
Unification Encodings of Grammatical
Notations

S t e p h e n G. P u l m a n

SRI International Cambridge Computer
Science Research Centre* and
University of Cambridge Computer
Laboratory

This paper describes various techniques for enriching unification-based grammatical formalisms
with notational devices that are compiled into categories and rules of a standard unification
grammar. This enables grammarians to avail themselves of apparently richer notations that allow
for the succinct and relatively elegant expression of grammatical facts, while still allowing for
efficient processing for the analysis or synthesis of sentences using such grammars.

1. Introduction

Formalisms equivalent to, or based on, unification grammars of the type exemplified
by PATR (Shieber 1984) are very widely used in computational linguistics (Alshawi
1992; van Noord et al. 1990; Briscoe et al. 1987; Bobrow, Ingria, and Stallard 1991,
etc.) A unification-based formalism has many well-known virtues: it is declarative,
monotonic, reversible (in principle at least); it has a well-understood formal inter-
pretation (Shieber 1986, Smolka 1992, Johnson 1988); and there exist well-understood
and relatively efficient parsing and generation algorithms for grammars using such a
formalism (Shieber 1988; Haas 1989; Alshawi 1992; Shieber et al. 1990, inter alia).

However, a pure unification formalism is often thought to be a somewhat restricted
grammatical formalism, especially when compared with the rich devices advocated by
many grammarians. The recent literature (Pollard and Sag 1987, 1993, etc.) uses many
devices that go beyond pure unification: set valued features; negation and disjunction;
tests for membership; list operations like "append" and "reverse"; multiple inheritance
hierarchies; as well as Kleene operators like * or +1, which are familiar from linguistics
textbooks although they have no direct equivalent in a unification grammar.

Unfortunately, there is a price to pay for this increase in expressive power: a
decrease in efficiency. Whereas there exist several relatively efficient implemented sys-
tems for parsing and generating with wide-coverage "pure" unification grammars
(Alshawi 1992; Briscoe et al. 1987), more complex formalisms have not so far led to
systems of comparable efficiency. At the present time, I am not aware of any practical
implementations using these more complex descriptive devices remotely comparable
to the (relative) efficiency of pure unification-based systems when used with wide-
coverage grammars and large lexica. This is not a claim that the efficiency problem is
solved even for pure unification grammars, but it is at least less of a problem than for
these richer formalisms.

* Suite 23, Miller's Yard, Mill Lane, Cambridge CB2 1RQ, UK

(~) 1996 Association for Computational Linguistics

Computational Linguistics Volume 22, Number 3

It would therefore be desirable to combine the efficiency of pure unification-based
systems with the availability of richer grammatical formalisms. One route to this happy
state of affairs would be to develop efficient processing mechanisms for the richer
devices directly. However, this route involves a research program of uncertain length
and outcome, given the known complexity properties of many of the richer descriptive
devices.

This paper describes an alternative approach towards such a combination, via the
compilation of apparently richer grammatical notations into expressions whose satis-
faction can be checked by unification alone. Compilation of these apparently richer
devices into expressions that can be processed just using unification will generally al-
low the grammarian to use them freely, without necessarily sacrificing the advantages
of efficiency that pure unification systems offer. I say "without necessarily sacrificing"
efficiency, because some compilation strategies may actually make matters worse. For
example, a naive compilation of disjunction into many alternative rules and lexical en-
tries, combined with an equally naive parsing algorithm, may produce worse behavior
than an implementation that interprets the disjunctions directly.

The paper describes a variety of apparently richer descriptive devices that can
be compiled into unification grammars in ways that under normal circumstances will
result in efficient processing. Some I believe to be original; others have been described
elsewhere in the literature in some form, although often in a way that makes it difficult
for computational linguists to appreciate their significance. Still others are known
mostly by word of mouth, in the unification grammar community. The intention of
the present paper is to describe them all in an accessible form (hence the more tutorial
tone than is usually found in this journal) and thus attempt to narrow the gap between
rich grammatical formalisms and efficient practical implementations.

Of course, you don't get anything for nothing in this game. There will still be
cases where the full power of the richer formalisms is necessary. The various tech-
niques described here are often limited in their applicability, applying to only a subset
of the problems that one would like to solve. Furthermore, some of the techniques
described can lead, in the worst case, to overwhelmingly large structures and conse-
quent processing inefficiency. Nevertheless, practical experience has shown that (with
care and some experimentation) it is possible to develop linguistic descriptions that
are succinct and relatively elegant, while still lending themselves to efficient (and most
importantly, bidirectional) processing.

2. A Unification Formalism

To begin with, we will define a basic unification grammar formalism. For convenience,
we will use many of the notational conventions of Prolog.

A category consists of a set of feature equations, written:

{fl=vl,f2=v2 fN=vN}

Feature names are atoms; feature values can be variables (beginning with an upper-
case character), atoms (beginning with a number or a lowercase character) or cate-
gories. For example:

{fl=X,f2=yes,f3={f4=l,f5=X}}

Coreference is indicated by shared variables: in the preceding example, f l and f5 are
constrained to have the same value. We often use underscore (_) as a variable if we
are not interested in its value.

296

Pulman Unification Encodings

For convenience and readability, we shall also allow as feature values lists of
values, n-tuples of values, and Prolog-like terms:

{fl= [{f2=a},{f3=b}] ,f4=(c,d,e) ,fS=foo(X,Y,Z)}

These constructs can be regarded as "syntactic sugar" for categories. For example, a
term foo (X,Y, Z) could be represented as a category { func to r=foo , argl=X, arg2=Y,
arg3=Z}. Tuples can be thought of as fixed-length lists, and lists can be defined as
categories with features head and t a i l , as in Shieber (1986). We will use the Prolog
notation for lists: thus [bar I X] stands for the list whose head is bar and whose tail (a
list) is x.

A lexical i tem can be represented by a category. For example:

{cat =n, count=y, number=sing, lex=dog}
{cat=det, number=sing, lex=a}
{cat=verb, number=sing, person=3, subcat= [] , lex=snores}

A rule consists of a mother category and a list of zero or more daughter categories.
For example:

{cat=s} ==> [{cat=np,number=N,person=P},
{cat=vp, number=N, person=P}]

A rule could equivalently be represented as a category, with distinguished features
mother and daughters:

{mother={cat=s},
daughters = [{cat=np, number=N, person=P},

{cat =vp, number=N, person=P}] }

However, we will stay with the more traditional notation here.
Various simple kinds of typing can be superimposed on this formalism. We can

distinguish a particular feature (say cat) as individuating different types and associate
with each different value of the cat feature a set of other dependent features. This
will only be a sensible thing to do if we know that the value of the ca t feature will
always be instantiated when types are checked. We will write such declarations as:

category (np, {person, number}) .
cat egory (verb, {person, number, subcat }) .

The intent of declarations like this is to ensure that an NP or a verb always has
these and only these feature specifications. One of the practical advantages of such a
regime is that different categories can now be compiled into terms whose functor is the
value of the eat feature, and whose other feature values can be identified positionally:
for example, {cat=np, number=sing, person=3} would compile to np (3, sing). And in
turn the advantage of this is that ordinary first order term unification (i.e., of the type
(almost) provided by Prolog implementations) can be used in processing, guaranteeing
almost linear performance in category matching.

It is often convenient to use a slightly different notation when adopting such a
regime, to make clear that one particular feature value has a privileged status. Thus
we will frequently write:

np:{person=3,number=sing}

to mean:

{cat=np,person=3,number=sing}.

297

Computational Linguistics Volume 22, Number 3

We can also provide type declarations for features. We will assume a set of prim-
itive types like atom or category, and allow for complex types also:

feature(person, atom({1,2,3})). % value must be an atom in declared set
feature(lex, atom). ~ value must be any atom
feature(subcat, list(category)). ~ value must be a list of categories

We can also, if required, use a simple type of feature default to make the categories
written by a grammarian more succinct:

default (person, 3) .
default (number, noun, sing) .

The effect of the first statement would be to ensure that at compile time, the feature
person will be instantiated to 3 if it does not already have a value (of any kind). The
second statement restricts the application of the default to members of the category
noun. We will often assume that such defaults have been declared to make the various
example rules and entries more succinct.

It is also very often convenient to allow for macros, expanded at compile time, to
represent in a readable form commonly occurring combinations of features and values.
We will assume that such macros are defined in ways suggested by the following
examples, and that at compile time, the arguments (if any) of the defined macro are
unified with the arguments of the instance of it in a rule or lexical item. In some cases,
the results of macro evaluation may need to be spliced into a category: for example,
when the result is a set of feature specifications.

macro (transitive_verb (Stem),
v: {lex=Stem, subcat= [np: {}] }) .

macro (phrasal_verb (Stem, Part icle),
v : {lex=St em, subcat= [np : {}, p : {lex=Part icle}] })

macro (thread_gaps (Mother,LeftDaughter,RightDaughter)) : -
Mother = {gapin=In, gapout=0ut},
LeftDaughter = {gapin=In, gapout=Nxt },
I~ightDaught er = {gapin=Nxt, gapout=0ut}.

Thus the grammarian might now write:

transitive_verb (kick).
phrasal_verb (switch, of f).

s:{A,fl=vl } ==> [np:{B,f2=v2,..}, vp:{C,f3=v3,...}]
where thread_gaps (A,B,C) .

and these will be expanded to:

v : {lex=kick, subcat = [rAp : {}] }
v : {lex=swit ch, subcat= [np : {}, p : {lex=of f}] }

s : {gapin=I, gapout=0, f l=vl } ==>
[np: {gapin=I, gapout=N, f 2=v2 },
vp : {gapin=N, gapout=0, f3=v3 }]

Notice that the values of variables in categories like s : {A } need to be spliced in
when the macro is evaluated at compile time.

Finally we will point out that multiple equations for the same feature on a category
are permitted (where they are consistent). Thus a rule like:

a:{f=V} ==> [h:{},c:{f=V,f=d:{fl=a}}]

298

Pulrnan Unification Encodings

is valid, and means that the value on c of f, which may be only partly specified, will
be the same on category a.

This completes our definition of a basic unification grammar formalism. While the
notational details vary, the basic properties of such formalisms will be very familiar.
We turn now to descriptive devices not present in the formalism as defined so far, and
to ways of making them available.

3. Kleene Operators

Kleene operators like * (0 or more) or + (1 or more) are frequently used in semi-
formal linguistic descriptions. In a context-free-based formalism they must actually be
interpreted as a notation for a rule schema, rather than as part of the formalism itself:
something like A -> B C* D is a shorthand for the infinite set of rules:

A -> B D, A -> B C D, A -> B C C D, etc.

While not essentially changing the weak generative capacity of a CFG, the use of
Kleene operators does change the set of trees that can be assigned to sentences: N-ary
branching trees can be generated directly.

In some unification-based formalisms (e.g. Briscoe et al. 1987; Arnold et al. 1986)
Kleene operators have been included. However, in the context of a typed unification
formalism like ours, the exact interpretation of Kleene operators is not completely
straightforward. Some examples will illustrate the problem. In a formalism like that
in Arnold et al. (1986), grammarians write rules like the following, with the intent of
capturing the fact that an Nbar can be preceded by an indefinite number of Adjective
Phrases provided that (in French, for example) they agree in gender, etc., with the
Nbar:

iap:{agr=A} ==>
[.... adjp : {agr=A}*, nbar : {agr=A}]

This is presumably intended to mean that if an AdjP is present, with agr instantiated
to some value, then succeeding instances of AdjP must have agr bound to the same
value, as must the Nbar. But a rule like this does not make clear what is intended for
the values of any features on an AdjP not mentioned on the rule. Presumably it is not
intended that all such values are shared, for otherwise such a rule would parse the
first two of the following combinations, but not the third, which simply contains the
concatenation of the adjectives appearing in the first two:

adjp:{agr=m, foo=a} nbar:{agr=m}
adjp: {agr=m, foo=b} nbar : {agr=ra}
adjp:{agr=ra, foo=a} adjp:{agr=m, foo=b} nbar:{agr=m}

Alternatively, the intention might be that only features explicitly mentioned on
the rule are to be taken account of when "copying" the Kleene constituent. But this
is still not an interpretation that is likely to be of much practical use. Unification for-
malisms like ours are intended to be capable of encoding semantic as well as syntactic
descriptions. In order to properly combine the meaning of the AdjP* with that of the
Nbar (as a conjunction, say), to give the meaning of the mother NP, some feature on
the AdjP* like sere=.., will at least have to be mentioned in building the NP meaning.
But this very fact will mean that the interpretation of all the AdjPs encountered will
be constrained to have the same value for sere as the first one processed. This is clearly
not what the grammarian would have intended. The grammarian presumably wanted
the value of the sere feature to depend on the AdjP actually present, while wanting

299

Computational Linguistics Volume 22, Number 3

the value of the agr feature to be set ultimately by the Nbar. Unfortunately, it is not
possible to combine these conflicting requirements.

At this point the reader might well wonder w h y Kleene operators were wanted
in the first place. In most grammars, Kleene * is used for two different reasons. In
the first type of case, like that just illustrated, it is used when it is not known how
many instances of a category will be encountered. (PP or adverbial modification of
VP is a similar case.) Under these circumstances, it is in fact very often the case that
a recursive analysis is empirically superior. For example, an English NP rule like:

np:{}==> [det:{}, adjp:{}*, nbar:{}]

actually makes it impossible to capture Nbar co-ordination (unless it is treated as
ellipsis). In phrases like:

there is no alternative analysis or clever trick

in order to get the correct syntax and interpretation, alternative analysis or clever trick
has to be treated as a conjunction of premodified Nbars. On an analysis that treats the
construction recursively, this is no problem.

The second reason for which Kleene • is used is to get a flat structure, where
there is no evidence for recursion. Examples of this might be, on some analyses, the
German "middle field"; and some types of coordination. For these cases, it is genuinely
important to have some way of achieving the effect of Kleene operators.

In our formalism, there are several ways of achieving an equivalent effect. The
easiest and most obvious way is to turn the iteration into recursion, with the necessary
flat structure being built up as the value of a feature on the highest instance of the
recursive expansion. The following schematic rules show how this can be done:

kleene : {kcat=C,kval= [] } ==> []
terminate the recursion

kleene : {kcat=C, kval= [C I T] } ==> [C, kleene : {kcat=C, kval=T}]
Y~ find a C, followed by C~

For the other Kleene operators (+, +2, etc.), instead of the first Kleene rule termi-
nating the recursion with an empty category, it terminates with one, two, or however
many instances of the category are required. With a suitable macro definition for *, a
grammarian can now write rule 1 in the form of rule 2, which will be expanded to 3:

1. a:{} ==> [b:{},

2. a:{} ==> [b:{},

3. a:{} ==> [b:{},

C:{}*, d:{}]

*(C:{},C), d:{}]

kleene:{kcat=c:{},kval=C}, d:{}]

A sequence of three cs will be parsed with a structure:
k

/ \
c k

/ \
c k

/ \
c k

I
[]

300

Pulman Unification Encodings

This structure is, of course, recursive. However , a flat list of the occurrences of c is
built up as the value of kva l on the topmost Kleene category. Anything that the flat
consti tuent structure was originally needed for can be done with this list, the extra
levels in t roduced by the recursion being ignored.

It is, however, possible to get a flatter tree structure more directly, and also to
overcome the problem with features used for semantic composition. In order to do
this we take advantage of the fact that our formalism allows us to write rules with
variables over lists of daughters. 1 We assume a category k leene with three category
valued features: f i n i s h , kca t (kleene category), and next . We enrich the grammatical
notation with a * which can appear as a suffix on a daughter category in a rule. Thus
our grammarian might write something like:

np:{agr=A} ==> [det:{agr=A}, adj:{agr=A}*, n:{agr=A}]

This is then compiled into a set of rules as follows:

. np:{agr=A} ==>
[det:{agr=A},
kleene:{finish=[n:{agr=A}],kcat=adj:{agr=A},next=N}

I N]

The original category appears as the value of the kca t feature, and the categories
that followed this one in the original rule appear as the value of the f i n i s h feature.
The value of the feature nex t is a variable over the tail of the daughters list, in a way
reminiscent of m a ny treatments of subcategorisation.

. kleene:{finish=F,kcat=adj:{agr=A,fl=Vl,....},
next=[kleene:{finish=F,kcat=adj:{agr=A},next=N}IN]}
[adj:{agr=A,f1=Vl }]

==>

In rule 2, the kleene category is rewrit ten as an adj , which will share all its fea-
tures with the value of kcat . The value of nex t is another instance of the k l een e
category, which shares the value of the f i n i s h feature, and where the value of the kcat
feature is the adj category as it appeared on the original rule. This ensures that only the
features ment ioned on the k l eene category will be identically instantiated across all
occurrences, enabling the semantic problem ment ioned earlier to be solved (at least in
principle: the current illustration does not do so). Clearly when the mother of this rule
is unified with the corresponding daughter of rule 1, the effect will be to extend the
list of daughters of rule 1 by adding the value of next . Since this value is itself a list,
now consisting of a k l eene category and a variable tail, the resulting structure can
again be combined with a following k l eene category having the appropriate values.
This process can continue ad infinitum.

3. kleene:{finish=F,next=F} ==> []

The third rule (which is general and so only need occur once in the compiled
grammar) terminates the iteration by extending the daughters of rule I by the sequence
of categories that appeared in the original rule.

1 A referee has poin ted out that this is akin to the metavar iable facility of some Prolog sys t ems (Clark
and McCabe 1984), and that a s o m e w h a t similar technique, in the context of DCGs, is described by
A b r a m s o n 1988).

301

Computational Linguistics Volume 22, Number 3

Now a sequence det ad31 adj 2 adj 3 n will be parsed having the following struc-
ture:

np
i

I I i I I I
det k k k k n

I i I I
al a2 a3 0

The values of the ad3 daughters to kleene will be present as the value of kcat, and
so for all practical purposes this tree captures the kind of iterative structure that was
wanted.

In some cases, the extra level of embedding that this method gives might actually
be linguistically motivated. In this case, the idea behind the compilation just described
can be incorporated into the analysis directly. To give an illustration, the following
grammar generates indefinitely long, flat, NP conjunctions of the "John, Mary, Bill,
. . . , and Fred" type.

I.

2.

3.

np:{flatconj=y} ==>
[np:{flatconj=n,next=MoreNPs} i MoreNPs]

np:{flatconj=n,next=[np:{flatconj=n,next=MoreNPs} i MoreNPs]} ==>
[np:{ . . . }, comma:{}]

np:{flatconj=n, next=[]} ==>
[conj:{}, np:{}]

These rules will give a structure:

[NP [NP ,] [NP ,] [NP ,] . . . [and/or NP]]

The trick is again in the unification of the value of the feature next on the daughter
of rule 1 and the mother of rule 2. This unification extends the number of daughters
that rule 1 is looking for. Rule 3 terminates the recursion. The feature f l a t c o n j stops
spurious nestings, if they are not wanted.

In English, at least, this type of conjunction is the only construction for which
a Kleene analysis is convincing, and they can all be described satisfactorily in this
manner.

4. Boolean Combinations of Feature Values

Our formalism does not so far include Boolean combinations of feature values. The
full range of such combinations, as is well known, can lead to very bad time and space
behavior in processing. Ramsay (1990) shows how some instances of disjunction can
be avoided, but there are nevertheless many occasions on which the natural analysis
of some phenomenon is in terms of Boolean combinations of values.

One extremely useful technique, although restricted to Boolean combinations of
atomic values, is described by Mellish (1988). He gives an encoding of Boolean com-
binations of feature values (originally attributed to Colmerauer) in such a way that
satisfiability is checked via unification. This technique is used in several systems (e.g.
Alshawi 1992; the European Community's ALEP (Advanced Linguistic Engineering
Platform) system; Alshawi et al. 1991). We describe it again here because we will need
to know how it works in detail later on.

302

Pulman Unification Encodings

Given a feature with values in some set of atoms, or product of sets of atoms, any
Boolean combination of these can be represented by a term. The encoding proceeds
as follows, for a feature f with values in {1,2} * {a,b,c}. We want to write feature
equations like:

f = l

f = b

f--l&b ; i and b

f=(a;b)~2 ; either a or b, and 2

f=~2 ; not 2

f=(1->b)&(~l->c) ; if i then b, else c

f=2<->c ; 2 if and only if c

To encode these values we build a term with a functor, say bv (for Boolean vector)
with N+I variable arguments, where N is the size of the product of the sets from
which f takes its values. In the example above, N=6, so by will have seven arguments.
Intuitively, we identify each possible value for f with the position between arguments
in bv:

by(.............).
1 1 1 2 2 2

a b c a b c

In building the term representing a particular Boolean combination of values, what
we do is work out, for each of these positions, whether or not it is excluded by the
Boolean expression. The simple way to do this is to build the models as sets of atoms,
and then test the expression to see if it holds of each one. For example, take f= (a;b)&2.
The models are

{{1,a},{l,b},{l,c},{2,a},{2,b},{2,c}}.

An atomic expression like a holds of a model if it is a member, and fails otherwise:
a here only therefore holds of the two models containing a. Truth functions of atoms
can be interpreted in the obvious way. The feature value of f above holds only of
{2, a} and {2,b}. Thus all other combinations are excluded.

For each position representing an excluded combination we unify the variable
arguments on each side of it. In our example this gives us:

bv(A , A , A , A , B , C , C).
1 1 1 2 2 2
a b c a b c

Finally, we instantiate the first and last argument to different constants, say 0 and 1.
Because of the shared variables, this will give us:

b v (O , 0 , 0 , 0 , B , 1 , 1) .

1 1 1 2 2 2
a b c a b c

The reasoning behind this last step is that if all the possibilities are excluded, then all
the variables will be linked. But if all the possibilities are excluded, then we have an
impossible structure and we want this to be reflected by a unification failure. If we
know that the first and last arguments are always incompatible, then an a t tempt to
link up all the positions will result in something that will be trying to unify 0 and 1,
and this will fail, as required.

Notice that the number of arguments in the term that we build for one of these
Boolean expressions depends on the size of the sets of atomic values involved. This
can grow rather big, of course.

303

Computational Linguistics Volume 22, Number 3

Sometimes, it happens that al though the set of possible values for a feature is
very large, we only want to write Boolean conditions on small subsets of those values.
A typical case might be a feature encoding the identifier of a particular lexical item:
in English, for example, the various forms of be often require extra constraints (or
relaxation of constraints) which do not apply to other verbs. However , we would not
want to build a term with N+I arguments where N is the number of verbs in English.

Under these circumstances there is a simple extension of this encoding. Assume the
feature is called stem. We encode the set of values as something like: {be, have , do, anon},
where anon is some distinguished atomic value standing for any other verb. Then we
can write things like:

stem=be

stem=- (be ;have)

stem=have ; do

etc.

However , to express the constraints we need to express, the encoding has to be
a little more complex. We could build a term of N+I arguments, as before, where
N=4. But now all the items that fall under anon will be encoded as the same term.
This means that we are losing information: we cannot now use the stem feature to
distinguish these verbs. What we have to do is to give the bv functor another argument ,
whose values are those of the original feature: in our example, all the different verb
stems of English. In other respects we encode the values of the stem feature as before,
but with the extra a rgument the encodings now look like:

be: stem=by(be, 0 , 1 , 1 , i , 1)

b h d anon

have: stem=bv(have, 0 , 0 , 1 , 1 , I)

b h d anon

expect: stem=bv(expect, 0 , 0 , 0 , 0 , 1)

b h d anon

decide: stem=bv(decide, 0 , 0 , 0 , 0 , 1)

b h d anon

The extra a rgument can now distinguish between the anon verbs. Everything else
works just as before.

This extension can also be generalized to products of large sets. For example,
we might want a feature whose value was in the product of the set of letters of the
alphabet and positive whole numbers. And let us suppose that we want to exclude
some particular combinations of these. The particular constraints we need to write
might figure in the grammar as:

i d = ~ (c ~ (1 2 ; 1 3))

That is, everything except c~12 and c~13. At compile time, when we have exam-
ined the whole grammar and lexicon, we know which values are actually mentioned,
and we can represent the value space of this feature as: (c , anon1} * {12,13, anon2},
where anon1 and anon2 are again atoms standing in for all the other values. We need
two extra arguments this time, and then expressions like ga444, c~13, and (ca (12 ; 13))
will be coded as:

f 2 = b v (g , 4 4 4 , 0 , 0 , 0 , 0 , 0 , 0 , 1)

c c c a l a l a l

12 13 a2 12 13 a2

304

Pulman Unification Encodings

f2=bv(c,13,0 , 0 , i , 1 , 1 , 1 , 1)

c c c a l a l a l

12 13 a2 12 13 a2

f2=bv(c, _ ,0 , A , B , 1 , 1 , 1 , i)

c c c a l a l a l

12 13 a2 12 13 a2

Notice that for the original Boolean expressions, we may not be able to fill in all the
extra argument places.

4.1 Implementation
Implementation of this technique requires the grammar writer to declare a particular
feature as being able to take values in some Boolean combination of atoms, for example,
something like:

bool_comb_feature (agr, [[i, 2,3] , [sing, plur]]) .

Lists of lists of atoms represent the subsets whose product forms the space of values.
To compile the value of a particular bool comb fea tu re when in the grammar,

first, using the declarations, precompute the set of models (i.e., the space of values).
Assume this set has N members. Then, for each feature=value equation, construct for
the value an N+I vector whose first member is 1 and whose last is 0, and where all
the other members are initially distinct variables. Now encode the feature value into
this vector as follows:

for i = I to N-I,
if feature value does not hold of the i'th model in the set
then unify vector positions i and i+1.

If the models in the set are represented as lists of atoms, then a single atom as feature
value holds of (is true in) a model if it is a member of the list representing the model,
a conjunction of atoms holds if both conjuncts hold, etc.

To implement the extensions just described requires only the addition of the right
number of extra argument places to hold the original atoms, where relevant.

5. Type Hierarchies and Inheritance

Type hierarchies are becoming as ubiquitous in computational linguistics as they have
been in knowledge representation. There are several techniques for compiling certain
kinds of hierarchy into terms checkable by unification: Mellish (1988) describes them.
The version presented here derives from a more general approach to the implementa-
tion of lattice operations by Ait-Kaci et al. 1989, which shows how to implement not
only efficient unification of terms (greatest lower bound, "glb") in a type lattice but
also of generalization (least upper bound, "lub") and complement.

We will restrict our attention to hierarchies of the type described by Carpenter
(1992, Chapter 1), i.e., bounded complete partial orders, (but using the terminology
of Ait-Kaci (1986). Carpenter's lattices are upside down, and so for him unification
is "least upper bound" and so on.) We further restrict our attention to hierarchies
of atomic types. (While in principle the encoding below would extend to non-atomic
(but still finite) types, in practice the resulting structures are likely to be unmanageably
large.)

In our presentation, we make these hierarchies into lattices: they always have a
top and bottom element and every pair of types has a glb and lub. Having a glb of

305

Computational Linguistics Volume 22, Number 3

btm is read as failure of unification. Having a lub Of top means that the two types do
not share any information.

One example of such a lattice is Ait-Kaci (1986, 223)

top
/ l \

person witch monarch
I \ \ I

adult child \ queen
\ I \ I

teenager wicked_queen
\ /

btm

A teenager is both an adult and a child; a queen is a monarch, etc. The glb of a d u l t
and c h i l d is t e enage r ; the lub is person.

The lattice that we will use for illustration is:

/
/

living

thing
I I\ \

I I \ \
I \ \
I \ \

agent nonliving export
I \I \ I \ II
I x ___I____I I
I I \ IX I \ I

person pl~t inst'n co~uter
\ I I I
\ I I __I
_ II__I

\ II I
btm

Notice how easy it is to get a lattice that does not obey our constraints. By adding
a line from e x p o r t s to pe r son (either the slave trade or the brain drain) we get a
situation where e x p o r t s and l i v i n g no longer has a greatest lower bound, a l though
this would be a perfectly natural inheritance link to want to add.

To encode the information in this lattice in a form where glb and lub can be
computed via unification we first make an array representing the reflexive transitive
closure of the " immediate ly dominates" relation, which is pictured in the diagram
above by lines.

[b,t,a,i,l,n,p,p,c,e]
[1,0,O,O,O,O,O,O,O,O]btm
[i,i,i, I, I,i,I, 1, I, 1]thing
[I,0, i, 1,0,0,1,0,0,0] agent
[i,0,0,1,0,0,0,0,0,0] institution
[i,0,0,0,1,0, I, 1,0,0] living
[l,O,O,l,O,l,O,O,l,O]non_living
[I,0,0,0,0,0, l,O,O,O]person
[l,O,O,O,O,O,O,l,O,O]plant
[l,O,O,O,O,O,O,O,l,O]computer
[i,0,0,0,0,0,0, i, i, i] exports

In each row we put a I if the row element dominates the co lumn element, (i.e., co lumn
is a subtype of row) and a 0 otherwise. Since everything is a subtype of itself, and btm
is a subtype of everything, there is a 1 in each of the diagonal cells, and in the cell for
btm on each row. Taking the agent row, we also have a 1 for the i n s t i t u t i o n column

306

Pulman Unification Encodings

and a 1 for the person column. We will refer to such a row as a "bitstring," although
as we have represented it, it is a list rather than a string. (The sharp-eyed reader will
see various other list and term representations of things that are logically bitstrings in
what follows. I apologize for this abuse of terminology, but have got into the habit of
calling them bitstrings.)

This is the first step of the encoding technique described by Ait-Kaci et al. (1989).
They point out that what the rows of this array represent is the set of lower bounds
of the row element, via a bitstring encoding of sets. Thus the AND of two rows will
represent the set of lower bounds they have in common. This will in fact be the case
whether or not the lattice has the properties we are assuming. If it does not, then it
will be possible for the bitstring representing the lower bounds of the two types to be
distinct from any row. In our case, however, the bitstring will always coincide with
one row exactly. This row will represent the glb of the two types.

Unfortunately, however, ANDing of bitstrings is not the kind of operation that is
directly available within the unification formalism we are compiling into. So we have
to encode it into a unification operation. For this we can turn again to the Colmerauer
encoding of Boolean combinations of values.

Informally, we regard a bitstring like those in the rows of the array above as a
representation of the disjunction of the members of the set of lower bounds of the
type. So the row for agent:

[b,t,a,i,l,n,p,p, c,e]
[i,0,i, 1,0,0, l,O,O,O]agent

is regarded as meaning "btm or agent or institution or person." Then we can encode
the bitstring directly into a Boolean vector term of the kind we discussed earlier. The
term will have N+I arguments, where N is the length of the bitstring, and adjacent
arguments will be linked if their corresponding bitstring position is zero, and otherwise
not linked. The term corresponding to the bitstring for agent will then be:

bv(A,B,B,C,D,D,D,C,C,C,C)
bv(O,B,B,C,D,D,D,I,I,I,I)

bt ai lnpp c e

before and after instantiation of the first and final arguments to 0 and 1, respectively,
respectively.

The term corresponding to the l i v i n g bitstring will be:

bv (A,B,B,B,B,C,C,D,E,E,E)
bv(O,B,B,B,B,C,C,D, 1,1, i)

bt ailnpp c e

Unifying the two terms together:

bv(0,B,B,C,D,D,D, 1, I, 1, i)
bv(0,E,E,E,E,F,F,G,I,I,1)

bv(0,B,B,B,B,B,B, i, i, 1, i)

When we decode this, by the reverse translation (identical adjacent arguments means

0), we get:

bv (O,B,B,B,B,B,B, I, i, i, I)
= [1,o,o,0,o,0,1,0,o,o]

which is the bitstring for person, the greatest lower bound of the two types agent and
living, as required.

307

Computational Linguistics Volume 22, Number 3

With this encoding, unification will never fail, since every pair of types has a glb,
even if this is btm. However, since having a glb of btm is usually meant to signal that
two types are incomparable and thus do not have a glb, it would be more useful if
we could contrive that unification would fail for such cases. In the usual Colmerauer
encoding, an impossible Boolean combination is signaled by all the arguments being
shared. This will cause an attempt to unify the first and last arguments of the term,
which, being 0 and 1, will cause the unification to fail. Such a failure will never happen
in our encoding thus far: since the entry for btm in each bitstring is 1, there will always
be one adjacent argument pair unlinked, and so unification will always succeed.

If, on the other hand, we simply omit btm from the list of types, then when two
types have no lower bound, the result of ANDing together their corresponding bit-
string will be a bitstring consisting entirely of zeros. Thus, unifying any two Boolean
vector terms that results in the term encoding such a bitstring will fail: if all the ele-
ments are zero, then all the arguments will be linked, and we will be trying to unify
0 and 1. Everything else will work just as before.

We have been dealing with type hierarchies that have the property of being
bounded complete partial orders, except that we have added a btm element to en-
sure that every pair of types has a glb. Hierarchies of this sort, when they have a top
element, have the defining property of lattices that every pair of types has both a glb
and lub. Being complete lattices, they also have the property that they can be inverted,
by taking "immediately dominates" to be "immediately dominated by." Furthermore,
what in the original lattice was the glb of two types is now the lub and vice versa.
Hence, by computing an array based on the inverse relation one can use exactly the
same technique for computing least upper bounds, or the generalization of two types.

The array generated for the inverted lattice is:

[b,t,a,i,l,n,p,p,c,e]
[i, I, i, i, i,i, l,l,l,l]btm
[0,1,0,0,0,0,0,0,0,0] thing
[0, i, 1,0,0,0,0,0,0,0] agent
[0, I, i, 1,0,1,0,0,0,0] institution
[0,1,0,0,1,0,0,0,0,0] living
[0,1,0,0,0,1,0,0,0,0] non_living
[0, I, 1,0,1,0,1,0,O,O]person
[0,1,0,0,1,0,0,1,0, l]plant
[0,1,0,0,0,1,0,0, I, I] computer
[0,I,0,0,0,0,0,0,0, I] exports

The glb of, say, person and plant is:

[0, I, 1,0,1,0,1,0,O,0]person
AND
[0,1,0,0,1,0,0,1,0,1]plant
=

[0,1,0,0,1,0,0,0,0,0] living

which corresponds to the lub in the original lattice.
However, the notion of generalization captured in this way is not distributive

(because the lattice is not). If it were, then we should expect the following combinations
to yield the same result, where g and u represent generalization and unification:

g(u(A,B),C) = u(g(A,C),g(B,C))

Whereas in the lattice we are using for illustration, some choices for A, B and C, do
have this property (e.g., A=agent, B=person, C=living), other choices (e.g., A=person,
B=plant, C=computer) do not.

308

Pulman Unification Encodings

g(u(agent,person),living)
person

living

g(u(person,plant),computer)
btm

computer

= u(g(agent,living),g(person,living))
thing living

living

= u(g(person,computer),g(plant,computer))
thing exports

exports

We would do well to require distributivity, for otherwise, operations on lattices will
become order dependent. In order to do this we have to make our original lattice a
distributive one, making new disjunctive types. We can achieve this effect by instead
taking our original lattice (the right way up) and using bitwise disjunction of elements
to represent generalizations.

[1,0,O,O,O,O,1,0,O,O]person
OR
[i,0,0,0,0,0,0,1,0,O]plant

[1,0,0,0,0,0,1,1,0,0]

However, notice that this bitstring does not correspond to any existing row in the
original array. It corresponds instead to the disjunctive object {person;plant}. This
object is extensionally identical to the type living: in decoding we can recover this
fact by finding a bitstring which has a 1 in (at least) every position that the bitstring
describing the disjunctive object has a 1, and as few as possible ls other than this.
This bitstring will be the description of l iv ing. In general, to identify the equivalent
object for some "virtual" type we take the type description X and find the least object
Y such that the generalization of X and Y equals Y.

Unfortunately, for these lattices I have not been able to find a way of encoding
generalization as disjunction of bitstrings in such a way that the resulting encoding
will interact with the previous encoding of unification as conjunction of bitstrings. So
it is possible to have either generalization or unification, but not both within the same
feature system, at least with this encoding.

5.1 Implementation
In the context of linguistic descriptions the types concerned are often categories, i.e.,
non-atomic entities. The compilation technique given here assumes that the types
are atomic. Of course, where the ranges of feature values are finite, hierarchies of
non-atomic types can always be expanded into hierarchies of atoms. It is likely that
the resulting encodings would be rather large (although Ait-Kaci et al. (1989) describe
some compaction techniques). It is thus unlikely that the compilation technique would
be able to completely compile away the complex non-atomic type hierarchies used in,
say, HPSG.

However, a useful compromise is to add to our formalism a new type of feature,
whose values are members of an implicit lattice of atomic types. We will illustrate with
a partial analysis along these lines of agreement in NPs in English. Traditionally, agree-
ment in NPs is taken to be governed by at least three features: person and number
(often combined in a feature "agr") and something like "mass/count." The person fea-
ture is only relevant for subject-verb agreement, but at least number and mass/count
are necessary to get the right combinations of determiner (or no determiner) and noun
in the following:

the/a/some man
the/*a/some men
the/*a/some furniture

309

Computational Linguistics Volume 22, Number 3

*the/*a/*some furnitures
*man
men
furniture
*furnitures

We can express the appropriate generalizations quite succinctly by defining a feature
whose values are arranged in a hierarchy:

any
/ I \

count optdet sing
I \I \ I \

sg pl mass I
\ I

From the basic traditional types of count (sg and pl) and mass nouns we construct
two supertypes: sing(ular) and opt(ional)det(erminer).

The grammarian needs to add a declaration describing the set of types and the
partial order, expressed as immediate dominance, on them.

part ial_order J eature (agr,
[any : [count, optdet, sing] ,
count : [sg,pl],
optdet : [pl,mass],
sing: [mass, sg]]) .

From this declaration it is easy to compute the array representing the reflexive transi-
tive closure of immediately dominates:

[a , m , c , s , p , s , o]
[1 , 1 , 1 , 1 , 1 , 1 , 1] a n y
[O,l,O,O,O,O,O]mass
[0 , 0 , 1 , 1 , 1 , 0 , 0] count
[0 , 0 , 0 , 1 , 0 , 0 , 0] sg
[O,O,O,O,l,O,O]pl
[0 , 1 , 0 , 1 , O , l , O] s i n g
[O, l ,O ,O, l ,O ,1]op tde t

Now it is easy to precompute for each atomic type, represented by a row of the array,
a vector like that for bool comb fea ture . In this case, each vector will have nine
elements, and adjacent positions will be linked if the corresponding column element
is 0.

Given such a feature, the following rules and lexical entries are sufficient to account
for the data above, where in a more traditional feature-based approach we would have
had multiple entries for the determiners, and two rules for the determiner-less NPs:
one for the case of a mass noun, the other for the plurals.

np: {agr=A} ==> [n: {agr=optdet, agr=A}]
np: -[agr=A} ==> [det : {agr=A},n : {agr=A}]

t h e : det :{agr=any}
a: det : {agr=sg}
some : det : {agr=sing}

Of course, we could achieve a similar result by using the Boolean feature combinations
described earlier. We could define a feature with values in {sing ,plur}*{mass, count}
and provide rules and entries with the appropriate Boolean combinations of these. This
will always be possible, so, strictly speaking, the encodings we have described are not

310

Pulman Unification Encodings

necessary. However, there are two reasons for maintaining the type inheritance en-
coding separately from the Boolean feature combination. Firstly, although in many
cases the Boolean encoding might, as here, seem to have a size advantage, in general
this need not be the case, especially when the techniques for compaction of bit arrays
described by Ait-Kaci et al. (1989) are used. Secondly, and perhaps more importantly
for the grammarian, in many cases using the Boolean combination would be a linguis-
tically inaccurate solution. Having a definition like that just given implies that it is
just an accident that there are no massaplur NPs, since they are a linguistically valid
combination of features, according to the declaration. In this case, and similar ones,
the description in terms of type inheritance would be regarded as capturing the facts
in a more natural and linguistically motivated way.

6. Threading and Defaults

The technique of gap threading is by now well known in the unification grammar liter-
ature. It originates with Pereira (1981) and has been used to implement wh-movement
and other unbounded dependencies in several large grammars of English (Bobrow,
Ingria, and Stallard 1991; Pulman 1992).

The purpose of this section is to point to another use of the threading technique,
which is to implement a rather simple, but very useful, notion of default: a notion that
is, however, completely monotonic!

Consider the following problem as an illustration. In an analysis of the English
passive, we might want to treat the semantics in something like the following way:

Joe was seen

= exists(e,see(e,something,joe))
Joe was seen by Fred
= exists (e, see (e, fred, joe))

Joe was seen on Friday by Fred
= exists(e,see(e,fred,joe) a on(e,friday))

Joe was seen on Friday in Cambridge by Fred
= exists(e,see(e,fred,joe) & in(e,cambridge) & on(e,friday))

Joe was seen on Friday by Fred in Cambridge
= exists(e,see(e,fred,joe) ~ on(e,friday)) & in(e,cambridge)

Whether we assume a flat structure for the VP modifiers:

[vp pp pp .]

or a recursive one:

[[[vp pp] pp] pp]

the problems for the grammarian writing a compositional semantic rule for sentences
like this are:

(i) where the verb meaning is encountered, we do not know whether there
is an explicit agent phrase

(ii) if there is no agent, we need to put in an existential quantifier of some
sort (something).

(iii) if there is an agent phrase, we need to put in the meaning of the NP
concerned in subject position

(iv) if there is an agent phrase, it may come at any distance from the verb: in
particular, we cannot be guaranteed that it will be either the lowest of

311

Computational Linguistics Volume 22, Number 3

the highest of the VP modifiers in such sentences. (If we could, then the
problem could be solved either at the lowest VP level, or at the point
where the VP is incorporated into the S).

We can formulate this generalization in terms of defaults: the default subject for a
passive is something, unless an explicit agent is present, in which case it is that agent.
We can encode this analysis literally in terms of threading. The basic idea is that we
thread an agent=(In, Out) feature throughout the VP. On the passive verb itself, the
features will look like this:

v:{if=see(Subj,Obj),agent=(Subj,something),subj=Obj }

The surface subject is the semantic object (passed down via the feature subj. The
semantic subject is the value of the In part of the agent feature. This feature sends
the default value something as the Out value. We arrange things so that this value is
threaded throughout the VP and returns as the value of the In part if no agent phrase
is present. In other words, any PP that is not an agent phrase simply threads the value
of this feature unchanged. If an agent phrase is present, the logical form of the NP
in it replaces the something and becomes the Out value. The topmost VP, which is a
constituent of the S, will unify the In and Out values so that either the default agent
meaning, or an actual agent meaning is therefore transmitted eventually back to the
verb. (If we require the In value of the agent phrase to be the default value for an
agent i.e., a meaning like something, then this threading analysis has the incidental
advantage that only one agent phrase can be present.)

Some schematic rules to achieve this might be:

s:{if=Vsem} ==> [np:{if=S}, vp:{if=Vsem,subj=S,agent=(A,A)}]

The sentence semantics is taken from VP. The NP subj meaning is sent down to the
head V to be put in its first argument position. The Agent thread is passed on by
unifying In and Out values.

vp:{if=PPsem,subj=S,agent=(in,N2)} ==>
[vp:{if=Vsem,subj=S,agent=(in,Nl)},
pp:{agent=(NI,N2),if=PPsem,vlf=Vsem}]

The mother VP meaning is taken from the PP, which will simply conjoin its own
meaning to that of the daughter VP if the PP is a modifier. If the PP is an agent, it will
pass up the daughter VP meaning. PP meanings are functions from VP meanings to
VP meanings (or more generally, from predicates to predicates).

pp:{agent=(A,A),if=and(Vsem,...), vlf=Vsem} ==>
[p:{}, np:{}]

A nonagentive PP co~oins i t smeaning to that of the VE and passesthe agentthread
unchanged.

pp:{agent=(something,NPsem),if=Vsem, vlf=Vsem} ==>
[p:{}, np:{if=NPsem}]

An agentive PP replaces the default agent value with that of the agentive NP and
passes up the daughter VP meaning.

vp:{if=Vsem,subj=S,agent=(In,something)} ==>
[v_be:{}, v_passive:{if=Vsem, subj=In,obj=S}]

312

Pulman Unification Encodings

This rule introduces a passive form of V as complement to be, and sends up the default
agent meaning.

I described this technique as expressing a limited notion of default. There are
several linguistic concepts which seem amenable to an analysis in terms of such a
technique. A notable example might be the LFG concepts of functional completeness
and coherence. In all implementations of LFG parsers that I am aware of, such checks
are built into the parsing algorithm. However, it should instead be possible to achieve
the same effect by compiling the unification part of an LFG grammar in such a way
that completeness and coherence are checked via unifiability of two features: one going
up, saying what a verb is looking for by way of arguments, and one coming down,
saying what has actually been found.

6.1 Implementation
The easiest way to implement this use of threading is by defining and using macros
such as those given earlier for illustration. Some implementations (e.g., Karttunen 1986)
build threading into the grammar compiler directly, but this can lead to inefficiency if
features are threaded where they are never used.

7. Threading and Linear Precedence

Threading can also be used as an efficient way of encoding linear precedence con-
straints. This has been most recently illustrated within the HPSG formalism by En-
gelkamp, Erbach, and Uskoreit (1992). Given a set of some partial ordering constraints
and a domain within which they are to be enforced, the implementation of this as
threading proceeds as follows.

Firstly, given a set of constraints of the form a < c, b < d, etc., where each of
a, b, c, d is some kind of category description, then add to each instance of the
category that can appear within the relevant domains some extra features encoding
what is not permitted to appear to the left or right on each category within that domain.
How this is done depends entirely on what features and categories are involved: we
could use Boolean combinations of atomic values, category valued features, or, as in
the example below, a pair of term-valued features, l e f t and rLght.

Secondly, for each relevant rule introducing these categories in the given domains,
we need to identify among the daughters some kind of head-complement or governor-
governed relation. Exactly what this is does not matter: if there is no intuitively avail-
able notion, it can be decided on an ad hoc basis. The purpose of this division is
simply to identify one daughter whose responsibility it is to enforce ordering relations
among its sisters and to transmit constraints on ordering elsewhere within the domain,
both downwards to relevant subconstituents, and upwards to constituents containing
this one but still within the domain within which the ordering must be enforced. On
each relevant rule we need a feature on the mother and the distinguished daugh-
ter, here called store, following the terminology of Engelkamp, Erbach, and Uskoreit
(1992), and threading features, in and out or their equivalent, on the relevant sister
constituents.

To illustrate the technique in the simplest possible form, here is a small grammar
for an artificial language. The language consists of any sequence of four ys from
the set {a ,b ,c ,d} within a constituent labeled x, provided that the LP constraints
a < c, b < d are observed.

First we encode the categories in question with the LP constraints in terms of what
can precede and follow them. We represent this as a tuple, with a position for each of
the relevant categories: (a ,b, c,d). The feature le~t encodes what can precede, and

313

Computational Linguistics Volume 22, Number 3

r i gh t what may follow a category. If a member of the tuple cannot precede or follow
the current category we put a no in that position of the tuple, otherwise we leave it
uninstantiated.

Next we thread a similar tuple through each category to record which category
it is. Thus the position in the tuple for a b must have a b in that position in the out
value. All the other positions are simply linked by shared variables.

/* lexical entries: LP = a < c, b < d */

y:{lex=a,in=(_,B,C,D),out=(a,B,C,D),left=(.... no,_)}
y:{lex=b,in=(A,_,C,D),out=(A,b,C,D),left=(...... no)}
y:{lex=c,in=(a,B,_,D),out=(A,B,c,D),right=(no)}
y:{lex=d,in=(A,B,C,_),out=(A,B,C,d),right=(_,no)}

/ * r u l e s : * /

sigma:{} ==> [x:{}]

This rule just says that an x is a valid parse.

x: { s t o r e = S } ==> [y: {out=S}]

An x can consist of just a y. The store of the x is the out value of the y. In the other
rules, x acts as the distinguished daughter, and y as the subsidiary daughter.

x: { s to r e=A} ==>
[y : {out=A, in=B, r i g h t = B } , x : { s t o r e = B }]

When the distinguished daughter follows the subsidiary, the r i g h t value of the sub-
sidiary must be unified with its in value and the s tore of the distinguished daughter.
This means that any y categories following this one will be recorded in the store of
the x daughter, and will have to be consistent with the constraints recorded on this y
daughter's r i gh t feature.

The out value of the subsidiary daughter is passed to the mother category's store.
Thus the mother contains a record both of the distinguished daughter's store, and
what has been added to it by the subsidiary daughter.

x : { s t o r e = A } ==>
[x : {store=B}, y : {out=A, in=B, left=B}]

This rule illustrates what to do when the distinguished daughter precedes the sub-
sidiary one. Otherwise, things are exactly analogous. Of course, if both of these rules
are used, there will be a lot of ambiguity in these "sentences": they are just to illustrate
the different possibilities.

7.1 Implementation
This approach to partial ordering can be implemented by requiring the grammarian
to make linear precedence declarations encoding the partial orderings. (If grammars
obey the "Exhaustive Constant Partial Ordering" property (Gazdan et al. 1985, 49) one
global statement will be sufficient). Then, for each domain, the relevant rules have to be
annotated with an indication of the daughter that is to be treated as the distinguished
one.

We define (for each domain) five features (earlier called s tore , l e f t , r igh t , in, and
out) whose values will be tuples of length N, where there are N different categories
figuring in the partial order declaration. The members of the tuple will be categories,
each associated with a fixed position, or a negative element (here represented as no)

314

Pulman Unification Encodings

which will not unify with any of these categories. Intuitively, left and right encode
what can precede or follow the category they appear on; in and out encode what
actually does precede or follow; and s t o r e encodes the information to be passed up
the tree.

Now when compiling the g rammar (and lexicon), for each category figuring in a
linear precedence statement Ca < Cb, do the following:

.

.

.

add to Ca the feature specification
l e f t = (. . . . n o , . . .)
where no is in the position associated with Cb and all other positions
have an anonymous variable;

add to Cb the feature specification
right=(... ,no)

where no is in the position associated with Ca and all other positions
have an anonymous variable;

add to Ca/b the feature specifications

in = (Xl X.)

o u t = (X l Ca~b, • • •, Xn) where _ and Ca~ b a r e in the positions
associated with Ca/b and the other positions in these two features are
linked by shared variables X1 • • • X, as indicated.

Finally, for each annotated rule with distinguished daughter D, mother M, and
subsidiary daughter S:

1. pu t store=X on M and out:X on S

2. pu t s tore=Y on D

3. if D < S pu t in=Y, l e f t=Y on S; if S < D put in=Y, r ight=Y on S.

Macros, perhaps automatically generated by the compiler in response to the dec-
laration, can be used to effect these feature constraints economically.

8. Threading and Set Valued Features

The threading technique can also be used to implement some of the effect of set valued
features. We represent a set as a tuple of values, e.g. (a , b, c, d). Each member of the
set encodes its presence by changes to this tuple on an ±n and out feature: thus a
would have (no,B,C,D) as its in value and (a,B,C,D) as its out value. Then on the
category representing the domain within which all the members of the set are to be
found, we give (n o , n o , n o , n o) as the value of in, and (a , b , c , d) as the value of out.
These values will be satisfied if and only if all the members of the set have been
encountered, in any order.

Here is a small g rammar which implements a kind of set-valued subcategorization
analysis. The language consists of sequences of a verb (vabcd, vbcd, or vbd) followed
by the things it is subcategorized for, in any order: e.g.

vabcd a b c d
vabcd b a d c, e tc .
*vabcd a b c ~. d missing
*vabcd a b d c d Y. too many ds

315

Computational Linguistics Volume 22, Number 3

Here are the categories (for simplicity regarded as lexical) that can appear on subcat
lists:

y:{lex=a,in=(no,B,C,D),out=(a,B,C,D)}
y:{lex=b,in=(A,no,C,D),out=(A,b,C,D)}
y:{lex=c,in=(A,B,no,D),out=(A,B,c,D)}
y:{lex=d,in=(A,B,C,no),out=(A,B,C,d)}

Here are the verbs:

x : { l e x = v a b c d , i n = (a , b , c , d) , o u t = (no , n o , n o , n o) }
x : {lex=vbcd, in= (no, b, c, d) , out = (no, no, no, no) }
x : {lex=vbd, in= (no ,b ,no ,d) , out = (no ,no ,no ,no) }

Notice that by putt ing the negative element in the relevant position on both the in
and out tuple we require that that member of the set should not be found at all.

And now the rules:

sigma:{} ==>
[x : {in=A, out=A}]

This rule unifies the in and out values to make sure that what was found was what
was being sought; x might typically be a VP, for example, and this identification of
feature values would take place on the s==> [np, vp] rule.

x: {in=In,out=Out} ==>
[x : {in=In, out=Nxt }, y : {in=Nxt, out=Out}]

This is like a subcat schema which combines an x-projection with a y-complement ,
threading the appropriate information.

This simple technique can be used to implement m an y of the kinds of analysis
that might be thought to require set va lued features, a l though at a small cost of adding
some extra features and values to a grammar. It can also be combined with the pre-
ceding treatment of linear precedence to enforce a partial ordering on members of the
set.

Set valued features are often used in conjunction with a membership test. It is
usually possible to achieve the same effect by inventing a new bool_comb va lue fea-
ture and using disjunction. For example, if our original features involved sets whose
possible members were {a b c d e f} and had feature specifications of the form
f=X, where member(X,{b c d e}), then the same effect can be achieved by declar-
ing f to be a boo l comb va lue feature with values in { a , b , c , d , e , f } and writ ing
f = (b ; c ; d ; e) . In the case that the members of the set in quest ion are categories, then
some new atomic feature values have to be invented to represent these, as is often
necessary in other contexts also (Engelkamp, Erbach, and Uskoreit 1992).

9. Reducing Lexical Disjunction

This section describes two techniques for eliminating multiple lexical entries for the
same word. Having multiple lexical entries for the same word is a form of disjunction,
and all forms of disjunction entail increased nondeterminism leading to inefficiency in
analysis. It is therefore a good idea to eliminate multiple entries as far as is possible.

9.1 Selectors
A frequently occurring case is the following: a particular word, W, has multiple possi-
ble realizations of some property, P1 . • • Pn. Which particular realization is found will

316

Pulman Unification Encodings

depend on the context: in context C1 we find P1, and, more generally, in Ci we will
find Pi.

A simple though rather artificial illustration of this phenomenon might be a treat-
ment of the semantics of prepositions that regarded them as ambiguous between dif-
ferent senses, depending on which type of NP they combined with. For example, we
might regard for as having these meanings:

'for_benefactive' with animate NP: The book is for John

'for_time_period' with temporal NPs: He stayed for an hour

'for_directional' with locative NPs: They changed direction for the coast

Here the Pi are the different meanings, and the Ci are the different types of NP.
The simplest way to achieve the desired result is to have multiple entries for the

preposition, one for each sense. We then treat the correlation of the properties with
the contexts as a kind of agreement, between some feature on the preposition and one
on the NP. Some sample lexical entries, and a rule for combining a P and an NP to
make a PP might look like this:

p:{lex=for, sem=for_benefactive, type=animate}
p: {lex=for, sem=for_time_period, type=temporal}
p: {lex=for, sem=for_directional, type=locative}

pp:{sem=lambda(X,[S,X,NP])} ==> [p:{sem=S,type=T},np:{type=T,sem=NP}]

Unfortunately, such a treatment can lead to large numbers of lexical entries, which,
especially if they are phrasal heads, as in this case, can each generate a separate parsing
hypothesis for any occurrence of for in the input.

A better treatment can be obtained by using the fact that it is the NP that deter-
mines the P semantics, and encoding this dependency directly. What we need to do
is to make the NP select the appropriate prepositional semantics, representing all the
choices within a single lexical entry. We can do this in the following way:

. Encode the set of possible semantic values for the preposition as a list or
a tuple, where each position in the tuple is going to correspond
systematically to a particular type of NP.

p:{lex=for,semvalues=(for_benefactive,for_time_period...)...}

. Use the original seril feature to represent the semantic value that will be
chosen when the P is combined with an NP:

p:{lex=for,sem=Chosen,
semvalues=(for_benefactive,for_time_period,for_directional)...}

. Associate with each different type of NP and other relevant categories a
s e l ec to r feature whose value will pick the appropriate member of the
tuple on the P. Some illustrative rules and entries are:

np:{type=T,selector=S } ==> [det:{...},n:{type=T,selector=S }]

n:{lex=john,type=animate,selector=(X,(X))}
n:{lex=week,type=temporal,selector=(X,(_,X,_))}
n:{lex=coast,type=locative,selector=(X,(.... X))}

317

Computational Linguistics Volume 22, Number 3

. Now on the rule that combines a P and an NP to form a PP, use the
selector feature to choose the appropriate semantics for the P:

pp:{sem=lambda(X,[Chosen,X,NP])} ==>
[p:{sem=Chosen,semvalues=Tuple},
np:{sem=NP,selector=(Chosen,Tuple)}]

The value of the sere feature on the P will be the first, second, or third member of the
tuple, depending on the type of the NP. This will arise because the selector on the NP
will unify the Chosen variable with the position on the tuple identified by its shared
variable, X.

This simple device enables us to have a single entry for each preposition, while
still allowing for it to have multiple senses conditional upon the type of NP it com-
bines with. The technique has a wide variety of applications and can be astonishingly
effective in reducing the number of explicit alternative entries or rules that need to
be written, at the cost of a few extra features that cost nothing in terms of processing
time.

9.2 I m p l e m e n t a t i o n

As with many of the techniques described here, implementation by way of a compiled
out notation can be complex if the features involved interact with other aspects of
linguistic description. If we assume that they do not (which can usually be enforced
by defining a new "shadow" feature that simply duplicates the information where it
is needed) then an attractive and clean way of implementing this technique is as a
conditional constraint on feature values.

There are various notations one could employ: one possibility for the above ex-
ample is the following, where psem and type are assumed not to figure in any other
such statement, and where their total range of values is given by the conditionals
(such restrictions could be relaxed to some extent given agreed conventions or extra
declarations):

pp : {sem=lambda (X, [PSem, X, NP]) } ==>
[p : {psem=PSem},
np: {sem=NP, type=Type) }]

where
if Type = animate then PSem = for_benefactive
if Type = temporal then PSem = for_time_period
if Type = locative then PSem = for_directional

Now the compiler has enough information to be able to proceed automatically:

.

.

construct a values feature whose value will be a tuple of the values of
psem in a canonical order. Put this feature specification on the P category.
More generally, put this specification on that category of the rule
introducing the conditional constraints which contains the feature
specification figuring in the consequents of the conditional constraints.

construct a s e l ec to r feature whose values will be of the form
(X, (. . . . X)) where the second member of the tuple is a tuple of the
same length as that in the values feature. On each category where a
type feature specification is present, add the selector feature also. If the
type feature is instantiated, then the s e l ec to r feature will be of the form
indicated by the conditional constraint: that is, the X in the second
component of the tuple will be in the position corresponding to the value

318

Pulman Unification Encodings

.

of the psem feature given by the conditional, and all other positions will
be anonymous variables. If the type feature is simply passed from one
category to another, as it is for example on the NP rule given earlier, then
the s e l ec to r feature must likewise be coindexed on the two categories.

On the categories of the rule introducing the constraint, coindex the
feature specifications as follows:

values = Values

selector = (Selected,Values)

psem = Selected

Again, macros can be used to make it possible to express all this economically.

9.3 Subcategorization
Perhaps the most obvious source of lexical disjunction is subcategorization. Most verbs
can appear with several different types of complement, and some verbs appear with
many. For example, the verb send in English can occur in at least the following con-
figurations (there is some dialect variation here, but please bear with me for the sake
of the example):

John sent a letter.

John sent a letter to Mary.

John sent Mary a letter.

John sent out a letter.

John sent a letter out.

John sent out a letter to Mary.

John sent a letter out to Mary

John sent Mary out a letter.

John sent out Mary a letter.

There are nine distinct configurations here. Let us ignore the fact that some alternations
might be capturable by rule, and let us also ignore the fact that different semantic
properties might be involved. Given this, it would be nice to be able to have a single
entry for the verb send that encapsulated all these alternatives, rather than listing them
all as separate lexical entries, as is done in all grammatical formalisms I am familiar
with (except of course those that allow explicit disjunction).

In a GPSG-like approach to subcategorization (Gazdan et al. 1985), each distinct
type of complement has a separate rule. Thus we will have rules, schematically, like:

vp -> v[1] np

vp -> v[2] np pp

vp -> v[3] np np

etc .

Using the technique described earlier for encoding Boolean combinations of feature
values, we could achieve the desired single entry for send very simply. Rather than

319

Computational Linguistics Volume 22, Number 3

use numbers to represent the different subcategorization possibilities, we will have an
atom with some mnemonic content: {np, np_pp, np_np, np_pnp }. Then we define a
feature that can take as values Boolean combinations from this set, subcat, and write:

v : { l e x = s e n d , s u b c a t = (n p ; n p _ p p ; n p n p ; . .) . . }

The various VP rules are recast using the mnemonic symbols:

vp : {} ==> [v : {subcat=np},np : {}]
vp : {} ==> [v : {subcat=np_pp}, np : {}, pp : {}]
etc.

Now one entry for each verb will subsume all the possible subcategorization combi-
nations for it.

This technique certainly reduces the number of items in the lexicon. Unfortu-
nately, it does not necessarily reduce the amount of nondeterminism during analysis.
Although there is only a single entry for send, it will, on either a left-corner or head-
driven approach to parsing, initiate parsing hypotheses for each distinct VP rule whose
head unifies with it. That will be exactly the same number of parsing hypotheses as
we would have had with the original GPSG treatment, and so there is no obvious
advantage here.

Nevertheless, this technique should not be scorned, for in other cases, there will
be some advantage gained. For example, in derivational morphology the presence of
multiple entries for verbs like send can cause unwanted ambiguity. The word sender,
for example, would be nine ways ambiguous, given a rule like:

n:{} ==> [v:{}, affix:{lex=er}]

With just one entry for send this problem goes away. (Note that one cannot get round
the ambiguity problem by just restricting the agent nominalization rule to one or
two types of subcategorization: many different types of verbal complement may be
involved: sleeper, designer, thinker, etc.)

As we have seen, the GPSG treatment of subcategorization involves many VP
rules. A currently more favored approach is to use a single VP rule or schema or
subcat principle, and a list of categories subcategorized for by a verb:

vp:{subcat=Rest} ==> [vp:{subcat=[Next IRest] },Next]

vp : {lex=send, subcat= [{cat=np}, {cat=p}, {cat=pp}] }
etc.

Multiple applications of this schema use up subcategorized elements one at a time,
with a requirement that when the VP is combined with a subject to form a sentence the
subcat list is empty (or contains just one category unifiable with the subject, depending
on the approach taken). The tree for a VP will look like:

vp
/ \

vp pp
/\

vp p
/ \

vp np

This approach requires multiple entries for verbs, but has the advantage that it elimi-
nates the need for different VP rules for each type of complement.

It would be nice to f{nd some way of combining this single-schema approach with a
single subcategorization entry subsuming multiple possibilities. This would eliminate

320

Pulrnan Unification Encodings

nondeterminism completely, even for verbs capable of appearing with many different
types of complement. Although the details are rather complex, it turns out that it is
possible to achieve this by combining the Boolean encoding technique in conjunction
with the use of s e l ec to r s as previously described. Unfortunately, there are some
limitations on the amount of subcategorization information that can be expressed
by the resulting technique: in particular, categories have to be represented by atoms,
which is an inconvenient limitation. Nevertheless, for many purposes where efficiency
of processing is at a premium, it could be worth living with this limitation.

First of all, consider how to represent the various subcategorization possibilities
of a verb like send, using Boolean combinations of atoms. (I have omitted as many
parentheses as possible in the interests of readability. Assume that ; takes precedence
over a unless parentheses indicate otherwise.) It might seem that something like:

{cat=vp,lex=send,
subcat=(np;

np a pp;
np & np;
p a np;
np ~ p;
p & np a pp;
np a p a pp;
np & p a np;
p a np a np)

would accurately describe the possibilities. (This Boolean expression can, of course, be
written more compactly by using a few more disjunctions).

The VP schema that we need will then have to be of the following form. Note that
since we need to be able to generalize over categories, we are reverting to the basic
(untyped) category notation.

schema:
{cat=vp,subcat=S} ==> [{cat=vp,subcat=S]},{cat=S}]

sample entry:
{cat=vp,lex=send,subcat=(np; np ~ pp; np ~ np;...)}

(Note that this makes cat a Boolean combination feature. Given the importance of
the cat feature for efficient indexing and lookup this might be, for practical purposes,
unwise. A better implementation would use a new feature).

A moment's reflection should reveal that this first attempt will not give the cor-
rect results, for two reasons. Firstly, the various different orderings are not properly
encoded here (because p ~ q is logically equivalent to q g~ p). Secondly, there is no
encoding of the requirement to find the correct number of subcategorized entities
(because p a p is logically equivalent to p). Thus nothing would prevent us from suc-
cessfully analyzing a sentence like John sent Mary out Mary a letter to Mary a letter, with
too many complements, or John sent out, with too few.

Let us tackle the ordering problem first. We can solve this by adding new sym-
bols representing the product of the set of relevant categories np, p, pp and the set of
positions 1,2,3 after the verb in which they occur. We then define a Boolean feature
value type for the feature subcat as follows:

{np l ,p l ,pp l}*{np2 ,p2 ,pp2}*{np3 ,p3 ,pp3}

We encode the subcategorization possibilities in the obvious way, using these new
symbols. (This time I have used disjunction to give a more compact encoding.)

321

Computational Linguistics Volume 22, Number 3

{lex=send,cat=vp,
subcat=(npl;

npl & (pp2 ; np2) ;
pl ~ np2;
npl & p2;
npl ~ p2 ~ (pp3 ; np3);
pl ~ np2 ~ (pp3 ; np3))

}

We will define a new feature that appears on every category that can be subcategorized
for, say scat , whose values are tuples. An NP, for example, will have sca t=(npl ,np2,
np3). Notice that the components of the tuple are values that can appear in Boolean
combinations, for they must be of the same type as the subcat feature. In order to
pick the correct value for the position in question, we associate with the verb a feature
whose value is a list of the constructs called s e l e c t o r s that we used earlier. Each
s e l e c t o r picks out a position in the complement corresponding to the position of the
selector in the list: the first s e l e c t o r on the list will pick out npl for an NP, ppl for a
PP; the second will pick out np2 for an NP, pp2 for a PP, and so on. The feature and
value will be of the form: selectors= [(A, (A)), (B, (-,B,_)), (C, (.... C))].

The VP rule schema now uses the current selector to choose the appropriate
symbol from the complement it is combining with. It pops selectors off the list
each time it applies so that the correct positional encoding is available for the next
application.

{cat=vp, subcat=S,selectors=Rest} ==>
[{cat=vp, subcat=S, selectors = [(S, X) l Rest] },
{cat=_, scat=X}]

{cat=np,scat=(npl,np2,np3) }
{cat=pp,scat=(ppt ,pp2,pp3) , . . .}
etc.
{lex=send,cat=vp,subcat=(npl; npl & pp2; npl & np2; etc.),

selectors=[(A,(A)),(B,(_,B,_)),(C,(.... C))]}

Since the s e l e c t o r list guarantees that the symbols npl etc. are only found in the cor-
rect position after the verb, this solves the ordering problem. Although npl & np2 is
logically equivalent to np2 g~ npl, the s e l e c t o r list will not allow the second ordering
to be found, because this would involve an attempt to unify npl with np2. The use
of s e l e c t o r s to encode position also solves some cases of the problem that our first
attempt suffered from, of allowing more than the correct number of complements. The
s e l e c t o r list will not allow more than three complements of send to be found. Unfor-
tunately, the treatment so far will still allow fewer than three complements to be found
even where another is needed for the sequence to be grammatical. For example, the
sentence John sent out will be parsed successfully (as indeed will John sent) because no
conflict with any of the subcategorization possibilities has been encountered. The way
the Boolean encoding works has to allow for elements to be conjoined one at a time, but
it cannot require that all the elements are present simultaneously, for this very reason.

The way to solve this problem is to expand our Boolean combination of subcat
feature values to include some special finish symbols.

{npl,pl,ppl}*{np2,p2,pp2}*{np3,p3,pp3}*{fl,f2,f3,f4}

There is one symbol for each possible subcat position, plus an extra one to mark the
end of the list. We have to extend our various s e l e c t o r s and the lists they appear in
to accommodate this fourth position.

322

Pulman Unification Encodings

The intuitive motivation behind this move is to regard the completion of a subcat
requirement as being signaled by a special f i n i s h category. However, that category
need not actually be present: its marker can instead be introduced by the rule that
combines a completed VP with a subject to make a sentence. (This is analogous with
the treatment described earlier in which this rule required a subcat list to be empty
at this point).

To implement this analysis, we enter into the various subcategorization possibili-
ties the information about which position marks their completion:

{lex=send, cat=vp,
selectors=[(A,(A)), Y~ each selector now has 4 positions

(B, (_,B)),
(C, (.... C,_)),
(D,(...... D))], Z and there are 4 selectors in the list

subcat=(npl & f2;
npl a (pp2 ; np2) & f3;
pl ~ np2 & f3;
npl ~ p2 & f3;
npl & p~ & (pp3 ; np3) & f4;
pl ~ np2 & (pp3 ; np3) & f4)

}

An intransitive verb would of course just be subcat=fl.

Our VP rule schema is exactly as before. For the right results to be obtained,
however, we now need to assume the presence of some rule like the following to close
off the subcategorization:

{cat=s} ==> [{cat=np},
{cat=vp, subcat=S, selectors= [(S, (f I, f 2, f3, f4)) I _] }]

This will add the finish marker of the appropriate position to the subcat value of the
VP. This unification will only succeed if the verb is subcategorized to finish at that
point, and we will not have reached this point unless all the other elements subcat-
egorized for have been found in the correct order. So, using se l ec to r s and Boolean
combinations of feature values together we have developed an analysis that completely
eliminates disjunction and hence non-determinism. It will, of course, generalize to any
other area having the same structural properties.

9.4 Implementation
The general features of the implementation of this technique are as follows.

. we need to know the subcategorized-for categories, the symbols used to
identify them, and the maximum number that can occur in a single
verb-complement construction. This might conveniently be stated by a
declaration something like:

subcategorization_feature(Name,Categories,Mnemonics,MaximumLength).

This will allow us to automatically construct the s e l ec to r list. For a
maximum number of four, this will take the form:

[(A, (A)), (B, (_,B)), (C, (.... C,_)), (D, (...... D))]

The declaration will also allow us to work out the mnemonic values
(npl , f l , etc) needed for the scat and subcat features (types of

323

Computational Linguistics Volume 22, Number 3

booZ_comb_value feature). Rules or lexical entries that build a member
of Categories must have the scat feature added with tuple values like
(npl ,np2,np3) etc.

On lexical entries for subcategorizers, the subcat value can be stated
as a simple list of possibilities:

subcat= [[np] ,
[np, pp] ,
etc.

.

or some convenient abbreviatory notation could be devised. These values
should then be compiled to Boolean combinations of the corresponding
mnemonic atoms. The tuple-valued se l ec to r s feature needs to be added
to these entries with the value already illustrated: this can be done
automatically, given the declaration.

The rule that encodes the combination of subcategorizer and
subcategorized has to be identified, and feature specifications of the
following form added:

{...subcat=S, selectors=Rest,...} ==>
[{(subcategorizer) subcat=S, selectors=[(S,X) IRest]...},
{ (subcategorized) cat=X}]

. The rule that closes off the subcategorization needs to have the relevant
s e l ec to r s value added, as in the example above.

With suitable generation of macros by the compile~ our example might then be
written by the grammarian as:

declaration:
subcategorization feature(subcat,[{cat=np},{cat=p},{cat=pp}],[np,p,pp],4).

subcat schema rule:
{cat=vp, Mother} ==>

[{cat=vp, Subcategorizer]},
{Subcategorized}]

where
subcat_schema_macro(Mother,Subcategorizer,Subcategorized).

rule terminating subcat:
{cat=s} ==> [{cat=np},

{cat=vp,CloseSubcat}]
where
subcat_close_macro(CloseSubcat).

sample entries:
{lex=send,cat=vp,subcat=[[np], [np,pp], [np,np] etc.]}
{lex=give, eat=vp, subcat=[[np,np],[np,pp], etc.]}

9.5 Limitations
As mentioned earlier, there are some limitations associated with this technique. Be-
cause of the type of Boolean mechanism we are using, we are restricted to atomic
symbols to represent the subcategorized-for elements. Putting into lexical entries the
kind of refined subcategorization information that we often do using features is not
possible, or at least not possible without expanding the vocabulary of symbols like npl,
pp2, etc. to induce a finer partition among instances of the categories in question. This
is, of course, a serious limitation, especially for theories of grammar that are largely
lexically based. However, where all the categories that figure in subcategorization will

324

Pulman Unification Encodings

have some of the same features (e.g., those used for threading gaps) then these can be
incorporated directly into, in our case, the VP subcategorization schema rule.

Another problem is that since we need to be able to generalize over whole cate-
gories, we cannot, as things stand, use compilation into terms for feature structures.
One way round this is to change the VP schema so that complements are charac-
terized not just by a variable but by an explicit new category, say xcomp, with a
bool_comb_value feature on it that can serve to identify categories. We then introduce
rules expanding xcomp as the "real" category corresponding to that feature. This may
in turn re-introduce some inefficiency, since there will be an extra level of structure
that is not linguistically motivated.

A final limitation, which is perhaps more theoretically defensible, is that we are
forced to be absolutely and strictly composit ional in assembling the semantics of verb
phrases grouped under the same subcategorization treatment. Since we have only one
entry for a verb, then any semantic differences that are associated with variant subcat-
egorizations will have to be built from the complement constituents in a completely
composit ional way.

Alternatively, as is done in many wide-coverage systems for efficiency reasons,
syntactic and semantic analysis can be separated into consecutive stages. This can
have a further advantage in that now the same technique can be used to eliminate
disjunction for words where there is sense ambiguity but no syntactic ambiguity. If
different lexical entries are assigned to the content words in the following sentence
because they differ semantically but not syntactically, then the sentence will have 16
parses (8 * 2 for the at tachment ambiguity) to be disambiguated.

They saw the ball near the bank.

(saw = see, or cut wood;

ball = round thing, or dance;

bank = edge of river, or financial institution).

If sense selection is instead per formed when syntactic processing is completed, on the
assumption that the words involved do not differ syntactically, then there will only
be two parses and three lexical disambiguation decisions. In general we will only be
dealing with the sum and not the product of the syntactic and semantic ambiguity.
Under such a processing regime the appropriate sense entry for a verb on a particular
subcategorization can be s imply and cheaply selected (since the complete complement
will be there), and the benefits of the preceding analysis for syntactic processing will
be retained.

Acknowledgments
The work reported here was supported at
SRI Cambridge under contracts with the
European Commission, DGXIIIb,
Luxembourg (ET6/1, and ET10), and at
Cambridge University Computer
Laboratory by a grant from the Joint
Research Councils Cognitive Science
Initiative, held jointly by the author and
William Marslen-Wilson (London
University), 'Unification based models of
lexical access and incremental processing,'
SPG 893168. Earlier versions of some of the
material included here can be found in the

final reports of the ET6/1 (Alshawi et al.
1991) and ET10 projects. (A version of the
latter appeared as Markantonatou and
Sadler 1994).

This paper was largely written while I
was a visitor at the Institut f~ir Maschinelle
Sprachverarbeitung, University of Stuttgart,
in 1993. I am grateful to the members of the
Institute, in particular to Josef van
Genabith, Hans Kamp, Esther K6nig,
Christian Rohrer, and Sybille Laderer for
their help and hospitality during my stay.

For comments on earlier versions of this
work I am grateful to Doug Arnold, Gerald

325

Computational Linguistics Volume 22, Number 3

Gazdar, Josef van Genabith, Louisa Sadler,
and David Sedlock. Comments from three
anonymous referees also helped greatly to
improve both content and presentation of
the final version.

References

Abramson, Harvey. 1988. Metarules and an
Approach to Conjunction in Definite
Clause Translation Grammars. In R.
Kowalski and K. Bowen, editors,
Proceedings of the 5th International Logic
Programming Conference. MIT Press, pages
233-248.

Ait-Kaci, Hassan. 1986. An algebraic
semantics approach to the effective
resolution of type equations. Theoretical
Computer Science, 45:293-351.

Ait-Kaci, Hassan, Bob Boyer, Pat Lincoln,
and Roger Nasr. 1989. Efficient
implementation of lattice operations.
ACM Transactions of Programming
Languages and Systems. 11(1), January.

Alshawi, Hiyan (editor). 1992. The Core
Language Engine. MIT Press: Bradford
Books, Boston, MA.

Alshawi, Hiyan, Doug Arnold, Rolf
Backofen, David Carter, Jeremy Lindop,
Klaus Netter, Stephen Pulman, junichi
Tsujii, and Hans Uskoreit. 1991. ET6/1
Rule Formalism and Virtual Machine Design
Study. CEC Luxembourg.

Arnold, Doug, Stephen Krauwer, Michael A.
Rosner, Louis des Tornbe, and Giovanni
B. Varile. 1986. The <C,A>T framework
in EUROTRA: A theoretically committed
notation for MT. COLING-86, pages
297-303.

Bobrow, Rusty, Robert Ingria, and David
Stallard. 1991. The mapping unit
approach to subcategorization. In
Proceedings of Darpa Speech and Natural
Language Workshop. Palo Alto. Morgan
Kaufman.

Briscoe, Edward, Claire Grover, Branimir
Boguraev, and John Carroll. 1987. A
formalism and environment for the
development of a large grammar of
english. In Proceedings of the lOth
International Joint Conference on Artificial
Intelligence, pages 703-708, Milan, Italy.

Carpenter, Bob. 1992. The logic of typed
feature structures. Cambridge Tracts in
Theoretical Computer Science. CUP.

Clark, Keith and Frank McCabe. 1984.
Micro-Prolog. Prentice Hall.

Engelkamp, Judith, Gregor Erbach, and
Hans Uskoreit. 1992. Handling linear
precedence constraints by unification. In

Proceedings of the 30th Annual Meeting, ACL.
pages 201-208, Newark, Delaware.

Gazdar, Gerald, Ewan Klein, Geoffrey K.
Pullum and Ivan A. Sag. 1985. Generalized
Phrase Structure Grammar. Blackwell
Publishing, Oxford.

Haas, Andrew. 1989. A parsing algorithm
for unification grammar. Computational
Linguistics. 15(4): 219-232.

Johnson, Mark. 1988. Attribute-Value Logic
and the Theory of Grammar. CLSI Lecture
Notes, Vol. 16. University of Chicago
Press.

Karttunen, Lauri. 1986. D-PATR: A
development environment for
unification-based grammars. In
Proceedings of the 1 lth International
Conference on Computational Linguistics,
pages 74-80, Bonn.

Markantonatou, Stella and Louisa Sadler
(editors). 1994. Grammatical Formalisms:
Issues in Migration and Expressivity. Studies
in Machine Translation and Natural
Language Processing, Vol 4. Luxembourg:
Office for Official Publications of the
Commission of the European
Communities.

Mellish, Chris. 1988. Implementing systemic
classification by unification. Computational
Linguistics, 14: 40-51.

van Noord, Gertjan, Joke Dorrepaal, Pim
van der Eijk, M. Florenza, and Louis des
Tombe. 1990. The MiMo2 research system.
Third International Conference on
Theoretical and Methodological Issues in
Machine Translation, Linguistics Research
Center, Austin, Texas.

Pereira, Fernando. 1981. Extraposition
grammars. Computational Linguistics, 7(4):
243-256.

Pereira, Fernando and Stuart Sheiber. 1987.
Prolog and Natural Language Analysis. CSLI
Lecture Notes, Vol. 10, University of
Chicago Press.

Pollard, Carl and Ivan Sag. 1987. Information
Based Syntax and Semantics, 1:
Fundamentals. CSLI Lecture Notes, Vol. 13.
University of Chicago Press.

Pollard, Carl and Ivan Sag. 1993. Head
Driven Phrase Structure Grammar.
University of Chicago Press.

Pulman, Stephen G. 1992. Unification based
syntactic analysis. In Hiyan Alshawi,
editor, The Core Language Engine, MIT
Press, 1992.

Pulman, Stephen G. 1994. Expressivity of
Lean Formalisms. In S. Markantonatou
and L. Sadler, editors, Grammatical
Formalisms, Luxembourg, 1994, pages
35-59.

Ramsay, Allan. 1990. Disjunction without

326

Pulman Unification Encodings

tears. Computational Linguistics, 16(3):
171-174.

Shieber, Stuart M. 1984. The design of a
computer language for linguistic
information. In Proceedings of the lOth
International Conference on Computational
Linguistics, pages 362-366, Stanford, CA.

Shieber, Stuart M. 1986. An Introduction to
Unlit'cation-Based Approaches to Grammar.
University of Chicago Press.

Shieber, Stuart M. 1988. A Uniform

Architecture for Parsing and Generation.
Proceedings of the 12th International
Conference on Computational Linguistics,
Budapest.

Shieber, Stuart, Gertjan van Noord, Robert
C. Moore, and Fernando C. N. Pereira.
1990. Semantic-head-driven Generation.
Computational Linguistics.

Smolka, Gert. 1992. Feature constraint logics
for unification grammars. Journal of Logic
Programming, 12: 51-87.

327

