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This paper describes various techniques for enriching unification-based grammatical formalisms 
with notational devices that are compiled into categories and rules of a standard unification 
grammar. This enables grammarians to avail themselves of apparently richer notations that allow 
for the succinct and relatively elegant expression of grammatical facts, while still allowing for 
efficient processing for the analysis or synthesis of sentences using such grammars. 

1. Introduction 

Formalisms equivalent to, or based on, unification grammars of the type exemplified 
by PATR (Shieber 1984) are very widely used in computational linguistics (Alshawi 
1992; van Noord et al. 1990; Briscoe et al. 1987; Bobrow, Ingria, and Stallard 1991, 
etc.) A unification-based formalism has many well-known virtues: it is declarative, 
monotonic, reversible (in principle at least); it has a well-understood formal inter- 
pretation (Shieber 1986, Smolka 1992, Johnson 1988); and there exist well-understood 
and relatively efficient parsing and generation algorithms for grammars using such a 
formalism (Shieber 1988; Haas 1989; Alshawi 1992; Shieber et al. 1990, inter alia). 

However, a pure unification formalism is often thought to be a somewhat restricted 
grammatical formalism, especially when compared with the rich devices advocated by 
many grammarians. The recent literature (Pollard and Sag 1987, 1993, etc.) uses many 
devices that go beyond pure unification: set valued features; negation and disjunction; 
tests for membership; list operations like "append" and "reverse"; multiple inheritance 
hierarchies; as well as Kleene operators like * or +1, which are familiar from linguistics 
textbooks although they have no direct equivalent in a unification grammar. 

Unfortunately, there is a price to pay for this increase in expressive power: a 
decrease in efficiency. Whereas there exist several relatively efficient implemented sys- 
tems for parsing and generating with wide-coverage "pure" unification grammars 
(Alshawi 1992; Briscoe et al. 1987), more complex formalisms have not so far led to 
systems of comparable efficiency. At the present time, I am not aware of any practical 
implementations using these more complex descriptive devices remotely comparable 
to the (relative) efficiency of pure unification-based systems when used with wide- 
coverage grammars and large lexica. This is not a claim that the efficiency problem is 
solved even for pure unification grammars, but it is at least less of a problem than for 
these richer formalisms. 
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It would therefore be desirable to combine the efficiency of pure unification-based 
systems with the availability of richer grammatical formalisms. One route to this happy 
state of affairs would be to develop efficient processing mechanisms for the richer 
devices directly. However, this route involves a research program of uncertain length 
and outcome, given the known complexity properties of many of the richer descriptive 
devices. 

This paper describes an alternative approach towards such a combination, via the 
compilation of apparently richer grammatical notations into expressions whose satis- 
faction can be checked by unification alone. Compilation of these apparently richer 
devices into expressions that can be processed just using unification will generally al- 
low the grammarian to use them freely, without necessarily sacrificing the advantages 
of efficiency that pure unification systems offer. I say "without necessarily sacrificing" 
efficiency, because some compilation strategies may actually make matters worse. For 
example, a naive compilation of disjunction into many alternative rules and lexical en- 
tries, combined with an equally naive parsing algorithm, may produce worse behavior 
than an implementation that interprets the disjunctions directly. 

The paper describes a variety of apparently richer descriptive devices that can 
be compiled into unification grammars in ways that under normal circumstances will 
result in efficient processing. Some I believe to be original; others have been described 
elsewhere in the literature in some form, although often in a way that makes it difficult 
for computational linguists to appreciate their significance. Still others are known 
mostly by word of mouth, in the unification grammar community. The intention of 
the present paper is to describe them all in an accessible form (hence the more tutorial 
tone than is usually found in this journal) and thus attempt to narrow the gap between 
rich grammatical formalisms and efficient practical implementations. 

Of course, you don't get anything for nothing in this game. There will still be 
cases where the full power of the richer formalisms is necessary. The various tech- 
niques described here are often limited in their applicability, applying to only a subset 
of the problems that one would like to solve. Furthermore, some of the techniques 
described can lead, in the worst case, to overwhelmingly large structures and conse- 
quent processing inefficiency. Nevertheless, practical experience has shown that (with 
care and some experimentation) it is possible to develop linguistic descriptions that 
are succinct and relatively elegant, while still lending themselves to efficient (and most 
importantly, bidirectional) processing. 

2. A Unification Formalism 

To begin with, we will define a basic unification grammar formalism. For convenience, 
we will use many of the notational conventions of Prolog. 

A category consists of a set of feature equations, written: 

{fl=vl,f2=v2 . . . .  fN=vN} 

Feature names  are atoms; feature values  can be variables (beginning with an upper- 
case character), atoms (beginning with a number or a lowercase character) or cate- 
gories. For example: 

{fl=X,f2=yes,f3={f4=l,f5=X}} 

Coreference is indicated by shared variables: in the preceding example, f l and f5 are 
constrained to have the same value. We often use underscore (_) as a variable if we 
are not interested in its value. 
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For convenience and readability, we shall also allow as feature values lists of 
values, n-tuples of values, and Prolog-like terms: 

{fl= [{f2=a},{f3=b}] ,f4=(c,d,e) ,fS=foo(X,Y,Z)} 

These constructs can be regarded as "syntactic sugar" for categories. For example, a 
term foo (X,Y, Z) could be represented as a category { func to r=foo ,  argl=X, arg2=Y, 
arg3=Z}. Tuples can be thought  of as fixed-length lists, and lists can be defined as 
categories with features head and t a i l ,  as in Shieber (1986). We will use the Prolog 
notation for lists: thus [bar I X] stands for the list whose head is bar  and whose tail (a 
list) is x. 

A lexical i tem can be represented by a category. For example: 

{cat =n, count=y, number=sing, lex=dog} 
{cat=det, number=sing, lex=a} 
{cat=verb, number=sing, person=3, subcat= [] , lex=snores} 

A rule consists of a mother  category and a list of zero or more daughter  categories. 
For example: 

{cat=s} ==> [{cat=np,number=N,person=P}, 
{cat=vp, number=N, person=P}] 

A rule could equivalently be represented as a category, with distinguished features 
mother and daughters: 

{mother={cat=s}, 
daughters = [{cat=np, number=N, person=P}, 

{cat =vp, number=N, person=P}] } 

However, we will stay with the more traditional notation here. 
Various simple kinds of typing can be superimposed on this formalism. We can 

distinguish a particular feature (say cat)  as individuating different types and associate 
with each different value of the cat  feature a set of other dependent  features. This 
will only be a sensible thing to do if we know that the value of the ca t  feature will 
always be instantiated when  types are checked. We will write such declarations as: 

category (np, {person, number}) . 
cat egory (verb, {person, number, subcat } ) . 

The intent of declarations like this is to ensure that an NP or a verb always has 
these and only these feature specifications. One of the practical advantages of such a 
regime is that different categories can now be compiled into terms whose functor is the 
value of the eat feature, and whose other feature values can be identified positionally: 
for example, {cat=np, number=sing, person=3} would compile to np (3, sing). And in 
turn the advantage of this is that ordinary first order term unification (i.e., of the type 
(almost) provided by Prolog implementations) can be used in processing, guaranteeing 
almost linear performance in category matching. 

It is often convenient to use a slightly different notation when adopting such a 
regime, to make clear that one particular feature value has a privileged status. Thus 
we will frequently write: 

np:{person=3,number=sing} 

to mean: 

{cat=np,person=3,number=sing}. 
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We can also provide type declarations for features. We will assume a set of prim- 
itive types like atom or category,  and allow for complex types also: 

feature(person, atom({1,2,3})). % value must be an atom in declared set 
feature(lex, atom). ~ value must be any atom 
feature(subcat, list(category)). ~ value must be a list of categories 

We can also, if required, use a simple type of feature default to make the categories 
written by a grammarian more succinct: 

default (person, 3) . 
default (number, noun, sing) . 

The effect of the first statement would be to ensure that at compile time, the feature 
person will be instantiated to 3 if it does not already have a value (of any kind). The 
second statement restricts the application of the default to members of the category 
noun. We will often assume that such defaults have been declared to make the various 
example rules and entries more succinct. 

It is also very often convenient to allow for macros, expanded at compile time, to 
represent in a readable form commonly occurring combinations of features and values. 
We will assume that such macros are defined in ways suggested by the following 
examples, and that at compile time, the arguments (if any) of the defined macro are 
unified with the arguments of the instance of it in a rule or lexical item. In some cases, 
the results of macro evaluation may need to be spliced into a category: for example, 
when the result is a set of feature specifications. 

macro (transitive_verb (Stem), 
v: {lex=Stem, subcat= [np: {}] }) . 

macro (phrasal_verb (Stem, Part icle), 
v : {lex=St em, subcat= [np : {}, p : {lex=Part icle}] }) 

macro (thread_gaps (Mother,LeftDaughter,RightDaughter)) : - 
Mother = {gapin=In, gapout=0ut}, 
LeftDaughter = {gapin=In, gapout=Nxt }, 
I~ightDaught er = {gapin=Nxt, gapout=0ut}. 

Thus the grammarian might now write: 

transitive_verb (kick). 
phrasal_verb (switch, of f). 

s:{A,fl=vl .... } ==> [np:{B,f2=v2,..}, vp:{C,f3=v3,...}] 
where thread_gaps (A,B,C) . 

and these will be expanded to: 

v : {lex=kick, subcat = [rAp : {}] } 
v : {lex=swit ch, subcat= [np : {}, p : {lex=of f}] } 

s : {gapin=I, gapout=0, f l=vl .... } ==> 
[np: {gapin=I, gapout=N, f 2=v2 .... }, 
vp : {gapin=N, gapout=0, f3=v3 .... }] 

Notice that the values of variables in categories like s : {A .... } need to be spliced in 
when the macro is evaluated at compile time. 

Finally we will point out that multiple equations for the same feature on a category 
are permitted (where they are consistent). Thus a rule like: 

a:{f=V} ==> [h:{},c:{f=V,f=d:{fl=a}}] 
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is valid, and means that the value on c of f, which may be only partly specified, will 
be the same on category a. 

This completes our definition of a basic unification grammar formalism. While the 
notational details vary, the basic properties of such formalisms will be very familiar. 
We turn now to descriptive devices not present in the formalism as defined so far, and 
to ways of making them available. 

3. Kleene Operators 

Kleene operators like * (0 or more) or + (1 or more) are frequently used in semi- 
formal linguistic descriptions. In a context-free-based formalism they must actually be 
interpreted as a notation for a rule schema, rather than as part of the formalism itself: 
something like A -> B C* D is a shorthand for the infinite set of rules: 

A -> B D, A -> B C D, A -> B C C D, etc. 

While not essentially changing the weak generative capacity of a CFG, the use of 
Kleene operators does change the set of trees that can be assigned to sentences: N-ary 
branching trees can be generated directly. 

In some unification-based formalisms (e.g. Briscoe et al. 1987; Arnold et al. 1986) 
Kleene operators have been included. However, in the context of a typed unification 
formalism like ours, the exact interpretation of Kleene operators is not completely 
straightforward. Some examples will illustrate the problem. In a formalism like that 
in Arnold et al. (1986), grammarians write rules like the following, with the intent of 
capturing the fact that an Nbar can be preceded by an indefinite number of Adjective 
Phrases provided that (in French, for example) they agree in gender, etc., with the 
Nbar: 

iap:{agr=A} ==> 
[ .... adjp : {agr=A}*, nbar : {agr=A}] 

This is presumably intended to mean that if an AdjP is present, with agr instantiated 
to some value, then succeeding instances of AdjP must have agr bound to the same 
value, as must the Nbar. But a rule like this does not make clear what is intended for 
the values of any features on an AdjP not mentioned on the rule. Presumably it is not 
intended that all such values are shared, for otherwise such a rule would parse the 
first two of the following combinations, but not the third, which simply contains the 
concatenation of the adjectives appearing in the first two: 

adjp:{agr=m, foo=a} nbar:{agr=m} 
adjp: {agr=m, foo=b} nbar : {agr=ra} 
adjp:{agr=ra, foo=a} adjp:{agr=m, foo=b} nbar:{agr=m} 

Alternatively, the intention might be that only features explicitly mentioned on 
the rule are to be taken account of when "copying" the Kleene constituent. But this 
is still not an interpretation that is likely to be of much practical use. Unification for- 
malisms like ours are intended to be capable of encoding semantic as well as syntactic 
descriptions. In order to properly combine the meaning of the AdjP* with that of the 
Nbar (as a conjunction, say), to give the meaning of the mother NP, some feature on 
the AdjP* like sere=.., will at least have to be mentioned in building the NP meaning. 
But this very fact will mean that the interpretation of all the AdjPs encountered will 
be constrained to have the same value for sere as the first one processed. This is clearly 
not what the grammarian would have intended. The grammarian presumably wanted 
the value of the sere feature to depend on the AdjP actually present, while wanting 
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the value of the agr  feature to be set ultimately by the Nbar. Unfortunately, it is not 
possible to combine these conflicting requirements. 

At this point the reader might well wonder  w h y  Kleene operators were wanted 
in the first place. In most grammars,  Kleene * is used for two different reasons. In 
the first type of case, like that just illustrated, it is used when  it is not known how 
many  instances of a category will be encountered. (PP or adverbial modification of 
VP is a similar case.) Under these circumstances, it is in fact very often the case that 
a recursive analysis is empirically superior. For example, an English NP rule like: 

np:{}==> [det:{}, adjp:{}*, nbar:{}] 

actually makes it impossible to capture Nbar co-ordination (unless it is treated as 
ellipsis). In phrases like: 

there is no alternative analysis or clever trick 

in order to get the correct syntax and interpretation, alternative analysis or clever trick 
has to be treated as a conjunction of premodified Nbars. On an analysis that treats the 
construction recursively, this is no problem. 

The second reason for which Kleene • is used is to get a flat structure, where 
there is no evidence for recursion. Examples of this might  be, on some analyses, the 
German "middle field"; and some types of coordination. For these cases, it is genuinely 
important  to have some way  of achieving the effect of Kleene operators. 

In our formalism, there are several ways of achieving an equivalent effect. The 
easiest and most obvious way is to turn the iteration into recursion, with the necessary 
flat structure being built up as the value of a feature on the highest instance of the 
recursive expansion. The following schematic rules show how this can be done: 

kleene : {kcat=C,kval= [] } ==> [] 
terminate the recursion 

kleene : {kcat=C, kval= [C I T] } ==> [C, kleene : {kcat=C, kval=T}] 
Y~ find a C, followed by C~ 

For the other Kleene operators (+, +2, etc.), instead of the first Kleene rule termi- 
nating the recursion with an empty category, it terminates with one, two, or however 
many instances of the category are required. With a suitable macro definition for *, a 
grammarian can now write rule 1 in the form of rule 2, which will be expanded to 3: 

1. a:{} ==> [b:{}, 

2. a:{} ==> [b:{}, 

3. a:{} ==> [b:{}, 

C:{}*, d:{}] 

*(C:{},C), d:{}] 

kleene:{kcat=c:{},kval=C}, d:{}] 

A sequence of three cs will be parsed with a structure: 
k 

/ \ 
c k 

/ \ 
c k 

/ \ 
c k 

I 
[] 
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This structure is, of course, recursive. However ,  a flat list of the occurrences of c is 
built up as the value of kva l  on the topmost  Kleene category. Anything that the flat 
consti tuent structure was originally needed  for can be done with this list, the extra 
levels in t roduced by  the recursion being ignored. 

It is, however,  possible to get a flatter tree structure more directly, and also to 
overcome the problem with features used for semantic composition. In order  to do 
this we take advantage of the fact that our  formalism allows us to write rules with 
variables over  lists of daughters.  1 We assume a category k leene  with three category 
valued features: f i n i s h ,  kca t  (kleene category), and next .  We enrich the grammatical  
notation with a * which can appear  as a suffix on a daughter  category in a rule. Thus 
our grammarian  might  write something like: 

np:{agr=A} ==> [det:{agr=A}, adj:{agr=A}*, n:{agr=A}] 

This is then compiled into a set of rules as follows: 

. np:{agr=A} ==> 
[det:{agr=A}, 
kleene:{finish=[n:{agr=A}],kcat=adj:{agr=A},next=N} 

I N] 

The original category appears  as the value of the kca t  feature, and the categories 
that followed this one in the original rule appear  as the value of the f i n i s h  feature. 
The value of the feature nex t  is a variable over the tail of the daughters  list, in a way  
reminiscent of m a ny  treatments of subcategorisation. 

. kleene:{finish=F,kcat=adj:{agr=A,fl=Vl,....}, 
next=[kleene:{finish=F,kcat=adj:{agr=A},next=N}IN]} 
[adj:{agr=A,f1=Vl ..... }] 

==> 

In rule 2, the kleene category is rewrit ten as an adj ,  which will share all its fea- 
tures with the value of kcat .  The value of nex t  is another  instance of the k l een e  
category, which shares the value of the f i n i s h  feature, and where the value of the kcat 
feature is the adj category as it appeared on the original rule. This ensures that only the 
features ment ioned on the k l eene  category will be identically instantiated across all 
occurrences, enabling the semantic problem ment ioned earlier to be solved (at least in 
principle: the current  illustration does not  do so). Clearly when  the mother  of this rule 
is unified with the corresponding daughter  of rule 1, the effect will be to extend the 
list of daughters  of rule 1 by adding the value of next .  Since this value is itself a list, 
now consisting of a k l eene  category and a variable tail, the resulting structure can 
again be combined with a following k l eene  category having the appropriate  values. 
This process can continue ad infinitum. 

3. kleene:{finish=F,next=F} ==> [] 

The third rule (which is general and so only need occur once in the compiled 
grammar)  terminates the iteration by extending the daughters  of rule I by the sequence 
of categories that appeared in the original rule. 

1 A referee has  poin ted  out  that this is akin to the metavar iable  facility of some  Prolog sys t ems  (Clark 
and  McCabe 1984), and  that  a s o m e w h a t  similar  technique,  in the context  of DCGs, is described by 
A b r a m s o n  1988). 
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Now a sequence det  ad31 adj 2 adj 3 n will be parsed having the following struc- 
ture: 

np 
i 

I I i I I I 
det k k k k n 

I i I I 
al a2 a3 0 

The values of the ad3 daughters to kleene will be present as the value of kcat, and 
so for all practical purposes this tree captures the kind of iterative structure that was 
wanted. 

In some cases, the extra level of embedding that this method gives might actually 
be linguistically motivated. In this case, the idea behind the compilation just described 
can be incorporated into the analysis directly. To give an illustration, the following 
grammar generates indefinitely long, flat, NP conjunctions of the "John, Mary, Bill, 
. . . ,  and Fred" type. 

I. 

2. 

3. 

np:{flatconj=y} ==> 
[np:{flatconj=n,next=MoreNPs} i MoreNPs] 

np:{flatconj=n,next=[np:{flatconj=n,next=MoreNPs} i MoreNPs]} ==> 
[np:{ . . . }, comma:{}] 

np:{flatconj=n, next=[]} ==> 
[conj:{}, np:{}] 

These rules will give a structure: 

[NP [NP ,] [NP ,] [NP ,] . . . [and/or NP]] 

The trick is again in the unification of the value of the feature next on the daughter 
of rule 1 and the mother of rule 2. This unification extends the number of daughters 
that rule 1 is looking for. Rule 3 terminates the recursion. The feature f l a t c o n j  stops 
spurious nestings, if they are not wanted. 

In English, at least, this type of conjunction is the only construction for which 
a Kleene analysis is convincing, and they can all be described satisfactorily in this 
manner. 

4. Boolean Combinations of Feature Values 

Our formalism does not so far include Boolean combinations of feature values. The 
full range of such combinations, as is well known, can lead to very bad time and space 
behavior in processing. Ramsay (1990) shows how some instances of disjunction can 
be avoided, but there are nevertheless many occasions on which the natural analysis 
of some phenomenon is in terms of Boolean combinations of values. 

One extremely useful technique, although restricted to Boolean combinations of 
atomic values, is described by Mellish (1988). He gives an encoding of Boolean com- 
binations of feature values (originally attributed to Colmerauer) in such a way that 
satisfiability is checked via unification. This technique is used in several systems (e.g. 
Alshawi 1992; the European Community's ALEP (Advanced Linguistic Engineering 
Platform) system; Alshawi et al. 1991). We describe it again here because we will need 
to know how it works in detail later on. 
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Given a feature with values in some set of atoms, or product  of sets of atoms, any 
Boolean combination of these can be represented by a term. The encoding proceeds 
as follows, for a feature f with values in {1,2} * {a,b,c}. We want  to write feature 
equations like: 

f = l  

f = b  

f--l&b ; i and b 

f=(a;b)~2 ; either a or b, and 2 

f=~2 ; not 2 

f=(1->b)&(~l->c) ; if i then b, else c 

f=2<->c ; 2 if and only if c 

To encode these values we build a term with a functor, say bv (for Boolean vector) 
with N+I variable arguments, where N is the size of the product of the sets from 
which f takes its values. In the example above, N=6, so by will have seven arguments. 
Intuitively, we identify each possible value for f with the position between arguments 
in bv: 

by( ............. ). 
1 1 1 2 2 2 

a b c a b c 

In building the term representing a particular Boolean combination of values, what 
we do is work out, for each of these positions, whether or not it is excluded by the 
Boolean expression. The simple way to do this is to build the models as sets of atoms, 
and then test the expression to see if it holds of each one. For example, take f= (a;b)&2. 
The models are 

{{1,a},{l,b},{l,c},{2,a},{2,b},{2,c}}. 

An atomic expression like a holds of a model if it is a member, and fails otherwise: 
a here only therefore holds of the two models containing a. Truth functions of atoms 
can be interpreted in the obvious way. The feature value of f above holds only of 
{2, a} and {2,b}. Thus all other combinations are excluded. 

For each position representing an excluded combination we unify the variable 
arguments  on each side of it. In our  example this gives us: 

bv(A , A , A , A , B , C , C). 
1 1 1 2 2 2 
a b c a b c 

Finally, we instantiate the first and last argument to different constants, say 0 and 1. 
Because of the shared variables, this will give us: 

b v ( O  , 0 , 0 , 0 , B , 1 , 1 ) .  

1 1 1 2 2 2 
a b c a b c 

The reasoning behind this last step is that if all the possibilities are excluded,  then all 
the variables will be linked. But if all the possibilities are excluded,  then we have an 
impossible structure and we want  this to be reflected by  a unification failure. If we 
know that the first and last arguments  are always incompatible, then an a t tempt  to 
link up all the positions will result in something that will be trying to unify 0 and 1, 
and this will fail, as required. 

Notice that the number  of arguments  in the term that we build for one of these 
Boolean expressions depends  on the size of the sets of atomic values involved. This 
can grow rather big, of course. 
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Sometimes, it happens  that al though the set of possible values for a feature is 
very  large, we only want  to write Boolean conditions on small subsets of those values. 
A typical case might  be a feature encoding the identifier of a particular lexical item: 
in English, for example,  the various forms of be often require extra constraints (or 
relaxation of constraints) which do not  apply  to other verbs. However ,  we would  not  
want  to build a term with N+I  arguments  where  N is the number  of verbs in English. 

Under  these circumstances there is a simple extension of this encoding. Assume the 
feature is called stem. We encode the set of values as something like: {be, have ,  do, anon}, 
where  anon is some distinguished atomic value standing for any other verb. Then we 
can write things like: 

stem=be 

stem=- (be ;have) 

stem=have ; do 

etc. 

However ,  to express the constraints we need to express, the encoding has to be 
a little more complex. We could build a term of N+I  arguments,  as before, where  
N=4. But now all the items that fall under  anon will be encoded as the same term. 
This means that we are losing information: we cannot  now use the stem feature to 
distinguish these verbs. What  we have to do is to give the bv functor another  argument ,  
whose values are those of the original feature: in our  example,  all the different verb 
stems of English. In other respects we encode the values of the stem feature as before, 
but  with the extra a rgument  the encodings now look like: 

be: stem=by(be, 0 , 1 , 1 , i , 1) 

b h d anon 

have: stem=bv(have, 0 , 0 , 1 , 1 , I) 

b h d anon 

expect: stem=bv(expect, 0 , 0 , 0 , 0 , 1) 

b h d anon 

decide: stem=bv(decide, 0 , 0 , 0 , 0 , 1) 

b h d anon 

The extra a rgument  can now distinguish between the anon verbs. Everything else 
works just as before. 

This extension can also be generalized to products  of large sets. For example,  
we might  want  a feature whose value was in the product  of the set of letters of the 
alphabet and positive whole numbers.  And let us suppose that we want  to exclude 
some particular combinations of these. The particular constraints we need to write 
might  figure in the grammar  as: 

i d = ~  ( c ~ ( 1 2 ;  1 3 ) )  

That is, everything except c~12 and c~13. At compile time, when  we have exam- 
ined the whole grammar  and lexicon, we know which values are actually mentioned,  
and we can represent  the value space of this feature as: ( c ,  anon1} * {12,13,  anon2}, 
where anon1 and anon2 are again atoms standing in for all the other values. We need 
two extra arguments  this time, and then expressions like ga444, c~13, and (ca (12 ; 13) ) 
will be coded as: 

f 2 = b v ( g , 4 4 4 , 0  , 0 , 0 , 0 , 0 , 0 , 1 )  

c c c a l  a l  a l  

12 13 a2 12 13 a2 
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f2=bv(c,13,0 , 0 ,  i ,  1 ,  1 ,  1 ,  1) 

c c c a l  a l  a l  

12 13 a2 12 13 a2 

f2=bv(c, _ ,0 , A , B , 1 , 1 , 1 , i )  

c c c a l  a l  a l  

12 13 a2 12 13 a2 

Notice that for the original Boolean expressions, we may not be able to fill in all the 
extra argument places. 

4.1 Implementation 
Implementation of this technique requires the grammar writer to declare a particular 
feature as being able to take values in some Boolean combination of atoms, for example, 
something like: 

bool_comb_feature (agr, [ [i, 2,3] , [sing, plur] ] ) . 

Lists of lists of atoms represent the subsets whose product forms the space of values. 
To compile the value of a particular bool comb fea tu re  when in the grammar, 

first, using the declarations, precompute the set of models (i.e., the space of values). 
Assume this set has N members. Then, for each feature=value equation, construct for 
the value an N+I vector whose first member is 1 and whose last is 0, and where all 
the other members are initially distinct variables. Now encode the feature value into 
this vector as follows: 

for i = I to N-I, 
if feature value does not hold of the i'th model in the set 
then unify vector positions i and i+1. 

If the models in the set are represented as lists of atoms, then a single atom as feature 
value holds of (is true in) a model if it is a member of the list representing the model, 
a conjunction of atoms holds if both conjuncts hold, etc. 

To implement the extensions just described requires only the addition of the right 
number of extra argument places to hold the original atoms, where relevant. 

5. Type Hierarchies and Inheritance 

Type hierarchies are becoming as ubiquitous in computational linguistics as they have 
been in knowledge representation. There are several techniques for compiling certain 
kinds of hierarchy into terms checkable by unification: Mellish (1988) describes them. 
The version presented here derives from a more general approach to the implementa- 
tion of lattice operations by Ait-Kaci et al. 1989, which shows how to implement not 
only efficient unification of terms (greatest lower bound, "glb") in a type lattice but 
also of generalization (least upper bound, "lub") and complement. 

We will restrict our attention to hierarchies of the type described by Carpenter 
(1992, Chapter 1), i.e., bounded complete partial orders, (but using the terminology 
of Ait-Kaci (1986). Carpenter's lattices are upside down, and so for him unification 
is "least upper bound" and so on.) We further restrict our attention to hierarchies 
of atomic types. (While in principle the encoding below would extend to non-atomic 
(but still finite) types, in practice the resulting structures are likely to be unmanageably 
large.) 

In our presentation, we make these hierarchies into lattices: they always have a 
top and bottom element and every pair of types has a glb and lub. Having a glb of 
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btm is read as failure of unification. Having a lub Of top  means  that the two types do 
not share any information. 

One example of such a lattice is Ait-Kaci (1986, 223) 

top 
/ l \ 

person witch monarch 
I \ \ I 

adult child \ queen 
\ I \ I 

teenager wicked_queen 
\ / 

btm 

A teenager is both  an adult  and a child; a queen is a monarch,  etc. The glb of a d u l t  
and c h i l d  is t e enage r ;  the lub is person.  

The lattice that we will use for illustration is: 

/ 
/ 

living 

thing 
I I\ \ 

I I \ \ 
I \ \ .... 
I \ \ 

agent nonliving export 
I \I \ I \ II 
I x \___I___\_I I 
I I \ IX I \ I 

person pl~t inst'n co~uter 
\ I I I 
\ I I __I 
\_ II__I 

\ II I 
btm 

Notice how easy it is to get a lattice that does not  obey our  constraints. By adding 
a line from e x p o r t s  to pe r son  (either the slave trade or the brain drain) we get a 
situation where  e x p o r t s  and l i v i n g  no longer has a greatest lower bound,  a l though 
this would  be a perfectly natural  inheritance link to want  to add. 

To encode the information in this lattice in a form where  glb and lub can be 
computed  via unification we first make an array representing the reflexive transitive 
closure of the " immediate ly  dominates"  relation, which is pictured in the diagram 
above by  lines. 

[b,t,a,i,l,n,p,p,c,e] 
[1,0,O,O,O,O,O,O,O,O]btm 
[i,i,i, I, I,i,I, 1, I, 1]thing 
[I,0, i, 1,0,0,1,0,0,0] agent 
[i,0,0,1,0,0,0,0,0,0] institution 
[i,0,0,0,1,0, I, 1,0,0] living 
[l,O,O,l,O,l,O,O,l,O]non_living 
[I,0,0,0,0,0, l,O,O,O]person 
[l,O,O,O,O,O,O,l,O,O]plant 
[l,O,O,O,O,O,O,O,l,O]computer 
[i,0,0,0,0,0,0, i, i, i] exports 

In each row we put  a I if the row element  dominates  the co lumn element,  (i.e., co lumn 
is a subtype of row) and a 0 otherwise. Since everything is a subtype of itself, and btm 
is a subtype of everything,  there is a 1 in each of the diagonal cells, and in the cell for 
btm on each row. Taking the agent row, we also have a 1 for the i n s t i t u t i o n  column 
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and a 1 for the person column. We will refer to such a row as a "bitstring," although 
as we have represented it, it is a list rather than a string. (The sharp-eyed reader will 
see various other list and term representations of things that are logically bitstrings in 
what follows. I apologize for this abuse of terminology, but have got into the habit of 
calling them bitstrings.) 

This is the first step of the encoding technique described by Ait-Kaci et al. (1989). 
They point out that what the rows of this array represent is the set of lower bounds 
of the row element, via a bitstring encoding of sets. Thus the AND of two rows will 
represent the set of lower bounds they have in common. This will in fact be the case 
whether or not the lattice has the properties we are assuming. If it does not, then it 
will be possible for the bitstring representing the lower bounds of the two types to be 
distinct from any row. In our case, however, the bitstring will always coincide with 
one row exactly. This row will represent the glb of the two types. 

Unfortunately, however, ANDing of bitstrings is not the kind of operation that is 
directly available within the unification formalism we are compiling into. So we have 
to encode it into a unification operation. For this we can turn again to the Colmerauer 
encoding of Boolean combinations of values. 

Informally, we regard a bitstring like those in the rows of the array above as a 
representation of the disjunction of the members of the set of lower bounds of the 
type. So the row for agent: 

[b,t,a,i,l,n,p,p, c,e] 
[i,0,i, 1,0,0, l,O,O,O]agent 

is regarded as meaning "btm or agent or institution or person." Then we can encode 
the bitstring directly into a Boolean vector term of the kind we discussed earlier. The 
term will have N+I arguments, where N is the length of the bitstring, and adjacent 
arguments will be linked if their corresponding bitstring position is zero, and otherwise 
not linked. The term corresponding to the bitstring for agent will then be: 

bv(A,B,B,C,D,D,D,C,C,C,C) 
bv(O,B,B,C,D,D,D,I,I,I,I) 

bt ai lnpp c e 

before and after instantiation of the first and final arguments to 0 and 1, respectively, 
respectively. 

The term corresponding to the l i v i n g  bitstring will be: 

bv (A,B,B,B,B,C,C,D,E,E,E) 
bv(O,B,B,B,B,C,C,D, 1,1, i) 

bt ailnpp c e 

Unifying the two terms together: 

bv(0,B,B,C,D,D,D, 1, I, 1, i) 
bv(0,E,E,E,E,F,F,G,I,I,1) 

bv(0,B,B,B,B,B,B, i, i, 1, i) 

When we decode this, by the reverse translation (identical adjacent arguments means 

0), we get: 

bv (O,B,B,B,B,B,B, I, i, i, I) 
= [1,o,o,0,o,0,1,0,o,o] 

which is the bitstring for person, the greatest lower bound of the two types agent and 
living, as required. 
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With this encoding, unification will never fail, since every pair of types has a glb, 
even if this is btm. However, since having a glb of btm is usually meant to signal that 
two types are incomparable and thus do not have a glb, it would be more useful if 
we could contrive that unification would fail for such cases. In the usual Colmerauer 
encoding, an impossible Boolean combination is signaled by all the arguments being 
shared. This will cause an attempt to unify the first and last arguments of the term, 
which, being 0 and 1, will cause the unification to fail. Such a failure will never happen 
in our encoding thus far: since the entry for btm in each bitstring is 1, there will always 
be one adjacent argument pair unlinked, and so unification will always succeed. 

If, on the other hand, we simply omit btm from the list of types, then when two 
types have no lower bound, the result of ANDing together their corresponding bit- 
string will be a bitstring consisting entirely of zeros. Thus, unifying any two Boolean 
vector terms that results in the term encoding such a bitstring will fail: if all the ele- 
ments are zero, then all the arguments will be linked, and we will be trying to unify 
0 and 1. Everything else will work just as before. 

We have been dealing with type hierarchies that have the property of being 
bounded complete partial orders, except that we have added a btm element to en- 
sure that every pair of types has a glb. Hierarchies of this sort, when they have a top 
element, have the defining property of lattices that every pair of types has both a glb 
and lub. Being complete lattices, they also have the property that they can be inverted, 
by taking "immediately dominates" to be "immediately dominated by." Furthermore, 
what in the original lattice was the glb of two types is now the lub and vice versa. 
Hence, by computing an array based on the inverse relation one can use exactly the 
same technique for computing least upper bounds, or the generalization of two types. 

The array generated for the inverted lattice is: 

[b,t,a,i,l,n,p,p,c,e] 
[i, I, i, i, i,i, l,l,l,l]btm 
[0,1,0,0,0,0,0,0,0,0] thing 
[0, i, 1,0,0,0,0,0,0,0] agent 
[0, I, i, 1,0,1,0,0,0,0] institution 
[0,1,0,0,1,0,0,0,0,0] living 
[0,1,0,0,0,1,0,0,0,0] non_living 
[0, I, 1,0,1,0,1,0,O,O]person 
[0,1,0,0,1,0,0,1,0, l]plant 
[0,1,0,0,0,1,0,0, I, I] computer 
[0,I,0,0,0,0,0,0,0, I] exports 

The glb of, say, person and plant  is: 

[0, I, 1,0,1,0,1,0,O,0]person 
AND 
[0,1,0,0,1,0,0,1,0,1]plant 
= 

[0,1,0,0,1,0,0,0,0,0] living 

which corresponds to the lub in the original lattice. 
However, the notion of generalization captured in this way is not distributive 

(because the lattice is not). If it were, then we should expect the following combinations 
to yield the same result, where g and u represent generalization and unification: 

g(u(A,B),C) = u(g(A,C),g(B,C)) 

Whereas in the lattice we are using for illustration, some choices for A, B and C, do 
have this property (e.g., A=agent, B=person, C=living), other choices (e.g., A=person, 
B=plant, C=computer) do not. 
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g(u(agent,person),living) 
person 

living 

g(u(person,plant),computer) 
btm 

computer 

= u(g(agent,living),g(person,living)) 
thing living 

living 

= u(g(person,computer),g(plant,computer)) 
thing exports 

exports 

We would do well to require distributivity, for otherwise, operations on lattices will 
become order dependent. In order to do this we have to make our original lattice a 
distributive one, making new disjunctive types. We can achieve this effect by instead 
taking our original lattice (the right way up) and using bitwise disjunction of elements 
to represent generalizations. 

[1,0,O,O,O,O,1,0,O,O]person 
OR 
[i,0,0,0,0,0,0,1,0,O]plant 

[1,0,0,0,0,0,1,1,0,0] 

However, notice that this bitstring does not correspond to any existing row in the 
original array. It corresponds instead to the disjunctive object {person;plant}. This 
object is extensionally identical to the type living: in decoding we can recover this 
fact by finding a bitstring which has a 1 in (at least) every position that the bitstring 
describing the disjunctive object has a 1, and as few as possible ls other than this. 
This bitstring will be the description of l iv ing.  In general, to identify the equivalent 
object for some "virtual" type we take the type description X and find the least object 
Y such that the generalization of X and Y equals Y. 

Unfortunately, for these lattices I have not been able to find a way of encoding 
generalization as disjunction of bitstrings in such a way that the resulting encoding 
will interact with the previous encoding of unification as conjunction of bitstrings. So 
it is possible to have either generalization or unification, but not both within the same 
feature system, at least with this encoding. 

5.1 Implementation 
In the context of linguistic descriptions the types concerned are often categories, i.e., 
non-atomic entities. The compilation technique given here assumes that the types 
are atomic. Of course, where the ranges of feature values are finite, hierarchies of 
non-atomic types can always be expanded into hierarchies of atoms. It is likely that 
the resulting encodings would be rather large (although Ait-Kaci et al. (1989) describe 
some compaction techniques). It is thus unlikely that the compilation technique would 
be able to completely compile away the complex non-atomic type hierarchies used in, 
say, HPSG. 

However, a useful compromise is to add to our formalism a new type of feature, 
whose values are members of an implicit lattice of atomic types. We will illustrate with 
a partial analysis along these lines of agreement in NPs in English. Traditionally, agree- 
ment in NPs is taken to be governed by at least three features: person and number 
(often combined in a feature "agr") and something like "mass/count." The person fea- 
ture is only relevant for subject-verb agreement, but at least number and mass/count  
are necessary to get the right combinations of determiner (or no determiner) and noun 
in the following: 

the/a/some man 
the/*a/some men 
the/*a/some furniture 
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*the/*a/*some furnitures 
*man 
men 
furniture 
*furnitures 

We can express the appropriate generalizations quite succinctly by defining a feature 
whose values are arranged in a hierarchy: 

any 
/ I \ 

count optdet sing 
I \I \ I \ 

sg pl mass I 
\ ................. I 

From the basic traditional types of count (sg and pl) and mass nouns we construct 
two supertypes: sing(ular) and opt(ional)det(erminer). 

The grammarian needs to add a declaration describing the set of types and the 
partial order, expressed as immediate dominance, on them. 

part ial_order J eature (agr, 
[any : [count, optdet, sing] , 
count : [sg,pl], 
optdet : [pl,mass], 
sing: [mass, sg] ] ) . 

From this declaration it is easy to compute the array representing the reflexive transi- 
tive closure of immediately dominates: 

[ a , m , c , s , p , s , o ]  
[ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] a n y  
[O,l,O,O,O,O,O]mass 
[ 0 , 0 , 1 , 1 , 1 , 0 , 0 ]  count 
[ 0 , 0 , 0 , 1 , 0 , 0 , 0 ]  sg 
[O,O,O,O,l,O,O]pl 
[ 0 , 1 , 0 , 1 , O , l , O ] s i n g  
[O, l ,O ,O, l ,O ,1]op tde t  

Now it is easy to precompute for each atomic type, represented by a row of the array, 
a vector like that for bool comb fea ture .  In this case, each vector will have nine 
elements, and adjacent positions will be linked if the corresponding column element 
is 0. 

Given such a feature, the following rules and lexical entries are sufficient to account 
for the data above, where in a more traditional feature-based approach we would have 
had multiple entries for the determiners, and two rules for the determiner-less NPs: 
one for the case of a mass noun, the other for the plurals. 

np: {agr=A} ==> [n: {agr=optdet, agr=A}] 
np: -[agr=A} ==> [det : {agr=A},n : {agr=A}] 

t h e :  det :{agr=any} 
a: det : {agr=sg} 
some : det : {agr=sing} 

Of course, we could achieve a similar result by using the Boolean feature combinations 
described earlier. We could define a feature with values in {sing ,plur}*{mass, count} 
and provide rules and entries with the appropriate Boolean combinations of these. This 
will always be possible, so, strictly speaking, the encodings we have described are not 
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necessary. However, there are two reasons for maintaining the type inheritance en- 
coding separately from the Boolean feature combination. Firstly, although in many 
cases the Boolean encoding might, as here, seem to have a size advantage, in general 
this need not be the case, especially when the techniques for compaction of bit arrays 
described by Ait-Kaci et al. (1989) are used. Secondly, and perhaps more importantly 
for the grammarian, in many cases using the Boolean combination would be a linguis- 
tically inaccurate solution. Having a definition like that just given implies that it is 
just an accident that there are no massaplur NPs, since they are a linguistically valid 
combination of features, according to the declaration. In this case, and similar ones, 
the description in terms of type inheritance would be regarded as capturing the facts 
in a more natural and linguistically motivated way. 

6. Threading and Defaults 

The technique of gap threading is by now well known in the unification grammar liter- 
ature. It originates with Pereira (1981) and has been used to implement wh-movement 
and other unbounded dependencies in several large grammars of English (Bobrow, 
Ingria, and Stallard 1991; Pulman 1992). 

The purpose of this section is to point to another use of the threading technique, 
which is to implement a rather simple, but very useful, notion of default: a notion that 
is, however, completely monotonic! 

Consider the following problem as an illustration. In an analysis of the English 
passive, we might want to treat the semantics in something like the following way: 

Joe was seen 

= exists(e,see(e,something,joe)) 
Joe was seen by Fred 
= exists (e, see (e, fred, joe)) 

Joe was seen on Friday by Fred 
= exists(e,see(e,fred,joe) a on(e,friday)) 

Joe was seen on Friday in Cambridge by Fred 
= exists(e,see(e,fred,joe) & in(e,cambridge) & on(e,friday)) 

Joe was seen on Friday by Fred in Cambridge 
= exists(e,see(e,fred,joe) ~ on(e,friday)) & in(e,cambridge) 

Whether we assume a flat structure for the VP modifiers: 

[vp pp pp . ] 

or a recursive one: 

[[[vp pp] pp] pp] 

the problems for the grammarian writing a compositional semantic rule for sentences 
like this are: 

(i) where the verb meaning is encountered, we do not know whether there 
is an explicit agent phrase 

(ii) if there is no agent, we need to put in an existential quantifier of some 
sort (something). 

(iii) if there is an agent phrase, we need to put in the meaning of the NP 
concerned in subject position 

(iv) if there is an agent phrase, it may come at any distance from the verb: in 
particular, we cannot be guaranteed that it will be either the lowest of 
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the highest of the VP modifiers in such sentences. (If we could, then the 
problem could be solved either at the lowest VP level, or at the point 
where the VP is incorporated into the S). 

We can formulate this generalization in terms of defaults: the default subject for a 
passive is something, unless an explicit agent is present, in which case it is that agent. 
We can encode this analysis literally in terms of threading. The basic idea is that we 
thread an agent=(In,  Out) feature throughout the VP. On the passive verb itself, the 
features will look like this: 

v:{if=see(Subj,Obj),agent=(Subj,something),subj=Obj .... } 

The surface subject is the semantic object (passed down via the feature subj. The 
semantic subject is the value of the In part of the agent feature. This feature sends 
the default value something as the Out value. We arrange things so that this value is 
threaded throughout the VP and returns as the value of the In part if no agent phrase 
is present. In other words, any PP that is not an agent phrase simply threads the value 
of this feature unchanged. If an agent phrase is present, the logical form of the NP 
in it replaces the something and becomes the Out value. The topmost VP, which is a 
constituent of the S, will unify the In and Out values so that either the default agent 
meaning, or an actual agent meaning is therefore transmitted eventually back to the 
verb. (If we require the In value of the agent phrase to be the default value for an 
agent i.e., a meaning like something, then this threading analysis has the incidental 
advantage that only one agent phrase can be present.) 

Some schematic rules to achieve this might be: 

s:{if=Vsem} ==> [np:{if=S}, vp:{if=Vsem,subj=S,agent=(A,A)}] 

The sentence semantics is taken from VP. The NP subj meaning is sent down to the 
head V to be put in its first argument position. The Agent thread is passed on by 
unifying In and Out values. 

vp:{if=PPsem,subj=S,agent=(in,N2)} ==> 
[vp:{if=Vsem,subj=S,agent=(in,Nl)}, 
pp:{agent=(NI,N2),if=PPsem,vlf=Vsem}] 

The mother VP meaning is taken from the PP, which will simply conjoin its own 
meaning to that of the daughter VP if the PP is a modifier. If the PP is an agent, it will 
pass up the daughter VP meaning. PP meanings are functions from VP meanings to 
VP meanings (or more generally, from predicates to predicates). 

pp:{agent=(A,A),if=and(Vsem,...), vlf=Vsem} ==> 
[p:{}, np:{}] 

A nonagentive PP co~oins i t smeaning to that of the VE and passesthe agentthread 
unchanged. 

pp:{agent=(something,NPsem),if=Vsem, vlf=Vsem} ==> 
[p:{}, np:{if=NPsem}] 

An agentive PP replaces the default agent value with that of the agentive NP and 
passes up the daughter VP meaning. 

vp:{if=Vsem,subj=S,agent=(In,something)} ==> 
[v_be:{}, v_passive:{if=Vsem, subj=In,obj=S}] 
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This rule introduces a passive form of V as complement to be, and sends up the default 
agent meaning. 

I described this technique as expressing a limited notion of default. There are 
several linguistic concepts which seem amenable to an analysis in terms of such a 
technique. A notable example might be the LFG concepts of functional completeness 
and coherence. In all implementations of LFG parsers that I am aware of, such checks 
are built into the parsing algorithm. However, it should instead be possible to achieve 
the same effect by compiling the unification part of an LFG grammar in such a way 
that completeness and coherence are checked via unifiability of two features: one going 
up, saying what a verb is looking for by way of arguments, and one coming down, 
saying what has actually been found. 

6.1 Implementation 
The easiest way to implement this use of threading is by defining and using macros 
such as those given earlier for illustration. Some implementations (e.g., Karttunen 1986) 
build threading into the grammar compiler directly, but this can lead to inefficiency if 
features are threaded where they are never used. 

7. Threading and Linear Precedence 

Threading can also be used as an efficient way of encoding linear precedence con- 
straints. This has been most recently illustrated within the HPSG formalism by En- 
gelkamp, Erbach, and Uskoreit (1992). Given a set of some partial ordering constraints 
and a domain within which they are to be enforced, the implementation of this as 
threading proceeds as follows. 

Firstly, given a set of constraints of the form a < c, b < d, etc., where each of 
a, b, c, d is some kind of category description, then add to each instance of the 
category that can appear within the relevant domains some extra features encoding 
what is not permitted to appear to the left or right on each category within that domain. 
How this is done depends entirely on what features and categories are involved: we 
could use Boolean combinations of atomic values, category valued features, or, as in 
the example below, a pair of term-valued features, l e f t  and rLght. 

Secondly, for each relevant rule introducing these categories in the given domains, 
we need to identify among the daughters some kind of head-complement or governor- 
governed relation. Exactly what this is does not matter: if there is no intuitively avail- 
able notion, it can be decided on an ad hoc basis. The purpose of this division is 
simply to identify one daughter whose responsibility it is to enforce ordering relations 
among its sisters and to transmit constraints on ordering elsewhere within the domain, 
both downwards to relevant subconstituents, and upwards to constituents containing 
this one but still within the domain within which the ordering must be enforced. On 
each relevant rule we need a feature on the mother and the distinguished daugh- 
ter, here called store,  following the terminology of Engelkamp, Erbach, and Uskoreit 
(1992), and threading features, in and out or their equivalent, on the relevant sister 
constituents. 

To illustrate the technique in the simplest possible form, here is a small grammar 
for an artificial language. The language consists of any sequence of four ys from 
the set {a ,b ,c ,d}  within a constituent labeled x, provided that the LP constraints 
a < c, b < d are observed. 

First we encode the categories in question with the LP constraints in terms of what 
can precede and follow them. We represent this as a tuple, with a position for each of 
the relevant categories: (a ,b,  c,d).  The feature le~t  encodes what can precede, and 
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r i gh t  what may follow a category. If a member of the tuple cannot precede or follow 
the current category we put a no in that position of the tuple, otherwise we leave it 
uninstantiated. 

Next we thread a similar tuple through each category to record which category 
it is. Thus the position in the tuple for a b must have a b in that position in the out 
value. All the other positions are simply linked by shared variables. 

/* lexical entries: LP = a < c, b < d */ 

y:{lex=a,in=(_,B,C,D),out=(a,B,C,D),left=( .... no,_)} 
y:{lex=b,in=(A,_,C,D),out=(A,b,C,D),left=( ...... no)} 
y:{lex=c,in=(a,B,_,D),out=(A,B,c,D),right=(no ...... )} 
y:{lex=d,in=(A,B,C,_),out=(A,B,C,d),right=(_,no .... )} 

/ *  r u l e s :  * /  

sigma:{} ==> [x:{}] 

This rule just says that an x is a valid parse. 

x: { s t o r e = S }  ==> [y: {out=S}]  

An x can consist of just a y. The store of the x is the out value of the y. In the other 
rules, x acts as the distinguished daughter, and y as the subsidiary daughter. 

x: { s to r e=A}  ==> 
[y : {out=A, in=B,  r i g h t = B } ,  x : { s t o r e = B } ]  

When the distinguished daughter follows the subsidiary, the r i g h t  value of the sub- 
sidiary must be unified with its in value and the s tore  of the distinguished daughter. 
This means that any y categories following this one will be recorded in the store of 
the x daughter, and will have to be consistent with the constraints recorded on this y 
daughter's r i gh t  feature. 

The out value of the subsidiary daughter is passed to the mother category's store. 
Thus the mother contains a record both of the distinguished daughter's store, and 
what has been added to it by the subsidiary daughter. 

x : { s t o r e = A }  ==> 
[x : {store=B}, y : {out=A, in=B, left=B}] 

This rule illustrates what to do when the distinguished daughter precedes the sub- 
sidiary one. Otherwise, things are exactly analogous. Of course, if both of these rules 
are used, there will be a lot of ambiguity in these "sentences": they are just to illustrate 
the different possibilities. 

7.1 Implementation 
This approach to partial ordering can be implemented by requiring the grammarian 
to make linear precedence declarations encoding the partial orderings. (If grammars 
obey the "Exhaustive Constant Partial Ordering" property (Gazdan et al. 1985, 49) one 
global statement will be sufficient). Then, for each domain, the relevant rules have to be 
annotated with an indication of the daughter that is to be treated as the distinguished 
one. 

We define (for each domain) five features (earlier called s tore ,  l e f t ,  r igh t ,  in, and 
out) whose values will be tuples of length N, where there are N different categories 
figuring in the partial order declaration. The members of the tuple will be categories, 
each associated with a fixed position, or a negative element (here represented as no) 
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which will not  unify with any of these categories. Intuitively, left and right encode 
what  can precede or follow the category they appear  on; in  and out  encode what  
actually does precede or follow; and s t o r e  encodes the information to be passed up  
the tree. 

Now when  compiling the g rammar  (and lexicon), for each category figuring in a 
linear precedence statement Ca < Cb, do the following: 

. 

. 

. 

add to Ca the feature specification 
l e f t = (  . . . .  n o , . . . )  
where no is in the position associated with Cb and all other positions 
have an anonymous  variable; 

add to Cb the feature specification 
right=(... ,no .... ) 

where no is in the position associated with Ca and all other positions 
have an anonymous  variable; 

add to Ca/b the feature specifications 

in = (Xl . . . . . . . . . . .  X.) 

o u t  = ( X l  . . . . .  Ca~b, • • •, Xn) where _ and Ca~ b a r e  in the positions 
associated with Ca/b and the other positions in these two features are 
linked by shared variables X1 • • • X, as indicated. 

Finally, for each annotated rule with distinguished daughter  D, mother  M, and 
subsidiary daughter  S: 

1. pu t  store=X on M and out:X on S 

2. pu t  s tore=Y on D 

3. if D < S pu t  in=Y, l e f t=Y on S; if S < D put  in=Y, r ight=Y on S. 

Macros, perhaps  automatically generated by the compiler  in response to the dec- 
laration, can be used to effect these feature constraints economically. 

8. Threading and Set Valued Features 

The threading technique can also be used to implement  some of the effect of set valued 
features. We represent a set as a tuple of values, e.g. (a ,  b, c, d). Each member  of the 
set encodes its presence by  changes to this tuple on an ±n and out  feature: thus a 
would  have (no,B,C,D) as its in  value and (a,B,C,D) as its out  value. Then on the 
category representing the domain  within which all the members  of the set are to be 
found, we give ( n o , n o , n o , n o )  as the value of in, and ( a , b , c , d )  as the value of out.  
These values will be satisfied if and only if all the members  of the set have been 
encountered,  in any order. 

Here is a small g rammar  which implements  a kind of set-valued subcategorization 
analysis. The language consists of sequences of a verb (vabcd, vbcd, or vbd) followed 
by the things it is subcategorized for, in any order: e.g. 

vabcd a b c d 
vabcd b a d c, e tc .  
*vabcd a b c ~. d missing 
*vabcd a b d c d Y. too many ds 
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Here are the categories (for simplicity regarded as lexical) that can appear  on subcat 
lists: 

y:{lex=a,in=(no,B,C,D),out=(a,B,C,D)} 
y:{lex=b,in=(A,no,C,D),out=(A,b,C,D)} 
y:{lex=c,in=(A,B,no,D),out=(A,B,c,D)} 
y:{lex=d,in=(A,B,C,no),out=(A,B,C,d)} 

Here are the verbs: 

x : { l e x = v a b c d ,  i n =  ( a , b ,  c , d ) ,  o u t =  (no  , n o  , n o  , n o )  } 
x : {lex=vbcd, in= (no, b, c, d) , out = (no, no, no, no) } 
x : {lex=vbd, in= (no ,b ,no ,d) , out = (no ,no ,no ,no) } 

Notice that by  putt ing the negative element  in the relevant position on both  the in  
and out  tuple we require that that member  of the set should not  be found at all. 

And now the rules: 

sigma:{} ==> 
[x : {in=A, out=A}] 

This rule unifies the in  and out  values to make sure that what  was found was what  
was being sought; x might  typically be a VP, for example,  and this identification of 
feature values would  take place on the s==> [np, vp] rule. 

x: {in=In,out=Out} ==> 
[x : {in=In, out=Nxt }, y : {in=Nxt, out=Out}] 

This is like a subcat schema which combines an x-projection with a y-complement ,  
threading the appropriate  information. 

This simple technique can be used to implement  m an y  of the kinds of analysis 
that might  be thought  to require set va lued features, a l though at a small cost of adding 
some extra features and values to a grammar. It can also be combined with the pre- 
ceding treatment of linear precedence to enforce a partial ordering on members  of the 
set. 

Set valued features are often used in conjunction with a membership  test. It is 
usually possible to achieve the same effect by  inventing a new bool_comb va lue  fea- 
ture and using disjunction. For example, if our  original features involved sets whose  
possible members  were {a b c d e f}  and had feature specifications of the form 
f=X, where member(X,{b c d e}),  then the same effect can be achieved by  declar- 
ing f to be a boo l  comb va lue  feature with values in { a , b , c , d , e , f }  and writ ing 
f = ( b ; c  ; d ; e ) .  In the case that the members  of the set in quest ion are categories, then 
some new atomic feature values have to be invented to represent  these, as is often 
necessary in other contexts also (Engelkamp, Erbach, and Uskoreit  1992). 

9. Reducing Lexical Disjunction 

This section describes two techniques for eliminating multiple lexical entries for the 
same word.  Having multiple lexical entries for the same word  is a form of disjunction, 
and all forms of disjunction entail increased nondeterminism leading to inefficiency in 
analysis. It is therefore a good idea to eliminate multiple entries as far as is possible. 

9.1 Selectors 
A frequently occurring case is the following: a particular word,  W, has multiple possi- 
ble realizations of some property, P1 . • • Pn. Which particular realization is found will 
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depend on the context: in context C1 we find P1, and, more generally, in Ci we will 
find Pi. 

A simple though rather artificial illustration of this phenomenon might be a treat- 
ment of the semantics of prepositions that regarded them as ambiguous between dif- 
ferent senses, depending on which type of NP they combined with. For example, we 
might regard for as having these meanings: 

'for_benefactive' with animate NP: The book is for John 

'for_time_period' with temporal NPs: He stayed for an hour 

'for_directional' with locative NPs: They changed direction for the coast 

Here the Pi are the different meanings, and the Ci are the different types of NP. 
The simplest way to achieve the desired result is to have multiple entries for the 

preposition, one for each sense. We then treat the correlation of the properties with 
the contexts as a kind of agreement, between some feature on the preposition and one 
on the NP. Some sample lexical entries, and a rule for combining a P and an NP to 
make a PP might look like this: 

p:{lex=for, sem=for_benefactive, type=animate} 
p: {lex=for, sem=for_time_period, type=temporal} 
p: {lex=for, sem=for_directional, type=locative} 

pp:{sem=lambda(X,[S,X,NP])} ==> [p:{sem=S,type=T},np:{type=T,sem=NP}] 

Unfortunately, such a treatment can lead to large numbers of lexical entries, which, 
especially if they are phrasal heads, as in this case, can each generate a separate parsing 
hypothesis for any occurrence of for in the input. 

A better treatment can be obtained by using the fact that it is the NP that deter- 
mines the P semantics, and encoding this dependency directly. What we need to do 
is to make the NP select the appropriate prepositional semantics, representing all the 
choices within a single lexical entry. We can do this in the following way: 

. Encode the set of possible semantic values for the preposition as a list or 
a tuple, where each position in the tuple is going to correspond 
systematically to a particular type of NP. 

p:{lex=for,semvalues=(for_benefactive,for_time_period...)...} 

. Use the original seril feature to represent the semantic value that will be 
chosen when the P is combined with an NP: 

p:{lex=for,sem=Chosen, 
semvalues=(for_benefactive,for_time_period,for_directional)...} 

. Associate with each different type of NP and other relevant categories a 
s e l ec to r  feature whose value will pick the appropriate member of the 
tuple on the P. Some illustrative rules and entries are: 

np:{type=T,selector=S . . . .  } ==> [det:{...},n:{type=T,selector=S .... }] 

n:{lex=john,type=animate,selector=(X,(X .... ))} 
n:{lex=week,type=temporal,selector=(X,(_,X,_))} 
n:{lex=coast,type=locative,selector=(X,( .... X))} 
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. Now on the rule that combines a P and an NP to form a PP, use the 
selector feature to choose the appropriate semantics for the P: 

pp:{sem=lambda(X,[Chosen,X,NP])} ==> 
[p:{sem=Chosen,semvalues=Tuple}, 
np:{sem=NP,selector=(Chosen,Tuple)}] 

The value of the sere feature on the P will be the first, second, or third member of the 
tuple, depending on the type of the NP. This will arise because the selector on the NP 
will unify the Chosen variable with the position on the tuple identified by its shared 
variable, X. 

This simple device enables us to have a single entry for each preposition, while 
still allowing for it to have multiple senses conditional upon the type of NP it com- 
bines with. The technique has a wide variety of applications and can be astonishingly 
effective in reducing the number of explicit alternative entries or rules that need to 
be written, at the cost of a few extra features that cost nothing in terms of processing 
time. 

9.2 I m p l e m e n t a t i o n  

As with many of the techniques described here, implementation by way of a compiled 
out notation can be complex if the features involved interact with other aspects of 
linguistic description. If we assume that they do not (which can usually be enforced 
by defining a new "shadow" feature that simply duplicates the information where it 
is needed) then an attractive and clean way of implementing this technique is as a 
conditional constraint on feature values. 

There are various notations one could employ: one possibility for the above ex- 
ample is the following, where psem and type are assumed not to figure in any other 
such statement, and where their total range of values is given by the conditionals 
(such restrictions could be relaxed to some extent given agreed conventions or extra 
declarations): 

pp : {sem=lambda (X, [PSem, X, NP] ) } ==> 
[p : {psem=PSem}, 
np: {sem=NP, type=Type) }] 

where 
if Type = animate then PSem = for_benefactive 
if Type = temporal then PSem = for_time_period 
if Type = locative then PSem = for_directional 

Now the compiler has enough information to be able to proceed automatically: 

. 

. 

construct a values feature whose value will be a tuple of the values of 
psem in a canonical order. Put this feature specification on the P category. 
More generally, put this specification on that category of the rule 
introducing the conditional constraints which contains the feature 
specification figuring in the consequents of the conditional constraints. 

construct a s e l ec to r  feature whose values will be of the form 
(X, ( . . . .  X . . . .  )) where the second member of the tuple is a tuple of the 
same length as that in the values feature. On each category where a 
type feature specification is present, add the selector feature also. If the 
type feature is instantiated, then the s e l ec to r  feature will be of the form 
indicated by the conditional constraint: that is, the X in the second 
component of the tuple will be in the position corresponding to the value 
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. 

of the psem feature given by the conditional, and all other positions will 
be anonymous variables. If the type feature is simply passed from one 
category to another, as it is for example on the NP rule given earlier, then 
the s e l ec to r  feature must likewise be coindexed on the two categories. 

On the categories of the rule introducing the constraint, coindex the 
feature specifications as follows: 

values = Values 

selector = (Selected,Values) 

psem = Selected 

Again, macros can be used to make it possible to express all this economically. 

9.3 Subcategorization 
Perhaps the most obvious source of lexical disjunction is subcategorization. Most verbs 
can appear with several different types of complement, and some verbs appear with 
many. For example, the verb send in English can occur in at least the following con- 
figurations (there is some dialect variation here, but please bear with me for the sake 
of the example): 

John sent a letter. 

John sent a letter to Mary. 

John sent Mary a letter. 

John sent out a letter. 

John sent a letter out. 

John sent out a letter to Mary. 

John sent a letter out to Mary 

John sent Mary out a letter. 

John sent out Mary a letter. 

There are nine distinct configurations here. Let us ignore the fact that some alternations 
might be capturable by rule, and let us also ignore the fact that different semantic 
properties might be involved. Given this, it would be nice to be able to have a single 
entry for the verb send that encapsulated all these alternatives, rather than listing them 
all as separate lexical entries, as is done in all grammatical formalisms I am familiar 
with (except of course those that allow explicit disjunction). 

In a GPSG-like approach to subcategorization (Gazdan et al. 1985), each distinct 
type of complement has a separate rule. Thus we will have rules, schematically, like: 

vp -> v[1] np 

vp -> v[2] np pp 

vp -> v[3] np np 

etc .  

Using the technique described earlier for encoding Boolean combinations of feature 
values, we could achieve the desired single entry for send very simply. Rather than 
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use numbers to represent the different subcategorization possibilities, we will have an 
atom with some mnemonic content: {np, np_pp, np_np, np_pnp . . . .  }. Then we define a 
feature that can take as values Boolean combinations from this set, subcat, and write: 

v : { l e x = s e n d , s u b c a t = ( n p ; n p _ p p ; n p  n p ;  . . ) . . } 

The various VP rules are recast using the mnemonic symbols: 

vp : {} ==> [v : {subcat=np},np : {}] 
vp : {} ==> [v : {subcat=np_pp}, np : {}, pp : {}] 
etc. 

Now one entry for each verb will subsume all the possible subcategorization combi- 
nations for it. 

This technique certainly reduces the number of items in the lexicon. Unfortu- 
nately, it does not necessarily reduce the amount of nondeterminism during analysis. 
Although there is only a single entry for send, it will, on either a left-corner or head- 
driven approach to parsing, initiate parsing hypotheses for each distinct VP rule whose 
head unifies with it. That will be exactly the same number of parsing hypotheses as 
we would have had with the original GPSG treatment, and so there is no obvious 
advantage here. 

Nevertheless, this technique should not be scorned, for in other cases, there will 
be some advantage gained. For example, in derivational morphology the presence of 
multiple entries for verbs like send can cause unwanted ambiguity. The word sender, 
for example, would be nine ways ambiguous, given a rule like: 

n:{} ==> [v:{}, affix:{lex=er}] 

With just one entry for send this problem goes away. (Note that one cannot get round 
the ambiguity problem by just restricting the agent nominalization rule to one or 
two types of subcategorization: many different types of verbal complement may be 
involved: sleeper, designer, thinker, etc.) 

As we have seen, the GPSG treatment of subcategorization involves many VP 
rules. A currently more favored approach is to use a single VP rule or schema or 
subcat principle, and a list of categories subcategorized for by a verb: 

vp:{subcat=Rest} ==> [vp:{subcat=[Next IRest] },Next] 

vp : {lex=send, subcat= [{cat=np}, {cat=p}, {cat=pp}] } 
etc. 

Multiple applications of this schema use up subcategorized elements one at a time, 
with a requirement that when the VP is combined with a subject to form a sentence the 
subcat list is empty (or contains just one category unifiable with the subject, depending 
on the approach taken). The tree for a VP will look like: 

vp 
/ \ 

vp pp 
/\ 

vp p 
/ \ 

vp np 

This approach requires multiple entries for verbs, but has the advantage that it elimi- 
nates the need for different VP rules for each type of complement. 

It would be nice to f{nd some way of combining this single-schema approach with a 
single subcategorization entry subsuming multiple possibilities. This would eliminate 
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nondeterminism completely, even for verbs capable of appearing with many different 
types of complement. Although the details are rather complex, it turns out that it is 
possible to achieve this by combining the Boolean encoding technique in conjunction 
with the use of s e l ec to r s  as previously described. Unfortunately, there are some 
limitations on the amount of subcategorization information that can be expressed 
by the resulting technique: in particular, categories have to be represented by atoms, 
which is an inconvenient limitation. Nevertheless, for many purposes where efficiency 
of processing is at a premium, it could be worth living with this limitation. 

First of all, consider how to represent the various subcategorization possibilities 
of a verb like send, using Boolean combinations of atoms. (I have omitted as many 
parentheses as possible in the interests of readability. Assume that ; takes precedence 
over a unless parentheses indicate otherwise.) It might seem that something like: 

{cat=vp,lex=send, 
subcat=(np; 

np a pp; 
np & np; 
p a np; 
np ~ p; 
p & np a pp; 
np a p a pp; 
np & p a np; 
p a np a np) 

would accurately describe the possibilities. (This Boolean expression can, of course, be 
written more compactly by using a few more disjunctions). 

The VP schema that we need will then have to be of the following form. Note that 
since we need to be able to generalize over categories, we are reverting to the basic 
(untyped) category notation. 

schema: 
{cat=vp,subcat=S} ==> [{cat=vp,subcat=S]},{cat=S}] 

sample entry: 
{cat=vp,lex=send,subcat=(np; np ~ pp; np ~ np;...)} 

(Note that this makes cat a Boolean combination feature. Given the importance of 
the cat feature for efficient indexing and lookup this might be, for practical purposes, 
unwise. A better implementation would use a new feature). 

A moment's reflection should reveal that this first attempt will not give the cor- 
rect results, for two reasons. Firstly, the various different orderings are not properly 
encoded here (because p ~ q is logically equivalent to q g~ p). Secondly, there is no 
encoding of the requirement to find the correct number of subcategorized entities 
(because p a p is logically equivalent to p). Thus nothing would prevent us from suc- 
cessfully analyzing a sentence like John sent Mary out Mary a letter to Mary a letter, with 
too many complements, or John sent out, with too few. 

Let us tackle the ordering problem first. We can solve this by adding new sym- 
bols representing the product of the set of relevant categories np, p, pp and the set of 
positions 1,2,3 after the verb in which they occur. We then define a Boolean feature 
value type for the feature subcat as follows: 

{np l ,p l ,pp l}*{np2 ,p2 ,pp2}*{np3 ,p3 ,pp3}  

We encode the subcategorization possibilities in the obvious way, using these new 
symbols. (This time I have used disjunction to give a more compact encoding.) 
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{lex=send,cat=vp, 
subcat=(npl; 

npl & (pp2 ; np2) ; 
pl ~ np2; 
npl & p2; 
npl ~ p2 ~ (pp3 ; np3); 
pl ~ np2 ~ (pp3 ; np3)) 

} 

We will define a new feature that appears on every category that can be subcategorized 
for, say scat ,  whose values are tuples. An NP, for example, will have sca t=(npl  ,np2, 
np3). Notice that the components of the tuple are values that can appear in Boolean 
combinations, for they must be of the same type as the subcat feature. In order to 
pick the correct value for the position in question, we associate with the verb a feature 
whose value is a list of the constructs called s e l e c t o r s  that we used earlier. Each 
s e l e c t o r  picks out a position in the complement corresponding to the position of the 
selector in the list: the first s e l e c t o r  on the list will pick out npl for an NP, ppl for a 
PP; the second will pick out np2 for an NP, pp2 for a PP, and so on. The feature and 
value will be of the form: selectors= [(A, (A .... )), (B, (-,B,_)), (C, ( .... C))]. 

The VP rule schema now uses the current selector to choose the appropriate 
symbol from the complement it is combining with. It pops selectors off the list 
each time it applies so that the correct positional encoding is available for the next 
application. 

{cat=vp, subcat=S,selectors=Rest} ==> 
[{cat=vp, subcat=S, selectors = [ (S, X) l Rest] }, 
{cat=_, scat=X}] 

{cat=np,scat=(npl,np2,np3) . . . .  } 
{cat=pp,scat=(ppt ,pp2,pp3) , . . .}  
etc. 
{lex=send,cat=vp,subcat=(npl; npl & pp2; npl & np2; etc.), 

selectors=[(A,(A .... )),(B,(_,B,_)),(C,( .... C))]} 

Since the s e l e c t o r  list guarantees that the symbols npl etc. are only found in the cor- 
rect position after the verb, this solves the ordering problem. Although npl & np2 is 
logically equivalent to np2 g~ npl, the s e l e c t o r  list will not allow the second ordering 
to be found, because this would involve an attempt to unify npl with np2. The use 
of s e l e c t o r s  to encode position also solves some cases of the problem that our first 
attempt suffered from, of allowing more than the correct number of complements. The 
s e l e c t o r  list will not allow more than three complements of send to be found. Unfor- 
tunately, the treatment so far will still allow fewer than three complements to be found 
even where another is needed for the sequence to be grammatical. For example, the 
sentence John sent out will be parsed successfully (as indeed will John sent) because no 
conflict with any of the subcategorization possibilities has been encountered. The way 
the Boolean encoding works has to allow for elements to be conjoined one at a time, but 
it cannot require that all the elements are present simultaneously, for this very reason. 

The way to solve this problem is to expand our Boolean combination of subcat 
feature values to include some special finish symbols. 

{npl,pl,ppl}*{np2,p2,pp2}*{np3,p3,pp3}*{fl,f2,f3,f4} 

There is one symbol for each possible subcat position, plus an extra one to mark the 
end of the list. We have to extend our various s e l e c t o r s  and the lists they appear in 
to accommodate this fourth position. 
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The intuitive motivation behind this move is to regard the completion of a subcat 
requirement as being signaled by a special f i n i s h  category. However, that category 
need not actually be present: its marker can instead be introduced by the rule that 
combines a completed VP with a subject to make a sentence. (This is analogous with 
the treatment described earlier in which this rule required a subcat list to be empty 
at this point). 

To implement this analysis, we enter into the various subcategorization possibili- 
ties the information about which position marks their completion: 

{lex=send, cat=vp, 
selectors=[(A,(A ...... )), Y~ each selector now has 4 positions 

(B, (_,B .... )), 
(C, ( .... C,_)), 
(D,( ...... D))], Z and there are 4 selectors in the list 

subcat=(npl & f2; 
npl a (pp2 ; np2) & f3; 
pl ~ np2 & f3; 
npl ~ p2 & f3; 
npl & p~ & (pp3 ; np3) & f4; 
pl ~ np2 & (pp3 ; np3) & f4) 

} 

An intransitive verb would of course just be subcat=fl. 

Our VP rule schema is exactly as before. For the right results to be obtained, 
however, we now need to assume the presence of some rule like the following to close 
off the subcategorization: 

{cat=s} ==> [{cat=np}, 
{cat=vp, subcat=S, selectors= [ (S, (f I, f 2, f3, f4) ) I _] }] 

This will add the finish marker of the appropriate position to the subcat value of the 
VP. This unification will only succeed if the verb is subcategorized to finish at that 
point, and we will not have reached this point unless all the other elements subcat- 
egorized for have been found in the correct order. So, using se l ec to r s  and Boolean 
combinations of feature values together we have developed an analysis that completely 
eliminates disjunction and hence non-determinism. It will, of course, generalize to any 
other area having the same structural properties. 

9.4 Implementation 
The general features of the implementation of this technique are as follows. 

. we need to know the subcategorized-for categories, the symbols used to 
identify them, and the maximum number that can occur in a single 
verb-complement construction. This might conveniently be stated by a 
declaration something like: 

subcategorization_feature(Name,Categories,Mnemonics,MaximumLength). 

This will allow us to automatically construct the s e l ec to r  list. For a 
maximum number of four, this will take the form: 

[(A, (A ...... )), (B, (_,B .... )), (C, ( .... C,_)), (D, ( ...... D))] 

The declaration will also allow us to work out the mnemonic values 
(npl , f l ,  etc) needed for the scat  and subcat features (types of 
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booZ_comb_value feature). Rules or lexical entries that build a member 
of Categories must have the scat  feature added with tuple values like 
(npl ,np2,np3) etc. 

On lexical entries for subcategorizers, the subcat value can be stated 
as a simple list of possibilities: 

subcat= [[np] , 
[np, pp] , 
etc. 

. 

or some convenient abbreviatory notation could be devised. These values 
should then be compiled to Boolean combinations of the corresponding 
mnemonic atoms. The tuple-valued se l ec to r s  feature needs to be added 
to these entries with the value already illustrated: this can be done 
automatically, given the declaration. 

The rule that encodes the combination of subcategorizer and 
subcategorized has to be identified, and feature specifications of the 
following form added: 

{...subcat=S, selectors=Rest,...} ==> 
[{(subcategorizer) subcat=S, selectors=[(S,X) IRest]...}, 
{ (subcategorized) cat=X}] 

. The rule that closes off the subcategorization needs to have the relevant 
s e l ec to r s  value added, as in the example above. 

With suitable generation of macros by the compile~ our example might then be 
written by the grammarian as: 

declaration: 
subcategorization feature(subcat,[{cat=np},{cat=p},{cat=pp}],[np,p,pp],4). 

subcat schema rule: 
{cat=vp, Mother} ==> 

[{cat=vp, Subcategorizer]}, 
{Subcategorized}] 

where 
subcat_schema_macro(Mother,Subcategorizer,Subcategorized). 

rule terminating subcat: 
{cat=s} ==> [{cat=np}, 

{cat=vp,CloseSubcat}] 
where 
subcat_close_macro(CloseSubcat). 

sample entries: 
{lex=send,cat=vp,subcat=[[np], [np,pp], [np,np] etc.]} 
{lex=give, eat=vp, subcat=[[np,np],[np,pp], etc.]} 

9.5 Limitations 
As mentioned earlier, there are some limitations associated with this technique. Be- 
cause of the type of Boolean mechanism we are using, we are restricted to atomic 
symbols to represent the subcategorized-for elements. Putting into lexical entries the 
kind of refined subcategorization information that we often do using features is not 
possible, or at least not possible without expanding the vocabulary of symbols like npl, 
pp2, etc. to induce a finer partition among instances of the categories in question. This 
is, of course, a serious limitation, especially for theories of grammar that are largely 
lexically based. However, where all the categories that figure in subcategorization will 
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have some of the same features (e.g., those used for threading gaps) then these can be 
incorporated directly into, in our  case, the VP subcategorization schema rule. 

Another  problem is that since we need to be able to generalize over whole cate- 
gories, we cannot, as things stand, use compilation into terms for feature structures. 
One way  round  this is to change the VP schema so that complements  are charac- 
terized not  just by a variable but  by  an explicit new category, say xcomp, with a 
bool_comb_value feature on it that can serve to identify categories. We then introduce 
rules expanding xcomp as the "real" category corresponding to that feature. This may  
in turn re-introduce some inefficiency, since there will be an extra level of structure 
that is not linguistically motivated.  

A final limitation, which is perhaps  more theoretically defensible, is that we are 
forced to be absolutely and strictly composit ional in assembling the semantics of verb 
phrases grouped under  the same subcategorization treatment. Since we have only one 
entry for a verb, then any semantic differences that are associated with variant  subcat- 
egorizations will have to be built from the complement  constituents in a completely 
composit ional way. 

Alternatively, as is done in many  wide-coverage systems for efficiency reasons, 
syntactic and semantic analysis can be separated into consecutive stages. This can 
have a further  advantage in that now the same technique can be used to eliminate 
disjunction for words  where  there is sense ambiguity but  no syntactic ambiguity. If 
different lexical entries are assigned to the content  words  in the following sentence 
because they differ semantically but  not  syntactically, then the sentence will have 16 
parses (8 * 2 for the at tachment  ambiguity) to be disambiguated.  

They saw the ball near the bank. 

(saw = see, or cut wood; 

ball = round thing, or dance; 

bank = edge of river, or financial institution). 

If sense selection is instead per formed when  syntactic processing is completed,  on the 
assumption that the words  involved do not  differ syntactically, then there will only 
be two parses and three lexical disambiguation decisions. In general we will only be 
dealing with the sum and not  the product  of the syntactic and semantic ambiguity. 
Under  such a processing regime the appropriate  sense entry for a verb on a particular 
subcategorization can be s imply and cheaply selected (since the complete complement  
will be there), and the benefits of the preceding analysis for syntactic processing will 
be retained. 
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