint propagated covariation lexicon is, 
on average, 25 percent faster than the performance with the expanded out lexicon. 
The representation of lexical information in a constraint propagated covariation lex- 
icon makes the maximum information available at lexical lookup while requiring a 
minimum number of nondeterministic choices to obtain this information. 

Summing up, the relation between parsing times with the expanded out (EXP), 
the covariation (COV), and the constraint propagated covariation (IMP) lexicon for 
the test grammar can be represented as IMP : EXP : COV = 0.75 : 1 : 18. With respect 
to our test grammar, the constraint propagated covariation lexicon thus is the fastest 
lexical encoding. 

6.2 Space Efficiency 
Besides the effect of requiring a minimum of nondeterministic choices and thereby 
reducing the number of resolution steps to increase time efficiency, the covariation 
encoding of lexical rules can result in an additional speedup since it reduces the space 
requirements of large grammars. 

A comparison of space efficiency between an expanded out and a covariation lex- 
icon needs to compare two different encodings. The expanded out lexicon consists 
solely of lexical entries, whereas the covariation lexicon is made up of three differ- 
ent data structures: the extended base lexical entries, the interaction predicates, and 
the lexical rule predicates. We focus on a qualitative evaluation of space efficiency, 
rather than on providing results for the test grammar, since the space efficiency of 
the covariation encoding relative to the expanded out lexicon is dependent on several 
properties of the grammar: the number of lexical entries in the lexicon that can un- 
dergo lexical rule application, the size of the lexical entries, and the number of lexical 
entries belonging to a word class. 

Since only base lexical entries that feed lexical rules are modified by the lexical 
rule compiler, the covariation encoding naturally only results in space savings for 
those lexical entries to which lexical rules apply. 

The space efficiency is dependent on the size of the lexical entries since in the 
covariation encoding much of the lexical information that is specified in a base lexical 
entry is not duplicated in the lexical entries that can be derived from it, as is the case 
for an expanded lexicon. Thus, the more information represented in a base lexical 
entry, the greater the space saving achieved by the covariation encoding. In lexically 
oriented grammar formalisms like HPSG, the lexical entries are highly information 
rich. A covariation treatment of HPSG lexica therefore can be particularly profitable. 

The number of lexical entries belonging to a word class is relevant since the inter- 
action predicates are identical for all lexical entries belonging to the same word class. 

33 The lexicon of the test grammar can be expanded out off-line since the recursive Complement 
Extraction Lexical Rule applies only to full verbs, i.e, lexical entries with a complement list of finite 
length. As a result, the grammar does not have an infinite lexicon. 
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This means that the more lexical entries in a word class, the greater the saving in 
space. The covariation approach therefore is particularly attractive for grammars with 
a large lexicon. 

7. Related Work 

The powerful mechanism of lexical rules (Carpenter 1991) has been used in many 
natural language processing systems. In this section we briefly discuss some of the 
more prominent approaches and compare them with the treatment proposed in this 
paper. 

7.1 Off-line Expansion of Lexical Rules 
A common computational treatment of lexical rules adopted, for example, in the ALE 
system (Carpenter and Penn 1994) consists of computing the transitive closure of the 
base lexical entries under lexical rule application at compile-time. While this provides 
a front-end to include lexical rules in the grammars, it has the disadvantage that the 
generalizations captured by lexical rules are not used for computation. We mentioned 
in Section 2.2 that eliminating lexical rules in a precompilation step makes it impossible 
to process lexical rules or lexical entries that impose constraints that can only be 
properly executed once information from syntactic processing is available. A related 
problem is that for analyses resulting in infinite lexica, the number of lexical rule 
applications needs to be limited. In the ALE system, for example, a depth bound can 
be specified for this purpose. Finally, as shown in Section 6, using an expanded out 
lexicon can be less time and space efficient than using a lexicon encoding that makes 
computational use of generalizations over lexical information, as, for example, the 
covariation encoding. 

7.2 Lexical Rules as Unary Phrase Structure Rules 
Another common approach to lexical rules is to encode them as unary phrase structure 
rules. This approach is taken, for example, in LKB (Copestake 1992) where lexical rules 
are introduced on a par with phrase structure rules and the parser makes no distinction 
between lexical and nonlexical rules (Copestake 1993, 31). A similar method is included 
in PATR-II (Shieber et al. 1983) and can be used to encode lexical rules as binary 
relations in the CUF system (Dbrre and Eisele 1991; D6rre and Dorna 1993b) or the 
TFS system (Emele and Zajac 1990; Emele 1994). The covariation approach described 
in this paper can be viewed as a domain-specific refinement of such a treatment of 
lexical rules. 

The encoding of lexical rules used in the covariation approach is related to the 
work of van Noord and Bouma (1994), who describe the hand-encoding of a single 
lexical rule as definite relations and show how these relations can be used to constrain 
a lexical entry. The covariation approach builds on this proposal and extends it in 
three ways: First, the approach shows how to detect and encode the interaction of a 
set of lexical rules. Second, it provides a way to automatically obtain a definite clause 
encoding of lexical rules and their interaction. Finally, it automatically derives the 
frame specification for lexical rules such that, following standard HPSG practice, only 
the information changed in a lexical rule needs to be specified. 

7.3 Alternative Ways to Express Lexical Generalizations 
Lexical rules have not gone unchallenged as a mechanism for expressing generaliza- 
tions over lexical information. In a number of proposals, lexical generalizations are 
captured using lexical underspecification (Kathol 1994; Krieger and Nerbonne 1992; 
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Riehemann 1993; Oliva 1994; Frank 1994; Opalka 1995; Sanfilippo 1995). The lexical 
entries are only partially specified, and various specializations are encoded via the 
type hierarchy, definite clause attachments, or a macro hierarchy. 

These approaches seem to propose a completely different way to capture lexical 
generalizations. It is therefore interesting that the covariation lexical rule compiler 
produces a lexicon encoding that, basically, uses an underspecification representation: 
The resulting definite clause representation after constraint propagation represents the 
common information in the base lexical entry, and uses a definite clause at tachment 
to encode the different specializations. 

8. Summary 

We presented a new computational treatment of HPSG lexical rules by describing a 
compiler that translates a set of lexical rules as specifed by a linguist into definite 
relations, which are used to constrain lexical entries. The frame of a lexical rule and 
lexical rule interaction is automatically determined and the interaction is represented 
as a finite-state automaton. The automaton allows us to encode lexical rule interaction 
without  actually having to apply lexical rules a possibly infinite number  of times. 
Word classes relevant to lexical rule application are automatically detected and the 
corresponding finite-state automata are refined in order to avoid lexical rule applica- 
tions that are guaranteed to fail. The refined automata are encoded as definite relations 
and each base lexical entry is extended to call the relation corresponding to its class. 
Finally, the encoding of lexical rules and their interaction is advanced using constraint 
propagation to allow coroutining of its execution with other grammar constraints. This 
reduces the number  of nondeterministic choices related to lexical lookup, and, more 
importantly, allows syntactic information to be used to ensure termination of the co- 
variation encoding of lexical rules. Finally, we discussed implementation results and 
illustrated the improvement  in time and space efficiency resulting from the covariation 
encoding. 
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